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ABSTRACT

The formation of some forms of patterned
ground, notably earth hummocks and stone
circles, is associated with seasonal freezing and a
spatial instability in the resulting frost heave.
We analyse the Miller model of frost heave for
such spatial instability, by incorporating
three-dimensionsal heat and mass transfer, and
allowing the frozen soil to deform as a viscous
medium. We find that the heaving process is
generally (but not always) stable, but that if
account is taken of a surface snow cover, then the
insulating thermal properties of the snow predict
that instability will occur if a dimensionless
parameter N > 0.02. The parameter N is given
by N = nsvs/(psgd?), where ;¢ is the frozen soil
viscosity, vy is the surface heave rate, p; is the
frozen soil density, ¢ is gravity, and d is the
depth of the freezing front. This implies that the
propensity for differential frost heave depends on
the soil heaving characteristics, as well as the
rate of frost penetration.
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INTRODUCTION

In tundra regions subject to a cold climate,
many types of regular geometric formations are
observed. These formations are referred to as
patterned ground, and differential frost heave is
thought to be a possible mechanism for their
formation. Some forms of isolated patterned
ground (e.g. pingos and palsas) can be directly
attributed to frost heave. For the more
interesting earth hummocks and stone circles
(see, for example, Williams and Smith 1989),
differential frost heave has been suggested as an
organising mechanism (Van Vliet-Lanoé 1991),
although other mechanisms have been suggested,
for example thermal convection (Krantz et al.
1988) or the ‘cryostatic pressure’ theory (Van
Vliet-Lanoé 1991). In this paper we summarise
recent work by Noon (1996) which demonstrates
that the Miller model of secondary frost heave,
when suitably modified to allow for
three-dimensional (differential) frost heave, has
an instability mechanism in it which predicts
that in certain conditions, differential frost heave
will spontaneously occur in the seasonal freezing
of soils, and thus lead to the formation of
patterned ground.

THE MILLER MODEL
Miller (1972, 1978) developed a model for

secondary frost heave which allowed for the
existence of a partially frozen fringe between the
frozen soil near the surface and the unfrozen soil
beneath. In particular, it includes a mechanism
for distinct lens formation within the frozen
fringe. While it is perhaps the most conceptually
complete model available, it is hampered by the
fact that its mathematical formulation (O’Neill
and Miller 1982, 1985) is dauntingly complex.
However, Piper et al. (1988) showed how certain
(accurate) approximations allowed the model to
be simplified, and more recently Fowler and
Krantz (1994) extended this earlier analysis, and
showed that the one-dimensional Miller model
could be reduced to a single pair of first order
ordinary differential equations for the positions of
the ground surface and the freezing front, from
which all other quantities, such as lens thickness
and spacing, can be derived. The nature of this
simplification is summarised in the following
section.

THE FOWLER-KRANTZ-NOON
REDUCTION

Fowler and Noon (1993) and Fowler and
Krantz (1994) use four approximations to
simplify the Miller model. In turn, these are the
assumptions that (1) gravitational effects are
small; this is more of a convenience than a
necessity, but is accurate except on a regional
scale, and certainly in the present case; (ii) the
advection of sensible and latent heat is small,
and in particular, heat conduction is essentially
in equilibrium; (iii) the frozen fringe is thin
(relative to the depth of frost penetration): this
is an accurate approximation, due to the fact
that the generalised Clapeyron equation allows
only a small temperature jump across the fringe
(relative to a typical seasonal variation). The
final approximation which enables a dramatic
reduction in the model complexity is based on
(iv) the strong dependence of soil permeability
on the pore water fraction in the frozen fringe.
As a result, the pore water pressure only varies
within a boundary layer which lies inside the
frozen fringe, and the governing differential
equations can be solved in the fringe.

The consequence of the fringe being thin is
that its location is effectively specified as a
surface z = z¢(z,y,t), where z is a coordinate
normal to the (original) ground surface, and z,y



are horizontal. Equally the ground surface is
given by a surface z = z,(x,y,t). It is convenient
to express these and other variables in
dimensionless form, and to this end we choose a
length scale d appropriate to our situation: for
example, a typical depth of the active layer.
Equally, the temperature scale AT represents a
typical seasonal freezing temperature (degrees
below zero Celsius). In terms of these, we define
a (thermal) velocity scale
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where k; is the thermal conductivity of the
frozen ground, p,, is the density of water, and L
its latent heat. For values k; ~2 W m~ K1,
AT ~20K, py ~ 103 kg m=3, [ ~ 3.3 x 10°J
kg™, d ~ 5 m, we have U ~ 2.4 x 1078 m s~ 1.
From these we have the time scale

tf:%NQX]OSS; (2)

note that this is longer than the seasonal time
scale 3 x 107 s.

If temperatures, distances, lengths and
velocities are scaled with the values above, then
Noon (1996) showed, following Fowler and
Krantz (1994), that the normal velocity of the
frozen fringe, denoted V, and the normal ice flux
at the lowest ice lens within the fringe, denoted
V;, are related by

Vi6=Wm) = VitGr-Gi,
Vi = a[(Wi—Wm)V; +Gil, (3)

where the dimensionless heat fluxes are given by

Gy = —(ku/kf)g—T at the freezing front,
n
T
G = —g— at the lowest ice lens, (4)
n

ky 1s the thermal conductivity of unfrozen soil,
and in the present case we can take the small
geothermal heat flux G as zero. In the
equations (3), ¢ is the unfrozen soil porosity, Wy,
(which could be zero) is the soil’s minimum
obtainable water content on freezing, W, is the
pore water volume fraction at the lowest ice lens
in the fringe, and « is a dimensionless heaving
parameter which depends both on W, and on the
soil characteristics.

W itself depends on the dimensionless effective
pressure in the unfrozen soil, and it is only

insofar as this is taken as independent of z; that
gravity is neglected.

Miller model in one dimension

If we denote the normal velocity of z; as Vi,
then in one spatial dimension (upwards), Miller’s
rigid ice assumption specified the heave rate by
prescribing

Vs =Vi. ()

Since, for steady conduction, we can write

G o (25 — z4)™', we see that (3) forms a pair of
ordinary differential equations for z; and z;
solutions have been given by Fowler and Noon

(1993).

EXTENSIONS TO THREE
DIMENSIONS

The equations (3) apply as much in three
dimensions as in one, but we can no longer
assume V; = V;. Instead, V; must be related to
Vi by consideration of the rheology of the frozen
soil. In addition, where the rigid ice assumption
allows one to take V; as spatially uniform in one
dimension, this is not possible in three
dimensions, and we have replaced Miller’s
assumption of rigidity with the physically based
thermal regelation model (based on work by
Romkens and Miller (1973) and Gilpin (1979))
which allows the ice flux w; within the fringe to
be proportional to — V7. In particular, the
normal component of u;, u;,, at the lowest lens is
not necessarily equal to V;. The theory behind
the equations (3) is still valid, but the definition
of «a is different.

We assume that the frozen soil deforms as a
viscous medium. The creep behaviour of frozen
soil is considerably more complicated (Sayles
1988, Fish 1994), and the assumption of viscous
deformation 1s taken here as a first simple
approach. In three dimensions, we have to solve
for the temperature T and frozen soil velocity u
in the region zy < z < z,, where (3); determines
the location of z¢, and (3)2 gives the normal flux
there. We thus have to solve

VT =0 in 2z <2< z, (6)

with prescribed temperature on z; and 7'= 0 on
zy. To examine possible instabilities we first pose
the condition

T=-1 on z =z, (7

i.e., an isothermal surface.



The equations describing slow flow (including
gravity) are Stokes’s equations, and can be
written in the dimensionless form (using
Nkt AT/ py Ld? as the pressure scale, where 7y is
the frozen soil viscosity)

Vp = Viu —TIk,

V.au=0, (8)
and the gravity parameter is
Ld?
= AT )
nek; AT

with typical value, if n; = 10™* Pa s (Sayles
1988), of TT & 1.

We apply boundary conditions of no normal or
tangential stress at z;, together with a kinematic
condition there, which determines z;. At zf, the
normal velocity is equal to the normal ice flux V;
given by (3)2, z; is determined by (3)1, and we
finally suppose that the unfrozen soil is
undeformable, so that a no slip condition is
applied. Other choices are clearly possible.

STABILITY ANALYSIS

The basic solution is that of one-dimensional
heave. We analyse its stability by linearising the
domain boundaries and the variables about their
basic states, thus obtaining a linear set of
equations and boundary conditions. The basic
solution is time dependent, as z; — z; increases
with time as the freezing front penetrates
downwards. We adopt a quasi-static approach
(Robinson 1976) in which it is assumed that
instabilities occur much faster than frost
penetration, so that solutions of the perturbation
equations proportional to e can be sought. We
restrict attention to two spatial dimensions z, z;
solutions are then proportional to exp(ct + ikz),
where o 1s the growth rate and k is the
wavenumber, and in the usual way we derive a
dispersion relation in the form ¢ = o(k) from the
analysis.

In keeping with the two time derivatives
(0zs /0t and Oz /Ot) which occur in the problem,
we find that there are two modes, and these can
in fact be characterised as being due to the
gravitational relaxation of z, (we call this the
gravity mode), and the relaxation of z; in the
presence of heave: this is called the thermal
mode.

In figure 1 we show typical examples of the
dependence of ¢ on k for the gravity mode and

the thermal mode. The formulae describing these
functions are excessively complicated and the
details of the analysis will appear elsewhere.
Typically, the growth rates are negative,
indicating stability. However, it is possible to
obtain unstable modes, as indicated in figure 2.
We see that instability can occur through a
degeneracy in the solutions of the dispersion
relation a(k)o? + b(k)o + ¢(k) = 0, when a goes
through zero. The infinite growth rate at finite
wavelength is reminiscent of a resonance
phenomenon, and while it is unusual, is by no
means unknown; see Murray (1989, chapter 17.4)
for examples in biology. The formulae are so
complicated that it is difficult to be dogmatic,
but essentially this instability is predicted to
occur for large enough values of a, corresponding
to higher permeabilities and thus coarser soils. If
this instability does occur, it seems likely to be
rather violent (due to the infinite growth rate!).
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Figure 1: A typical example of the dependence
of thermal mode o (upper) and gravity mode o
(lower) versus k for o = 0.1, Il = 1. Note the dif-
ference in scale. Essentially o ~ 11 for the gravity
mode, while o ~ « for the thermal mode.

THE EFFECT OF SNOW COVER

One of the mechanisms commonly cited as a
reason for the growth of hummocks is the
variability in snow covering overlying the
hummocks (Williams and Smith 1989). During
the winter months troughs of hummocks fill with
snow and hence the snow covering is greater in
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Figure 2: The thermal mode has become violently
unstable for wavenumber k < k. & 0.2. This would
suggest rapid formation of patterned ground, pre-
sumably at a wavelength close to 27 /k. (in this ex-
ample). The parameters are still a = 0.1, T = 1,
but another parameter C in the dispersion relation
has been changed from 1 to 1.2; this can be effected
by changing v, for example.

the troughs than on the crests. Because snow
acts as an insulator, the crests are subject to
greater cooling and thus more heave, which
allows for a further possible instability
mechanism.

To study this, we consider a layer of snow of
(dimensionless) thickness h overlying an initially
flat ground surface. We suppose that the snow
surface remains flat during the evolution of z;,
and we replace the condition 7'= —1 at z =0
(the undisturbed ground surface) by solving
V¥ '=0inzs < 2 < h,withT =l at z=h, T
continuous at z = z,, and

or

T
e or

zs+ B on ’ (10)
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where § = k,/ky is the ratio of the thermal
conductivities of snow and frozen soil.

As before, we derive a quadratic dispersion
relation for o(k). For simplicity, we neglect the
effects of the perturbation in load on the heave
parameter a. (In the absence of snow cover, the
same assumption always gives stability, so that
the instability (in the thermal mode) mentioned
in section 5 for high « relies on its variation with
load.) Figure 3 shows a typical plot of the
gravity and thermal modes. For these unstable

modes, the freezing front and surface
perturbations are out of phase, as observed
(Tarnocai and Zoltai 1978), Williams and Smith
1989, Van Vliet-Lanoé 1991).
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Figure 3: Growth modes in the presence of snow
cover. We take o = 0.1, T = 1, § = 0.05,
h = 1. The upper (gravity) mode indicates long
wavelength instability for k < 0.5.

If we assume that instability arises via an
exchange of stability (i.e. & = 0), then one can
calculate analytically the critical condition for
instability to occur. The relevant bifurcation
parameter is N, defined by

(¢ — Wi)a

N = 6 Wy — oW W)

(11)

or more simply, A' = V;/II. Since in one
dimension, V; is the heave rate, we can write A/
as the dimensionless group

N = (12)
Pfgdf

where v, is the dimensional heave rate, p; is the
frozen soil density, and in this analysis the length
scale d (= dy) has been specifically taken to be
the (slowly evolving) depth of the frozen front.
We then find that instability occurs at
wavenumber k if
(sinh 2k — 2k)



and this defines a positive increasing critical
value of A as a fraction of k. The minimum value
occurs at k = 0, and defines a critical value of N,

)
3(1-4)
With typical values k, = 0.1 W m™' K=, ky =2
W m~! K=! we have § ~ 0.05, thus NV, ~ 0.02.
We conclude that differential frost heave is
predicted by the Miller model provided the

parameter A given by (11) is greater than this
critical value.

N, = (14)

DISCUSSION

The Miller model can be extended to describe
three-dimensional frost heave, but the rigid ice
assumption must be replaced. Gilpin’s model of
thermal regelation provides a useful alternative.
It can then be systematically reduced to give two
messy but explicit expressions for the ice flux to
the fringe, and the frost penetration rate.

Together with Laplace’s equation for the
temperature, the frozen soil rheology must be
prescribed. We have chosen to model the frozen
soil as a viscous medium overlying a rigid
substratum, though this choice is easily modified.
We have then found two possible instability
mechanisms. In the first, instability relies on the
variation of o with load (excess load suppresses
heave), and is only practical for relatively high
values of «, corresponding, for example, to silts
or sands. This mechanism could then serve as an
explanation for stone circles. Alternatively, while
this mechanism is not viable for finer soils, the
effect of snow cover can cause instability by
enhancing heave at the crests. Here we find
instability if the frost depth d; is less than a
critical value,

1/2
NiVs
< . 15

[pngc] (15)

For a silt with v, = 107 m s™!, this gives

d; < 14 m, and suggests that this mechanism of
instability is feasible, although it must also be
pointed out that in order for the effect to be
viable in practice over a seasonal time scale, the
growth rates need to be higher than indicated in
figure 3, and this is likely to provide a more
severe constraint on dy. Also, v, decreases as dy
increases, and of course the whole analysis has
been based on a quasi-static approach. Further
investigations will warrant a full two or
three-dimensional numerical simulation.
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