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SUMMARY 
We develop a model for the propagation of a fluid-filled crack in a porous medium. 
The problem is motivated by the mechanism whereby drainage networks may form in 
partially molten rock below the Earth‘s lithosphere. Other applications include the 
propagation of hydraulic fractures in jointed rocks and in oil drilling operations, and 
the formation of dessication cracks in soils. Motivated by the lithospheric problem, we 
study a situation in which gravity acts in the direction of crack propagation. The 
model couples the elastohydrodynamic equations of crack propagation with a pore 
pressure field in the porous rock, which drives the fluid flow which supplies the crack. 
The effect of the pore flow is to include a diffusional term in the evolution equation 
for the crack width, thus allowing a crack initiated at the base of the lithosphere to 
propagate down into the asthenosphere. Asymptotic and numerical solutions are 
presented for this crack evolution. However, the predicted drainage of melt into this 
crack is tiny compared with the upward percolative melt migration, and the predicted 
width of cracks (millimetres) is much too small to allow propagation of melt into the 
lithosphere without freezing. As a mechanism to explain magma fracturing in the 
lithosphere, the process described here therefore requires further refinement. 
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1 INTRODUCTION 

The transport of magma to the surface of the Earth’s crust is 
effected through fissures and dykes, which are initiated as 
cracks in the lithosphere or crust and then propagate upwards 
(Spence, Sharp & Turcotte 1987; Lister & Kerr 1991). The 
propagation is driven by ‘magma fracturing’, whereby buoyant 
magma generates the crack pressure head necessary to drive 
the crack upwards. The fracture toughness of the rock is very 
small, and the resistance to flow and propagation is primarily 
due to viscosity. 

Many authors have shown that cracks can be propagated 
through the lithosphere at speeds of the order of metres 
per second and widths of the order of metres. In some cases 
(at mid-ocean ridges) fracture is initiated above an axial magma 
chamber; at mid-plate hot spots such as Hawaii, however, 
cracks must initiate below the lithosphere, in or just above the 
region of partially molten rock from which the magma derives. 
Indeed, Fowler ( 1985) hypothesized that a porous partially 
molten rock would be susceptible to fracture under quite 
small tensile stresses, because of the weakening effects of the 
pore fluid pressure (much as pore water pressure influences 
landslides), and there is some evidence of the formation of 
cracks in exposed ophiolites (Nicolas 1986). 

Models of lithospheric crack propagation (e.g. Emerman, 

Turcotte & Spence 1986) assume a given supply rate from the 
source region, but, to date, none has provided a coherent 
account of the mechanism whereby the magma supply is 
provided. In this paper we provide a first effort to give such 
an account. While we describe a mechanism that is capable of 
extracting melt through fractures in the partially molten source 
region, insofar as it is dynamically consistent, we nevertheless 
find that it is not viable practically, and some other enhance- 
ment of the process is required to provide the melt extraction 
that occurs. 

Magma is thought to originate by pervasive partial melting 
in the mantle. Experimental observations of the microscopic 
texture of equilibrated ultramafic partial melts show that both 
the solid and liquid phases are fully connected (e.g. Vaughan, 
Kohlstedt & Waff 1982). These observations suggest that the 
rheology of the porous framework of solid will remain similar 
to that of a completely solid material, but that magma can 
percolate through a pervasive network of tubules. The density 
difference between the magma and solid provides a driving 
force for the ascent of magma relative to the solid framework. 
It therefore seems likely that the initial process of magma 
transport is by pervasive percolative flow. 

In a general sense, these two transport mechanisms must 
‘join up’. One possibility is that the transition always takes 
place through some kind of ‘magma chamber’, i.e. a relatively 
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large volume containing only magma. Magma would perhaps 
be supplied to the base of the chamber by percolation, and 
leave the chamber in cracks. 

There is, however, evidence that cracks operate to transport 
magma below crustal magma chambers, in the mantle source 
regions where the magma is produced. Mantle melting beneath 
the diverging plate takes place in a depth range between 
approximately 10 and 60 km beneath the sea floor. Because of 
the thermodynamic properties of the mineral phases present 
in the parental mantle peridotite, the composition of the 
magma produced varies significantly through this depth range. 
The observed systematics of major elements in mid-ocean- 
ridge basalts (MORBs) (e.g. Klein & Langmuir 1987) indicates 
that samples of magma throughout the depth range of melting 
are delivered to the shallow oceanic crust without 
re-equilibrating with the mineral assemblage at intervening 
depths. 

The physical implication of this geochemical evidence is that 
the magma must move quickly enough to avoid diffusive 
re-equilibration. Percolative transport is far too slow to 
accomplish this, if (as is likely) the dimensions of the channels 
in the permeable network are related to the grain size of the 
partially molten rock. 

This idea has been developed quantitatively in simplified 
models of the production and transport of magmas of varying 
compositions. For example, Iwamori (1993) presented a 1-D 
model of the development of the distribution of trace elements 
during melting and magma transport, including both per- 
colative transport and a conceptual model of crack transport. 
Again, the characteristic of crack transport is that it does not 
permit chemical re-equilibrium between the magma and the 
rock it is ascending through. It is shown that the observed 
range of incompatible trace-element concentrations in residual 
peridotites can be produced from a single parental bulk 
composition if crack transport is reasonably efficient. 

Studies of secular disequilibrium in the U-Th radioactive 
decay series place particularly severe constraints on the mech- 
anics of melting and melt transport. Beattie (1993) demon- 
strated that, deep within the melting column, melt must be 
produced slowly but must then be transported rapidly to the 
surface and erupted. Fractures formed within a partial melt 
might accomplish this process. 

Independent, and arguably more direct, evidence for the 
presence of magma-filled cracks in the partially molten mantle 
beneath mid-ocean ridges comes from structural studies of 
ophiolites. For example, Nicolas ( 1986) argued that vein-like 
features observed in the mantle section of the Oman ophiolite 
are relicts from the melting process. 

Magma transport in partially molten rock has always been 
modelled by Darcy’s law for flow in a porous medium. 
However, Fowler (1985) suggested that a more likely drainage 
route is through an arborescent network of channels, in 
analogy with comparable networks in subglacial drainage. 
Such channels would be maintained open (against viscous 
closure) by melt-back of the channel walls, and would be 
initiated by crack formation. 

However compelling the evidence, the process of magma 
transport in cracks in regions of partial melting might appear 
to be mechanically improbable. Cracks are generally thought 
to be a feature of brittle deformation, but regions that are hot 
enough to partially melt (well above 1500 K for ultramafic 
rock types) deform readily by viscous creep. Such geophysical 

preconceptions may perhaps be allayed by the observation 
that there exist viscous flows at the Earth’s surface, consisting 
of polycrystalline solids at the melting point and containing 
several percent partial melt, where fracturing is commonplace. 
The flows are alpine glaciers, and the cracks are crevasses. 
Indeed, the internal hydraulic system of a glacier may be an 
analogue for the magma drainage system in the mantle. 

Even when they are hot enough to melt, rocks remain solid 
in the sense that they can support elastic stresses for at least 
limited periods of time. The ratio of the dynamic viscosity to 
the elastic modulus (the Maxwell time) is a measure of the 
amount of time taken for viscous creep to dissipate elastic 
stresses; this is probably about a year for partially molten 
mantle. A process of crack propagation that is fast enough 
can, therefore, penetrate material that shows ductile behaviour 
over longer, geological timescales. 

In this paper we propose a model in which magma-filled 
cracks nucleate near the base of the solid lithosphere, and 
propagate down into the partially molten asthenosphere, as 
shown in Fig. 1. The downward propagation is rapid enough 
to produce elastic behaviour in the partial melt region, and 
the elastic stress field around the crack tip also draws magma 
from the surroundings into the crack. Sufficient magma is 
drawn in both to fill the crack as it extends downwards and 
to supply magma to the upper tip of the crack as it extends 
upwards into the lithosphere. 

The analysis of crack propagation in porous media is also 
of interest in natural hydraulic fractures in jointed rocks 
(Renshaw & Harvey 1994) and in hydrofracturing in oil drilling 
operations (Cleary & Wong 1985; Boone & Ingraffea 1990). 
The problem has been studied by Ruina (1978) and Huang & 
Russell (1985a, b). Most of the solution methods are directly 

Figure 1. Schematic representation of a crack nucleating at  the base 
of the lithosphere and propagating both upwards and downwards into 
the asthenosphere. 
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numerical, and the treatment below seems to extend the model 
analytically beyond previous work. 

Although we achieve our purpose of showing that self- 
propagation of cracks downwards into an elastic porous 
medium is dynamically feasible, we also find that, where 
appropriate parameters that would describe such fracture 
propagation in the Earth's asthenosphere are used, the resulting 
criick widths are too small for this mechanism to be a realistic 
way of extracting magma from source regions. 

2 ELASTOHYDRODYNAMIC CRACK 
MODELLING 

We consider a (horizontally) thin vertical crack. We take (x, y )  
as Cartesian axes, with x pointing vertically downwards, and 
the crack is situated at y = 0. We suppose it extends in the 
z-direction also, but conditions of plane strain are assumed, 
such that the deformation field is 2-D. We denote the crack 
width (in the y direction) as h(x, t), and we suppose (or 
anticipate) that it is of infinite extent in the vertical (the reasons 
for this are elaborated below). 

2.1 Fluid flow 

We suppose that the crack is filled with a fluid of density pI 
and viscosity q. If the crack fluid pressure is pf, and the crack 
is thin, then a lubrication approximation can be used to derive 
a Reynolds' equation relating h and pf. In the present context, 
this is 

ah a h3 ap, 
at ax[ 12?( ax )] -+-  - - - + + * g  = q ,  

which is of standard form except that there is a source term q. 
This is due to the Darcy flow in the porous medium, and we 
thus take (assuming symmetry across y = 0) 

where k is the permeability of the medium, and p is the pore 
pressure in the medium. 

2.2 Pore pressure determination 

The classical theory of poroelasticity due to Biot (1941) 
supplements linear elasticity equations for a porous elastic 
solid with a compressibility condition, which leads to a con- 
solidation equation for the pore pressure. In Rice & Cleary's 
(1976) formulation of Biot's theory, pore pressure is determined 
by a consolidation-type equation of the form 

$ t  = v .  C C W l ,  (2.3) 

where I)~ = all//& and [their second equation (20b)l 

3 P  
B( 1 + v")' $ = cr1+ a,+ ~ 

where p is the pore pressure, and crl and cr2 are the normal 
stresses in conditions of plane strain (i.e. no strain in the 
x3-direction). The quantities c, B and v, are material properties 
which represent respectively a consolidation coefficient analogous 
to that of soil mechanics, a relative compressibility coefficient 
which relates the change in pore pressure to a corresponding 

change in confining pressure, and an 'undrained' Poisson's ratio. 
When the phases are separately essentially incompressible, 
Rice & Cleary suggest that appropriate values for B and v, 
are 

1 
B x l ,  vux5', ,  

L 

and we shall use these values subsequently. The consolidation 
coefficient is defined by 

(2.6) 
1 3  

k 
r 

2p( 1 - v)B2( 1 + v,)' 
9( 1 - v,)(vu - v) 

c = - [  

where p is the shear modulus and v is the 'drained' Poisson's 
ratio; in the particular case where B and v, are given by (2.5), 

(2.7) 

In order to compute pore pressure p (and hence the flux q) ,  
we require a determination of the elastic stresses. 

2.3 Stress distribution and effective stresses 

We take uI, 6, as the normal components of the stress tensor, 
and z as the shear stress (thus crll = crl, cr,, = cr2, crl2 = T). The 
stresses satisfy the momentum equations for slow deformations, 

aa1 az 
- + - + pg = 0 ,  ax ay 

aZ au, 
ax ay -+-=o,  

where we recall that gravity is assumed to point (downwards) 
in the positive x-direction. In order to solve these equations, 
elastic constitutive relations must be posed. In a porous 
medium such as soil or rock, Terzaghi's principle of effective 
pressure dictates that the stresses that deform the medium are 
effective stresses, where the effective normal stresses are 

cr; = cri + n;  (2.9) 

for soils, one often takes II = p, in which case the determination 
of the solid stresses is coupled to the determination of the 
pore pressure. Skempton (1960) suggests that a more general 
relationship is 

r I=( l -a)p,  (2.10) 

where a is the specific surface contact area. Thus for soils, 
a x 0, but for polycrystalline rocks where the porosity 4 is 
small, it may be reasonable to take a x 1, and thus II z 0. In 
this paper, we will indeed assume that ll = 0, so that the solid 
stresses are determined as for an ordinary elastic solid. This 
implies that the pore fluid pressure does not affect the defor- 
mation of the solid. The merit of this assumption warrants 
further investigation, however. 

2.4 Complex variable formulation 

A useful way of writing the solutions of elastic plane strain is 
in terms of complex variables, and is given by England (1971). 
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If we denote the strain vector as (ul, u2), then 

2p(u, + iu,) = KQ - 

u1 + u, = 2Q’ + 2 s  - - I + p  v ,  
1 + 2 p  

!J ax u1 - g2 + 2iz = -2za“- 20‘ - ___ - 
I + 2 p  az ’  

- -  
(2.11) 

where Q and w are analytic functions of z = x + iy, c3 denotes 
the complex conjugate 3, V and X are functions of z and 2, 
K = (A + 3p)/(d + p), and I and p are the Lamb coefficients. The 
functions V and X are related to an applied body force ( F , ,  F 2 )  
per unit mass by 

av ax 
az aZ p(F1 + iF,) = -, - = v ,  (2.12) 

where V is chosen to be real. In the present instance, F ,  =g 
and F ,  = 0, thus 

v =  pg(z + Z), 

x = i z Z  + .z) . (2.13) 

The solution is completed by finding Q and o such that the 
stress satisfies suitable far-field boundary conditions, together 
with conditions on the crack. If we prescribe a lithostatic 
pressure pa + pgx and a tensile stress T as ly( + 03, then we 
require 

u,+o2= -Po-pgz+(cc), 

u, - u2 + 2iz = -2T, (2.14) 

as z --+ co, whereas continuity of stress at the crack is ensured 
by choosing 

u, - iz = -pf (2.15) 

at y=O. Here, pf is the crack fluid pressure (no significant 
shear is exerted on the crack). Note that u1 (the vertical stress) 
is the most compressive stress. 

2.5 Reformulation as a Hilbert problem 

One can show that 

w(z) = ~ ( z )  - m y z )  - e(z) (2.16) 

for a function e(z) holomorphic outside the crack L. In terms 
of this, we deduce from (2.11) that 

6 2  - iz = Q’ + 

~ __ 

- (z - Z)n” - e’(z) 

(2.17a) 

x. 2p(u1 + iu,) = KQ - Q(z) - (z - z)Q’ + e(z) - ~ 

2(I + 2 4  

- 

(2.17b) 

Satisfaction of the far-field boundary conditions now requires 

Q’ N - Z-+CO. - 1 P 
2Po- ~ 2(I+2p)pgz’ 

(2.18) 

To derive a Hilbert problem, we evaluate (2.17a) on both sides 
y = Ok of the crack, and apply (2.15) there. Eliminating 0, we 
derive the Hilbert problem for a’, evaluated on y=O+ and 
0-: 

a‘+ +a, = -T -p f+-  pgx. 
I + 2p 

(2.19) 

SimilarIy, using (2.17b), with [ul + iu,]? = ih, where h is the 
crack width, we find that 

2 i p h = ( l + ~ ) ( R +  -a_). (2.20) 

Finally, we rewrite these relations in terms of p and the Poisson 
ratio v = I/[2(A+ p) ] :  

Pgx n; +QL = -T-pr+- 
2(1-v)’ 

a+-n-=--- 
2(1-v)’ 

iph 

(2.21a) 

(2.2 1 b) 

(2.21c) 

2.6 A singular integral equation for h 

Solutions of equations of this type have been given, for example 
by Lister (1990) and Spence et al. (1987), in the case of a finite 
crack. Here, we anticipate an infinite crack on y=O,  with 
h -0 as x+ f c o .  The solution of (2.21b) satisfying the 
boundary condition (2.21~) is 

1 1 1-2v 
Q ’ =  - - p  2 o--(-)Pgz 4 1-v 

from which [using (2.22) and (2.21a)l 

(2.22) 

1 1-2v p ah  ds 
= -- 

2 1 - v  2(1-v)n - m  as s - x ’  

(2.23) 

thus 

(2.24) 

and this provides the second relation between pf and h to 
supplement (2.1). It remains to return to the pore pressure 
equation to determine the fluid source term q. 

2.7 Determination of pore fluid flux 

We assume that the consolidation coefficient in (2.3) is constant. 
Then, since r/; = V2V= 0 [from (2.13)], 

?h = C V V  3 (2.25) 

where 

(2.26) 
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From (2.22). (2.33) is 

U ah ds 1 -2v 
1-v 

4 9 8  Q‘= --- 9 8  

(2.27) 

and since V’R’ = 0, we can finally write (2.25) in the form 

We suppose, for the moment, that the far-field pore pressure 
satisfies 

p+po-7’+pgx as y +  fa, (2.29) 

which implies that the pore pressure equals the least com- 
pressive stress. It was suggested by Fowler (1985) that a 
criterion such as this would cause initiation of fracturing near 
the top of the partial melt region, and (2.29) corresponds to the 
maintenance of this marginal condition in the far field. 
The implications of continued over-pressuring are examined 
further below. 

We define P on y = 0 by prescribing 

p =pr=po - T + pgx + P 

there. We then define Y by 

(2.30) 

ah ds 
+ Y ;  

1 
3 

p = po -- T + pgx - -B(  1 + v,)- 
(2.31) 

it follows that 

YI = CVZY, 

Y+O as y - + & a ,  (2.32) 

and with [from (2.24)] 

p = - l  f””” 
2(1-v)n as s - x ’  

it follows that, on y = 0 +, 

Y =  l - -B(I+v, )  P .  [ :  1 

(2.33) 

(2.34) 

If we now adopt the values in (2.5) suggested for incom- 
pressible phasic constituents, then (2.34) becomes simply Y z 0 
on y = 0 +, whence Y = 0 everywhere, and the pore pressure 
is simply given by (2.31) with Y = 0. In particular, we find 
that the pore fluid source is 

4k 

(2.35) 

This completes the derivation of the model equation for h. 

2.8 Summary 

Eq. (2.1) can be written as 

-+ -  - - ( p - p l ) g - -  = q ,  
ah at ax a [ 12q h3 ( ax 1 (2.36) 

p=- -  -- 
2(1 - v ) z  f a h  as s - x ’  ds 

(2.37) 

and the poroelastohydrodynamic equation for h is then 
[with (2.35)] 

pk a2h 
- ( p - p l ) g - z  -__- (2.38) ”11 - (1 - v)q ax2’ 

and the porous flow introduces a diffusive term to the equation. 
The diffusion coefficient has the form of a coefficient of con- 
solidation, that is, elastic modulus times permeability divided 
by liquid viscosity. It is because of this that we assumed an 
infinite crack in the first place. In fact, the derivation of q 
assuming a finite crack leads to exactly the same expression 
for q (and thus a contradiction, since the diffusion precludes h 
reaching zero in a finite distance). Because of the diffusive 
nature of the flux to the crack, a crack tip does not formally 
exist, and there is no need to apply a fracture toughness 
criterion at the tip, as would be the case for a finite crack. 

Although it is inviting to think of the fluid-filled crack as a 
response to the far-field extensional stress T, this quantity does 
not appear in the final equation (2.38) nor in its boundary 
conditions. The elastic stresses that deflect porous flow of melt 
into the crack are in fact perturbations to the far-field stress, 
set up by the opening and extension of the crack. The only 
role that T might play would be at the crack tip, favouring 
crack propagation in the vertical direction. 

We see that the diffusive timescale for lengths of order I is 
t - qlz/pk, while the consolidation timescale for (2.5) is t - lZ/c.  
The ratio is thus qc/pk (=crack diffusion time/Darcy time), so 
that if this is large, then the pore pressure relaxes more rapidly 
than the crack. 

What if c is not constant? In particular, we study below the 
situation where a crack also propagates upwards into the 
(impermeable) lithosphere where c = 0. However, providing c 
decreases to zero over a long space-scale, then V - [cV$] z cV2$, 
and the reasoning above still applies at leading order. Since, 
in fact, our analysis is concerned with such long scales, this is 
a reasonable assumption. We can then approximate (2.32) by 

y t  = c y y y  7 (2.39) 

and the solution can be written as a convolution. We do not 
pursue such issues here. 

If, instead of (2.29), an overpressure pex is applied at 
y = f co, then Y satisfies 

Yt = C V Y ,  

Y+peX as Y +  f a, 
Y=O on y=O (2.40) 

[from (2.34), with B = 1, v, = 1/21. The long time solution of 
this problem has Y + 0 for fixed x, y ,  the implication of which 
is that the overpressure can effectively be taken to be zero, 
since we find below that the relevant timescale of the process 
is indeed ‘large’. 

3 ANALYSIS 

First, we non-dimensionalize the equations. We can choose 
distinguished scales [XI,  [t], [h]  and [PI for x, t ,  h and P 
which make all the coefficients equal to one. Specifically, we 
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choose 

[XI = (3k)”5 [ gAp(f - v)] , , , ’  

2(1- 
[h] = ~ %AP [XI2 7 

P 

where Ap = p - pl ,  and then the dimensionless equations (2.37) 
and (2.38) are 

(3.2a) 

(3.2b) 

Using values (Spence et al. 1987) of p - 2  x 10” Pa, 
Ap-300 kgm-3, g- 1Om s-”, v z z  1/4, 1-10 Pa s, k -  10-’2m2, 
we find 

[x]-73m, [h]-1.2mm, [ t ] -2x  106s(23days), 

[PI - 2.2 x lo5 Pa (2.2 bars). (3.3) 

These scales have as yet no intrinsic meaning; they simply 
indicate when all the terms balance. 

3.1 An approximate analytic approach 

There are conceptual problems with models of crack propa- 
gation through the lithosphere. Usually the supply rate of 
magma to the crack is prescribed, but the way in which this 
can be done is not clear. In the present context, eqs (3.2) apply 
without change in the lithosphere, except that the diffusive 
term is absent. This means that there can be net growth of an 
upward-propagating crack (in x < 0), while the crack extends 
downwards (in x>O), and there is net drainage from the 
source region (corresponding to h, < 0 at x = 0). However, an 
initial perturbation is necessary to initiate crack propagation. 
We will give an approximate description of the evolution of 
an initial perturbation, and give asymptotic estimates for crack 
length, width and propagation speed. We begin by considering 
the upward-propagating part of the crack. 

3.2 Lithosphere fracture 

The model (3.2) applies also for fractures propagating upwards 
in the lithosphere, providing the diffusion term is removed, 
since the lithosphere is impermeable. In this case, the upward- 
propagating crack has a moving tip, whose shape is determined 
by the fracture toughness. For large cracks (-x >> l ) ,  the term 
in aP/ax is small (providing h<<x2), which implies that the 
bulbous tip of the crack occupies a small region, and the 
solution is shock-like. We put t=  -x; it follows that, approxi- 
mately, 

(3.4) h, + 3hZh, = 0 ,  

and if h = h,( t )  at x = 0 (with h = 0 at t = 0 in 5 > 0), then 

h = 0 for 5 > xf(t), the crack tip position, and 

h = h ,  ( t - -  35h2) for O < 5 < x f ,  (3.5) 

where h, is a function of the expression in brackets. The 
position of the crack tip is then given by if = hZlXr, that is 

if = h,( t - Xf/3if)2. (3.6) 

Possibly a more realistic scenario is where a finite amount of 
fluid is released at 5 = 0. In this case the blob moves and 
spreads out behind a front at rf - t113, but continual injection 
from x > O  eventually leads to the same solution as above. 
Note that if h, = bt-p, then 

(3.7) 

providing /3 < 113. 
At the front of the crack there is apparently a discontinuity. 

In reality there is a relatively short zone, where aP/ax - O( l) ,  
and h changes rapidly to zero, with h - 6(xf - ( ) ‘ I 2  as 5 -+ xf 
and 

6 =  
gAp [xl3’’ ’ 

where K ,  is the fracture toughness of the rock (Spence et al. 
1987). Using values of K ,  = 10 MN m-332 (Spence et al. 1987), 
g = 10 m s - ~ ,  Ap = 300 kg m-3, [ x] = 73 m, we have 6 - 7.5. 

3.3 Asthenospheric fracture 

Now let us consider the model equations (3.2) below the 
origin, in x > 0. Prescription of h = h, at x = 0 will cause h to 
diffuse downwards, but this is counteracted by the upward 
advective effect of the flux term - (h3) , .  In the absence of the 
singular integral term, we can then expect h to relax to a 
steady state. Regarding the meaning of the singular integral, 
note that (s - x)-’ is crudely representative of -6’(s - x) 
(the derivative of the delta function in the sense of generalized 
functions), so that (crudely) 

P-  jF6’(s -x)dx= -- a 2  h 
as axz ’ (3.9) 

and - a/ax[h3aP/ax] is thus a non-linear long-range diffusive 
term, which also acts to damp out disturbances. This is 
confirmed by the Fourier transform of P (see below). The 
diffusive term and the singular integral may thus be considered 
to have similar effects. 

If the crack propagates downwards over a long time, so that 
h << x2, then we can ignore the integral, so that 

a 
ax 

h, - -(h3) = h,, , (3.10) 

with 

h=h,(t) on x=O,  h+O as x + m .  (3.11) 

We now have two approximations of h, in x < 0 and x > 0, 
in terms of h,( t )  = h(0, t) ,  which is as yet unknown. Despite 
the absence of the diffusive term in x < 0, we require h, to be 
continuous at x = 0, in order that the stresses be continuous. 

Eq. (3.10) has a similarity solution h = t-l14F(q), 1 = x/t112, 
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whence there follows 

1 
F i -  3 F 2 + - q  F‘+-F=O.  :> 4 

(3.12) 

Nlth F ,  = F (  0), we require ha = FO/t1/4, h, = - Fo/4t5l4, and 
h ,  = F‘(0)/t314. From (3.4) (with h, continuous at x = 0), 

h, == h,/3h2 = hb/3hg = -(Fo/4t514)( t1”/3Fz) = - l/( 12F,t3’4); 

thus appropriate boundary conditions for (3.12) are 

12f(O)F’(O)+ 1 = o ,  
Ffta) = 0 .  (3.13) 

The conditions in (3.13) are not sufficient to solve (3.12), 
however, since by inspection F -+ 0 as q + 00 automatically 
(the equation for F is that of a non-linearly damped oscillator). 
In fact, as q -+ co, two independent asymptotic behaviours for 
F are possible: 

F ,  - - exp(-q2/4), F, - I]-’/’, (3.14) 

and the general solution will be F - AF,  + BF,. If the initial 
data are of compact support, however, then we expect that the 
algebraic decay like F, will be suppressed, so that the second 
condition in (3.13) will be strengthened to 

q112F+0 as q + m .  (3.15) 

[This is analogous to the behaviour of the Fisher equation, to 
which (3.10) is similar: see Murray (1979) for details.] 
Alternatively, we can note that F ,  would require an infinite 
volume of magma to be present initially. Solution of (3.12) 
is then simply done by shooting with various values of F,, 
and evaluating ql/zFlq=L for some large, fixed L. The value 
of F,  that is a zero of g1i2F[L can be determined by usual 
root-finding methods, such as interval bisection. 

The appropriate solutions for ha and h in x < 0 are then 

ho - FOtc114, (3.16) 

h = -  { (5 / t ’ l2)  + [ 36F: + (t/tl’z)z]l/z}l/z, (3.17) 

(and h - t-‘/4 for 5 - t’I2 as before), and 

xf= 2&Fgt112. (3.18) 
Computation of the solution of (3.12) and (3.13) yields 
F ,  = 0.4142 (see Fig. 2), and thus h, - 0.414t-114, xf - 0.59t112. 
We can also compute the tip width at xf, hf-0.54t-’/4, and 
the total crack volume, I/- 0.8t’14. 

1 
v 

1 

&‘/4 

3.4 Numerical solution 

We have solved the coupled set of equations in (3.2) 
numerically. First, we note that the singular integral for P in 
(3.2a) can be evaluated using a spectral method. If 2 denotes 
the Fourier transform of g,  then 

HTg) = - 1; eikx dx f m  g@ 
7 c -  - m  s-x 

m m eik(x-s) dx 

x-s g(s) eiks ds f- 

(3.19) 

0 
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2 
(u . 7 

.c-’ 

X 
II 
F 3  
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0.0 0.1 0.2 qig 0.4 0.5 
F = h t  

Figure 2. Numerical solution of (3.12) subject to the conditions (3.13) 
and (3.15). This is an asymptotic solution for the crack profile as a 
function of depth into the asthenosphere. 

(for real k), where H ( g )  is the Hilbert transform, and the 
interchange of the order of integration is, justified by the 
PoincarbBertrand formula. Since h, = - ikh, we have that 

P = --H(h,) = i sgn(k)h, = lk16. (3.20) 

The advective derivative in (3.2) is expanded to give 

h 

(3.21) 

P is evaluated using (3.20) and fast Fourier transforms. The 
spatial derivatives of h and P in eq. (3.21) are then evaluated 
using explicit finite differences. The Two-step Lax-Wendroff 
method (Press et al. 1992) is used to advance h in time with 
second-order accuracy. 

The non-dimensional permeability function K(x) is used to 
distinguish between the lithosphere and asthenosphere in the 
spatial domain of the numerical solution. In the asthenosphere 
(positive x), K = 1; in the lithosphere (negative x), K = KO << 1 
(there is a narrow transition region centred at x = 0). The 
small lithospheric permeability KO is needed to stabilize 
the advection of the ascending crack tip. By comparing the 
advective and diffusive terms in (3.2), the minimum value 
required is estimated to be 

KO = 3h;,,Ax, (3.22) 
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where h,,, is the maximum crack width and A x  is the spatial 
grid size. In the numerical procedure KO is adapted, as La, 
changes, to the minimum value given by eq. (3.22). Note 
that if h,,, - 1 then A x  << 1 is required in order to permit 
KO << 1. 

The maximum time step permitted, At, is usually determined 
by the diffusive term in the asthenospheric (K = 1) part of the 
spatial domain: 

At < 0.2Ax2.  (3.23) 

(The numerical factor is empirical.) For the examples shown 
in Figs 3 and 4, the following parameter choices were used: 
A x  = 0.1, At = 0.001. In the initial state, h,,, = 0.3 and therefore 
KO = 0.03. The maximum crack width monotonically decreases, 
so the lithospheric permeability KO is less than one per cent of 
the asthenospheric permeability during most of the calculation. 
The example shown used 2048 grid points in x and lo6 time 
steps, and took about one day to produce on a Sun SPARC 
station 10/41. We see that the similarity solution accurately 
represents the numerical solutions. 

4 CONCLUSIONS 

In this paper, we have addressed the issue of explaining how 
cracks can propagate sub-critically in porous elastic solids, when 
the crack growth is limited by fluid supply through the porous 
matrix. Two immediate applications are to joint propagation 
in wet, porous rocks, and the supposed propagation of magma- 
bearing fractures downwards into the lithosphere. We focus in 
particular on this latter problem, with the aim of understanding 
how an upward-propagating lithospheric crack can tap its 
supply source in the asthenosphere. In previous studies, the 
magma supply has always been prescribed as a boundary 
condition. 

In the physically realistic case where the separate phases are 
incompressible, but the porous mixture is elastically com- 
pressible, we show that the fluid supply from the matrix is 
determined by a diffusive term. This allows the possibility that 
fractures can propagate in a direction opposite to that of the 
fluid buoyancy, and, by explicit calculation, we show that 
lithospheric fractures can propagate upwards while drawing 
their melt from the porous source region by a downward- 
propagating asthenospheric crack. 

Two issues arise in considering the relevance of our results 
to asthenospheric melt transport. First, the cracks still require 
a nucleus from which to grow. Our mechanism allows this 
point of nucleation to be moved from deep within the region 
of partial melting to the upper boundary of this region, i.e. to 
the base of the lithosphere. We argue that it is more likely that 
cracks nucleate by brittle processes at the base of the 
lithosphere than it is that they nucleate by some purely viscous 
process within the asthenosphere (e.g. Stevenson 1989). 

Second, the dimensional scales in eq. (3.3) translate our non- 
dimensional solutions into cracks with speeds of metres per 
day and widths of millimetres. In the lithosphere such cracks 
will simply freeze, although the propagation down into the 
asthenosphere should still be viable. We speculate that the 
cracks might branch out to form arborescent networks 
analogous to river drainage networks, supplying a larger and 
faster single crack in the lithosphere. Alternatively, crack 
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Figure 3. A numerical solution to eq. (3.21), showing the evolution 
of the crack shape with time. Negative values of the depth coordinate 
x lie in the solid lithosphere; positive values of x lie in the permeable, 
partially molten asthenosphere. In the initial state, the crack has a 
maximum width of approximately 0.3 and is localized to the region 
around x = 0 (the lithosphere-asthenosphere boundary). The other 
outlines of the crack shape are spaced by time intervals of 200; the 
final shape, after a time interval of 1000, is shown by a thicker line. 
The variables are given in terms of units [ h ]  = 1.2 mm (for h); 
[ t ]  = 2 x 106 s (for t ) ;  [x]  = 73 m (for h). Thus the final maximum 
crack width is ~ 0 . 1  mm, at a time -2 x lo9 s - 70 years, and extends 
over a distance -7 km. 

enlargement may arise from the fact that melting in the 
asthenosphere is due to adiabatic decompression of ascending 
material. As the fluid flux through the crack increases, the 
transport of sensible heat with the fluid increases, and local 
‘melt-back’ of the crack walls may occur. A similar process 
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. \  i 

- 
-- Width at x=O (h0=0.41t"") 

transport at depth without a requirement that cracks nucleate 
at depth. 
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