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Abstract. The budworm site model of Jones (1979) is a complicated
representation of the interaction between the spruce budworm and the
forests of Northeastern Canada, which describes the way in which the
budworm population undergoes periodic outbreaks, which lead to
severe defoliation and widespread tree mortality. We show how this
model can be systematically simpli"ed without gainsaying the essential
description of the budworm/forest interaction. The main simpli"cation
is the collapse of the year to year age structure to allow for three classes
of young, mature, and old trees; we then obtain a reduced set of six
di!erence equations for the six variables: larval population, new and
old foliage, and the three age classes. Further analysis and reduction of
the model is then possible on the basis of formal asymptotic limits, and
we analyse a reduced model consisting of three di!erence equations for
larvae, (old) foliage, and the area fraction of mature trees. In practice,
the latter variable is inessential to the mechanism of oscillation, which
can be understood via the slow cycling of the foliage variable round
a hysteresis loop of quasi-steady states, mediated by the varying larval
population as control parameter.
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1. Introduction

The interaction between the spruce budworm moth (Choristoneura
fumiferana) and the forests of North America provides an excellent



pedagogical example of the application of mathematical modelling to
a dynamical ecological system. Spruce budworm infestations occur at
regular intervals in the forests of New Brunswick, with a period on the
order of 35 years. These outbreaks cause severe damage, and are of
consequent economic importance. An extensive "eld study (the Green
River project) in the 1950s led to the publication of a monograph
(Morris 1963) which gave a detailed description of the dynamics of the
interaction between the budworm (speci"cally, in the larval stage) and
the trees whose foliage it devours, chie#y spruce and balsam "r. A more
colloquial account is given by Belyea et al. (1975). Following this,
a detailed simulation model was developed by Jones (1979), and called
here the budworm site model. (In its entirety, the simulation allows the
evolution of the key variables at a large number of di!erent sites, with
moth migration facilitating an e!ective larval transport between sites.)
The key variables are the larval population, the quantities of new ("rst
year) and old foliage, and the fractional area occupied by 75 di!erent
age classes of trees (separated by a year's gap in age, essentially). In its
operation, the model updates these key variables year by year in each
of 393 sites, thus giving 78]393"30,654 di!erence equations for the
spatially distributed key variables.

For the applied mathematician, a major question is whether any
useful simpli"cation of the site model can be made: even if we restrict
ourselves to a single site, 78 variables is far too many to admit any
analytical insight. The classic paper which carries out such a simpli"ca-
tion is that of Ludwig, Jones and Holling (1978), who devise a much
simpler model describing the behaviour of three key variables, which
may be thought of as larval density, foliage density, and (mature) tree
density. Their model uses di!erential equations, and is phenom-
enological insofar as it treats the key e!ects (predation, foliage
consumption, etc.) in a plausible descriptive way rather than aiming
to give a precise reduction of the original site model. The incorporation
of spatial variation to this model is presumably best done by incorpor-
ating larval di!usion (representing adult moth migration) as Ludwig
et al. (1979) did, notwithstanding the fact that adult moths can be
transported by prevailing winds by up to 25 miles in a single night.

Our aim in this paper is to derive a reduced form of the original
Jones budworm site model. Indeed, we shall show that the dynamics of
the model can be usefully compressed to that of three, or even two, "rst
order di!erence equations, but that the structure of these is very
di!erent to the Ludwig}Jones}Holling (LJH) model. Nevertheless,
regular outbreaks occur, and indeed, the character of the oscillations
(cycling round a hysteresis loop by the slow variation of a control
variable) is similar.
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The Jones model is perhaps the most prominent model of the
budworm/forest system. Other related papers are those by Stedinger
(1984), McNamee et al. (1981) and ReH gnière and You (1991), while
Horowitz and Ioinovici (1985) analyse the LJH model as a feedback
control system. However, the model has been subjected to criticism by
Royama (1984, 1992), who contends that some of its implications are
inconsistent with some of the Green River data. The principal compo-
nents in the Jones simulation model, and also in the LJH model, are
the budworm larval density (l), the foliage density (g), and the mature
tree density (s). (The equivalents of these variables in the LJH model are
B, E, and S.) Essentially, growth and mortality of the larvae are control-
led by the extent of defoliation, with predation by birds also being of
importance. Thus in the Jones or LJH model, budworm decline follows
defoliation. In contradistinction, Royama (1992) asserts that neither
defoliation nor tree mortality can be a cause of larval decline, because
budworm decline in di!erent plots of the Green River watershed was
independent of defoliation, and also the decline in Cape Breton, Nova
Scotia, preceded tree mortality. Royama favours a population oscilla-
tion of predator prey type between the budworm (prey) and various host
parasitoids, rather than the decimation due to competition envisaged in
the Jones model. We shall return to this issue in the discussion.

In Sect. 2, we give a complete description of the budworm site
model, and write down the governing equations in dimensionless form.
Section 3 concerns the reduction of the model, primarily by collapsing
the age structure to three classes: young, mature, and old. We then
analyse the reduced (six variable) model further in Sect. 4, indicating
how the larval, foliage and tree age subsystems behave separately in
healthy forest. To analyse the model further, we use two formal
asymptotic limits which reduce the model to one for three variables.
This (and a further two-variable model) allows outbreaks to occur, and
we analyse the conditions which determine outbreaks.

Finally, in Sect. 5 we show how the inclusion of small regeneration
terms (via growth of seedlings) allows regular oscillations to occur,
in a manner conceptually similar to that governing the Ludwig
et al. (1978) oscillations. The conclusions in Sect. 6 give a colloquial
explanation of our "ndings, as well as providing further discussion of
the relative merits of the Jones and Royama models.

2. The budworm site model

In his simulation model of spruce budworm infestations of the forests
of New Brunswick, Jones (1979) divided the province into 393 sites, of
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area 65.8 square miles each. Each site was described by the budworm
site model, and the interaction between sites was e!ected by the dispersal
of adult moths between sites. In this paper we are concerned with the
dynamics of the site model alone, and to that end we will ignore the
dispersal and in#ux terms which are present in the full simulation model;
for completeness, though, these are included in the present section.

The model has three principal constituents, which are budworm
larvae, foliage, and tree density, and since the budworm cycles through
its lifespan once a year, the model takes the form of di!erence equa-
tions which relate the values of the variables in succeeding years. These
are complicated by virtue of the fact that larval development (through
six instars } the stages between successive moults), foliage age, and tree
age are all included in the model. This renders the site model fearsomely
complicated. In order to present the model, we describe it verbally in this
section, and give the governing relations in dimensional form. At the end
of each section, however, the relevant equation is then summarised in
a dimensionless form. For recourse to the original variables, reference
must be made to Jones's (1979) original paper, although for ease of
reference, we compare our notation with that of Jones in Appendix A,
and give a de"nition of the dimensionless parameters in Appendix B.

2.1. Model variables

We de"ne l (t) to be the large larval population (instars III}VI) in year t,
which consists of those small larvae (instars I}II) which survive. The
larvae consume foliage, which is divided into new (this year's) foliage
f (t) (which the larvae prefer) and old foliage g (t). Finally, the tree
population is divided into 75 age classes which are associated with the
age of the trees. Speci"cally, classes 1 to 21 represent immature upper
storey trees which are not susceptible to budworm attack, and classes
74 and 75 represent old trees (older than about 95 years). Other than
these, trees advance from age class i to i#1 each year, and the relevant
variable is ¹

i
(t), which measures the fraction of land in the site occu-

pied by trees of age class i. The site model therefore describes the year
to year evolution of the 78 variables l, f, g and ¹

i
, i"1,2 , 75. We now

describe the evolution of these variables in turn. Unless stated other-
wise, all variables are evaluated in year t.

2.2. Budworm survival

The larval density l is measured in units of ind tsf~1, (individuals per
ten square feet of susceptible branch surface area), and we have
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l (t#1)"Ss, where S is the survival proportion of small larvae, and s is
the small larvae density (ind tsf~1). Small larvae need to "nd foliage in
two dispersals (one in autumn, one in spring) in order to survive, and
therefore we have S"H

0
IB, where H

0
is a scaling factor (associated

with natural mortality), I is the probability of two successful searches
for foliage, and B is a relative measure of susceptible branch surface
area, de"ned by B"b/b

0
, where b"total branch surface area (tsf

acre~1), and b
0

(tsf acre~1) is an average total for healthy forest. We
take I"G

1
G

2
, where

G
1
"

w
h
0
AH1

!

w
h
0
B, (2.1)

G
2
"

z
h
0
AH1

!

z
h
0
B ,

w and z (fu tsf~1) being total foliage density in autumn and spring
respectively, h

0
is the total foliage density at the start of the year in the

absence of budworm, H
1

is a constant. The unit of foliage (fu) is simply
de"ned as the quantity of foliage on ten square feet of susceptible
branch surface area in the absence of budworm. Jones (1979) used
foliage units for both quantity and density, but here fu refers always to
a quantity.

The small larval density immediately after hatching (in autumn)
depends on the number of eggs surviving: s"Ee, where E is the
surviving proportion, e is the egg density on susceptible foliage (i.e.
foliage on trees not about to die), which is given by e"G

1
aN , where

G
1

is the same as in (2.1)
1
, and is the probability of a successful search

by adult female moths for a suitable oviposition site. The point is that
survival of egg through hatching to instar II level in spring relies on
G

1
twice: hatching of the egg, and then subsequent survival through

instar I. aN is the potential egg density (ind tsf~1), and is due both to
those generated on site, and those which migrate (we think of eggs
migrating through the dispersal of adult moths). Here we ignore the
latter, and identify aN "d, the density of eggs generated on site. This is
given by d"ARvN a, where A is the fraction of females surviving to lay
eggs (a constant), R is the proportion of adults which are female, vN is the
number of eggs carried by an adult female moth (a measure of fecund-
ity), and a is the density of adult moths (ind tsf~1).

The proportion of females is taken to be a function of pupal
survival, R"K

3
#K

4
P, where P is the fraction of pupae surviving to

adulthood, and K
3
, K

4
are constants. The fecundity is assumed to be

determined by the amount of food consumed by large larvae. These
feeding levels a!ect the pupal case size which has been shown to
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have a linear relationship with adult fertility (Morris 1963). Large
larvae consume di!erent but related amounts of old and new foliage.
The resulting pupal weight is represented by the quantity M"R

0
X#

R
1
>!R

2
, where X and > are the proportions of new and old foliage

consumed per large larva as a fraction of the maximum desired amount
of all foliage, and then fecundity is taken as vN"R

3
M1@3!R

4
; R

i
are

constants. We also assume vN7v
0

(a constant), insofar as too low levels
of pupal feeding will not allow them to survive.

The density of adults on site (before dispersal) is a"Pp, where the
pupal density p"¸l, and ¸ is a survival factor (the proportion of large
larvae surviving to pupation). The proportion of pupae which survive
is P"B

0
#B

1
¸, and is related to larval survival because the mortality

risks are related; B
0

and B
1

are constants.
The site model allows for four factors a!ecting larval survival: food

limitation, weather, parasitism, and avian predation. The surviving
proportion of larvae to instar VI due to the "rst three factors is given
by K"U

0
XM =Z, where U

0
is a constant, XM is the proportion surviving

parasitism, Z is the total foliage consumed per large larva as a fraction
of the maximum possible consumption, and = is a weather factor,
which in practice acts in the model as a stochastic input. The para-
sitism survival rate depends on larval density, thus

XM "1!U
1
exp(!U

2
l ), (2.2)

and Z is described further below. The density of large larvae surviving
at the beginning of instar VI is then k"Kl.

Predation is due to three classes of birds (Morris 1963) and is
assumed to a!ect only instar VI larvae (Mook 1963). Birds only search
foliage covered branches, so the e!ective larval density for predation is
kM "kh

0
/h, where h (fu tsf~1) is the total density of foliage at the start of

the year. The proportion of larvae removed at a visit by class j birds is
supposed to be

P
j
"

A
j

e~Cjk#B
j
kM

, (2.3)

where A
j
, B

j
, C

j
are predation coe$cients, and the total response is

Q"+
j
P

j
. Associated with the assumption of a negative binomial

distribution of the number of visits (Gri$th and Holling 1969), Jones
takes the survival rate PM from avian predation as

PM "A1#
Q

U
3
BA

0
B
~A0

, (2.4)
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with U
3

a scaling factor, and A
0
a &clumping' factor which describes the

way in which attacks are distributed on the site (May 1978). The total
survival factor of large larvae to pupation is thus ¸"KPM .

2.3. Foliage consumption and renewal

The ratios of consumption of new (q) and old (r) foliage are given (in fu
ind~1 y~1) by

q"
f

lDt C1!expA!
c
0
lDt
f BD ,

(2.5)

r"
g

lDt C1!expA!
(c

0
!q) lDt

f BD ,

where c
0

is the maximum rate of consumption (fu ind~1 y~1), f and
g are new and old foliage densities (fu tsf~1) at the beginning of the
year, Dt"1 year, and (2.5) recognises that new foliage is preferred: c

0
is

the demand for q, while c
0
!q is therefore the demand for r. The

relative measures X, >, Z de"ned above are then given by X"q/c
0
,

>"r/c
0
, Z"X#>.

The total defoliations of new and old foliage are given by qN "qlDt,
rN"rlDt, and then the new and old foliage densities after defoliation
are u"f!qN , v"g!rN , and the total (defoliated) foliage density is
w"u#v. If x and y denote the new and old foliage densities after tree
mortality is taken into account, then we can put

u"Jx#(1!J)xN ,
(2.6)

v"Jy#(1!J)yN ,

where J (de"ned later) is the proportion of susceptible trees that
survive to year t#1, and we assume the new and old foliage densities
on trees which die to be xN "C

0
x, yN "C

0
y, with 0(C

0
(1. From (2.6),

we determine x and y, and then the total foliage density after tree
mortality is z"x#y.

Spring foliage production occurs as a result of photosynthetic
assimilation, and this is assumed to occur at a rate AM "z/h

0
; the

production of new foliage is then m"AM f
0
, where f

0
is the density of

new foliage produced in the absence of budworm. The proportion of
new foliage which survives tree mortality to become old foliage in year
t#1 is =

1
"1!X

0
x, with X

0
a constant. The old foliage survival

rate is taken as =
2
"(X

2
!X

1
AM )AM , with X

i
being constants, so that

the old foliage density carried into year t#1 is n"=
1
x#=

2
y. In
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terms of these quantities, the foliage update equations are

f (t#1)"
cf

0
#bm

c#b
,

(2.7)

g(t#1)"
cg

0
#bn

c#b
,

where b is the branch surface area (tsf acre~1) of all susceptible trees
surviving to year t#1, and c is that of those becoming susceptible for
the "rst time in year t#1 (these are de"ned below). The total updated
foliage density is then h"f#g.

2.4. Tree mortality

The e!ect of defoliation is to stress the tree, and this is measured by
the stress ¹"W

2
(1!;)2, with W

2
a constant, and ;"v/g

0
is the

(relative) amount of old foliage present after defoliation (if ;'1, we
take ¹"0). The trees are divided into 75 age classes, labelled by
i"1, 2,2, 75, and then ¹

i
is the fraction of host land occupied by

trees of age class i, so that +75
i/1

¹
i
"1. Trees in age classes 1 to 21 are

non-susceptible, while those in classes 22 to 75 are susceptible to
attack. The susceptible land fraction is then D"+75

i/22
¹

i
. We de"ne

the mortality fraction of trees in age class i dying in year t as M
i
"k

i
¹,

where k
i
is a (given) age speci"c mortality factor (and k

i
"0 for i(22).

It follows that C"+75
i/22

¹
i
M

i
is the land fraction cleared of trees, and

J"1!(C/D) is the proportion of susceptible trees surviving defoli-
ation. After mortality, it is assumed that regeneration occurs with trees
of age class 1. Natural tree mortality a!ects classes 74 and 75 at a rate
W

3
, leading to a land fraction loss of HM "W

3
(;

74
#;

75
), where, for

each i, ;
i
"¹

i
(1!M

i
) is the fraction of trees in class i which are not

claimed by budworm induced mortality. We then have the tree update
equations (applied in August at the budworm egg stage):

¹
1
(t#1)"C#HM ,

¹
i
(t#1)";

i~1
, i"2,,2 , 74, (2.8)

¹
75

(t#1)"(1!W
3
) (;

74
#;

75
).

It remains to de"ne the branch surface areas b and c in equation (2.7).
These are given by

b"
75
+

i/22

¹
i
(t#1)p

i
(1!k

i
<), (2.9)
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where p
i
is the branch surface area of surviving susceptible trees in age

class I, and<"min(W
0
¹, W

1
), where W

0
and W

1
are constants, and is

a measure of the reduction of branch surface area due to tree stress.
The branch surface area of newly susceptible trees, c, is given by
c"p

21
CM , where CM is taken as an average fraction of newly susceptible

land, CM "1
3
(¹

20
#¹

21
#¹

22
) (t#1).

2.5. Dimensionless model

Below we write the complete site model (ignoring dispersal) for the
variables l, f, g, ¹

i
, together with the subsidiary functional relationships

de"ned above. The model is made dimensionless in the following way:
the primary variables are scaled with

f\g
0
, g\g

0
, l\

g
0

c
0
Dt

, (2.10)

where the choice of larval scale is based on the range over which the
foliage consumption rates vary. The subsidiary variables are scaled as

q\c
0
, r\c

0
, u\g

0
, v\g

0
, w\g

0
, x\g

0
,

y\g
0
, z\g

0
, k\

g
0

c
0
Dt

, a\
g
0

c
0
Dt

, vN \v
1
, p

i
\p

75
, (2.11)

and the values of the constants are given in Table 1.
The dimensionless Jones site model without dispersal can then be

written, where the same symbols as in (2.11) are now used to denote the
corresponding variables, as

f (t#1)"
1
3
j
1

+22
i/20

¹
i
(t#1)#j

2
z +75

i/20
¹

i
(t#1)p

i
(1!k

i
<)

1
3
j
3

+22
i/20

¹
i
(t#1)#+75

i/22
¹

i
(t#1)p

i
(1!k

i
<)

,

g(t#1)"

1
3
j
3

+22
i/20

¹
i
(t#1)#(=

1
x#=

2
y) +75

i/22
¹

i
(t#1)p

i
(1!k

i
<)

1
3
j
3

+22
i/20

¹
i
(t#1)#+75

i/22
¹

i
(t#1)p

i
(1!k

i
<)

,

l (t#1)"j
4
j
6
Sw (H

1
!j

5
w)RvN a, (2.12)

with

¹
1
(t#1)"¹

75
+

i/22

¹
i
k
i
#W

3
[¹

74
(1!k

74
¹)#¹

75
(1!k

75
¹)],

¹
i
(t#1)"(1!¹k

i~1
)¹

i~1
, i"2, . . . , 74,

¹
75

(t#1)"(1!W
3
)[¹

74
(1!k

74
¹)#¹

75
(1!k

75
¹ )],
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Table 1. Parameter values (Jones 1979, except! Morris 1963).

Parameter Value Parameter Value

Small larvae
H

0
0.352

H
1

2.0
b
0

24000 tsf acre~1

Eggs
E 0.81
A 1.0
K

3
0.289

K
4

0.237

Fecundity
R
0

34.1
R
1

24.9
R
2

3.4
R
3

165.64
R
4

328.52
v
0

80!

v
1

200!

Large larvae
U

0
0.425

U
1

0.4
U

2
0.003 tsf ind~1

U
3

2.0
= 0.76, 1.0, 1.29

Pupae
B

0
0.473

B
1

0.828

Large larval feeding
c
0

0.0074 fu ind~1 year~1

Foliage update
f
0

1.0 fu tsf~1

g
0

2.8 fu tsf~1

h
0

3.8 fu tsf~1

Spring foliage production
X

0
0.04 tsf fu~1

X
1

3.17
X

2
2.51

Foliage after mortality
C
0

0.5

Budworm induced mortality
W

0
2.0

W
1

0.8
W

2
0.75

Removal of dead trees
W

3
0.0237

k
i

O(1)
p
i

O(104) tsf acre~1

p
21

17825 tsf acre~1

p
75

29500 tsf acre~1

q"
f
l C1!expA!

l
fBD ,

r"
g
l C1!expA!(1!q)

l
g BD ,

u"f expA!
l
fB ,

v"g expA!(1!q)
l
gB ,

w"u#v,
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¹"t
2
[1!v]2

`
,

<"min(t
0
¹, t

1
),

x"
u +75

i/22
¹

i
+75

i/22
¹

i
!j

9
¹+75

i/22
¹

i
k
i

,

y"
v +75

i/22
¹

i
+75

i/22
¹

i
!j

9
¹+75

i/22
¹

i
k
i

,

z"
w +75

i/22
¹

i
+75

i/22
¹

i
!j

9
¹+75

i/22
¹

i
k
i

,

=
1
"1!j

10
x,

=
2
"(X

1
!j

11
z) j

5
z,

S"j
12

wz (H
1
!j

5
w)(H

1
!j

5
z)

75
+

i/22

¹
i
(t#1)p

i
(1!k

i
<),

k"j
13

l(q#r)[1!U
1
exp (!j

14
l)],

Q"

3
+
j/1

A
j

expA!a
j

k
f#gB#b

j

k
f#g

,

R"j
15
#j

16
(q#r)[1!U

1
exp (!j

14
l)]

]A1#
j
17

Q
+75

i/22
¹

i
(t#1)p

i
(1!k

i
<)B

~AÒ ,

vN"maxMj
18

(R
0
q#R

1
r!R

2
)1@3!j

19
, j

20
N,

a"j
13

l (q#r)[1!U
1
e~jÇËl]A1#

j
17

Q
+75

i/22
¹

i
(t#1)p

i
(1!k

i
<)B

~AÒ

]CB0
#j

21
(q#r)[1!U

1
e~jÇËl]A1#

j
17

Q
+75

i/22
¹

i
(t#1)p

i
(1!k

i
<)B

~AÒD .

(2.13)

The de"nitions of the dimensionless parameters are given in Table 2,
and typical values of the parameters are given there also.

3. Reducing the model

3.1. Predation

As we have seen, one of the important mechanisms controlling bud-
worm populations at low levels is predation by birds. Jones (1979)

Spruce budworm infestations 387



Table 2. Nondimensional parameter values. The omitted values
depend on unavailable data.

Parameter De"nition! Value

j
1

f
0
p
21

/g
0
p
75

0.216
j
2

f
0
/h

0
0.263

j
3

p
21

/p
75

0.604
j
4

Eg
0
/h

0
0.597

j
5

g
0
/h

0
0.737

j
6

Av
1

200
j
9

1!C
0

0.5
j
10
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0
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j
14

U
2
g
0
/c

0
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j
17

b
0
/U

3
A

0
p
75

*

j
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R
3
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1
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j
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4
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1
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j
20

v
0
/v

1
0.4

j
21

B
1
U

0
= 0.267 to 0.454"

j
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j
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a
j

C
j
h
0
/c

0
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b
j

B
j
h
0
/c

0
Dt }

!In terms of dimensional quantities.
"Depending on the value of =.

gives no numerical values for the constants (A
j
, B

j
, C

j
and A

0
) that

determine PM , the survival rate from predation. However, Jones's
Figs. 12 and 14 give the survival probabilities before and after pred-
ation, so their ratio gives us some data for PM . The results lie on
a smooth curve for larval densities above about 15 larvae tsf~1.
However, it is clear from Jones's Fig. 14 that continuing that curve
downwards below 15 larvae tsf~1 seriously underestimates Jones's
value of PM . There is, however, not enough data to carry out curve-
"tting in that region. If we just use data for densities above 15 larvae
tsf~1 then PM is accurately represented by

PM "
j
22

#k
j
23

#k
(3.1)

for constants j
23
'j

22
'0, and we "nd j

22
"0.00173, j

23
"0.00904.

However, this would make PM too small for small k, so we modify it by
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reducing j
23

to 0.00185. This increases the survival probability at low
k, while still providing a function that is very close to 1 for larger k. In
the absence of further information we therefore proceed with PM re-
placed by (3.1) in place of equations (2.3)}(2.4). If an alternative model
of predation were proposed it could of course replace this.

3.2. Simulation

With these two simpli"cations, the site model is autonomous except for
the weather factor =. We present the results of two simulations in
Figs. 1 and 2. In the "rst of these, we take ="1 (the long term
average), the initial foliage levels and tree age structure to be those of
a healthy forest, and the initial larval density to be l"0.1. In the
second case we have taken the sequence of weather factors = to be
a pseudo-random sequence, with di!erent years independent and with
="0.76, 1, 1.29 having probabilities 1

4
, 1
2
, 1
4
. The variables plotted in

the "gures are f, g, l, and then three variables characterizing the tree
age structure:

/(t)"¹
21

(t) (3.2)

s(t)"
75
+
22

¹
i
(t) (3.3)

t(t)"¹
74

(t)#¹
75

(t). (3.4)

The characteristic pattern of outbreak followed by recovery is clear in
each case, with Fig. 1 settling down to a period of about 50 years
between consecutive outbreaks, and Fig. 2 showing similar outbreaks,
irregularly spaced, with 8 outbreaks in 250 years.

3.3. Simplixcation of the tree age structure

In order to simplify the model prior to analysis, we make some
approximations in the modelling of tree age structure, with the aim of
representing it entirely by the variables /, s, t introduced above in
(3.2)}(3.4). This involves making the following assumptions:

(i) the fraction of host trees becoming susceptible in a year is taken
to be simply /(t)"¹

21
(t), rather than Jones's CM which averages

¹
20

, ¹
21

and ¹
22

.
(ii) We replace all the k

i
(226i675) by their average k"0.63,

and similarly replace all the p
i
by their average p"0.837. This allows

us to replace terms such as +75
22

k
i
¹

i
by ks.
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Fig. 1. A simulation of the full budworm site model, showing periodic outbreaks every
50 or so years. a The variables l (larval density), f (new foliage) and g (old foliage);
b variation of tree age structure, represented by the variables / (young trees), s (mature
trees), and t (old trees). The irregularity in the age structure in the "rst 100 years is due
to the transient relaxation towards the periodic solution.
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Fig. 2. Simulation of the full budworm site model, but allowing for a variable weather
factor. a Larval and foliage densities; b tree age structure. The regular periodicity of the
outbreaks is signi"cantly a!ected.
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(iii) We assume that the measure of trees becoming subject to
natural mortality, ¹

73
(t), can be approximated by t

4
(s(t)!t(t)),

where we take t
4
"1/52, as if trees were equally distributed between

age classes 22, . . . , 73.
The tree age class equations then become

/(t#1)"k¹(t!20)s(t!20)#t
3
[1!k¹ (t!20)]t(t!20),

s(t#1)"(1!k¹)s!t
3
(1!k¹)t#/,

t(t#1)"(1!t
3
) (1!k¹)t#t

4
(1!k¹) (s!t). (3.5)

3.4. Simplixcation of the proportion of females in the adult larval
population

The value of R, the proportion of females in the adult larvae, can only
vary betwen 0.401 and 0.509, and so our "nal simpli"cation is to model
R as constant, and in fact we choose the mean between these extremes,
so the de"nition of R in (2.13) is replaced by

R"R
0
"1

2
(R

.*/
#R

.!9
)"0.455. (3.6)

3.5. Simulation of the reduced model

The model can now be simulated with the simpli"cations of Sect. 3.4
and 3.5 applied, and with the same initial conditions as for Figs. 1 and 2.
The results are shown in Figs. 3 and 4, again plotting f, g, l, /, s and t.
The results are in good agreement, and we therefore proceed in our
analysis by looking at the simpli"ed model.

4. An analysis of the reduced model

The simpli"ed model is still of daunting complexity, and in this section
we aim to provide some insight into its behaviour. Our starting point is
the observation that the larval scale g

0
/c

0
Dt+378 ind tsf~1 is much

higher than observed values between outbreaks, but also less than the
maximum values obtained during an outbreak. Moreover, the numer-
ical simulations of the preceding section indicate that between out-
breaks, the dimensionless larvae variable l becomes very low. This
motivates our initial investigation of (3.1) and (3.2), based on the limit
where l;1.
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Fig. 3. Simulation of the site model as in Fig. 1, but with R constant, and with the
reduced tree age structure equations (3.5). a Larval and foliage densities; b tree age
structure.
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Fig. 4. Simulation of the reduced 6 variable site model as for Fig. 3, but with variable
weather, as in Fig. 2. a Larval and foliage densities; b tree age structure.
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Expanding the exponential terms in (3.2) for l;1, we "nd that

q+1, r+0,

u+f, v+g, w+f#g,

¹+W
2
[1!g]2

`
, <"min(W

0
¹, W

1
),

x+
f

1!j
9
k¹

, y+
g

1!j
9
k¹

, z+
f#g

1!j
9
k¹

,

=
1
+1!j
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1!j

9
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, =
2
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f#g
1!j

9
k¹AX1
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1!j
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k¹B ,
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wz (H
1
!j
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w) (H

1
!j

5
z)p (1!k< )s(t#1),

k+j
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(1!U
1
) l, vN+j
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(R

0
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)1@3!j
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,

a+
j
22

j
13

(1!U
1
)l

j
23

CB0
#

j
22

j
21

(1!U
1
)l

j
23

D, (4.1)

and we use these approximations below.

Foliage submodel. If l is low for a long time, then we expect the forest to
become healthy, and in particular we can expect /@s. So long as this is
the case, the foliage update equations can be written in the form (with
f (t)"f

t
, etc.)

f
t`1

"j
2

f
t
#g

t
1!j

25
[1!g

t
]2
`

,

g
t`1

"

f
t

1!j
25

[1!g
t
]2
`
A1!j

10

f
t

1!j
25

[1!g
t
]2
`
B

#j
5

g
t
( f

t
#g

t
)

[1!j
25

[1!g
t
]2
`

]2 AX1
!j

11

f
t
#g

t
1!j

25
[1!g

t
]2
`
B , (4.2)

where j
25
"j

9
kW

2
\0.24. We see that f and g uncouple from the rest

of the system, and we would hope that they would reach a stable steady
state, corresponding to a healthy forest. Indeed, the healthy state
( f

0
/g

0
, 1) is a steady state of (4.2), and by linearising about this state, we

"nd that with the parameter values quoted it is stable. There is in fact
another equilibrium at (0.038, 0.078), but it is unstable. Figure 5 shows
a numerical simulation of (4.2) showing the nonlinear approach to the
healthy equilibrium.
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Fig. 5. Relaxation of foliage towards equilibrium when larval density is low.

¹ree update model. When l;1, we have v+g, and in healthy equilib-
rium, g"1, so that ¹"0, and the tree age structure is governed by the
simpli"ed system

/
t`1

"W
3
t

t~20
,

s
t`1

"s
t
!W

3
t
t
#/

t
, (4.3)

t
t`1

"(1!W
3
)t

t
#W

4
(s

t
!t

t
).

This is a linear homogeneous system of equations, to which we adjoin
an equation describing conservation of host tree area, leading to

s
t
#

20
+
j/0

/
t`j

"1 (4.4)

for all t (and which is consistent with (4.3)). The system (4.3) has
a unique steady state given by

(/*, s*, t*)"
W

5
W

3
W

4
#W

5
(W

3
#W

4
)
(W

3
W

4
, W

3
#W

4
, W

4
)

+(0.009, 0.818, 0.366), (4.5)
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Fig. 6. Relaxation of tree age structure towards equilibrium when larval density is low
and foliage is at equilibrium.

where W
5
"1/21 and we see that in the steady state /@s, as assumed.

The stability is ascertained by "rstly writing (4.3) as the 23rd order
system

A
/

t`1
s
t`1

t
t`1
t

t
F

t
t~19
B"A

0 0 0 0 W
3

1 1 !W
3

0 2 0
0 W

4
1!W

3
!W

4
0 0

0 0 1 0 0
F } F

0 0 0 2 1 0 B A
/

t
s
t

t
t

t
t~1
F

t
t~20
B .

(4.6)

the matrix of which has one eigenvalue of 1 (due to (4.4)), and the rest
less than 1 in magnitude. The steady state (4.5) is therefore stable, as we
should expect. Figure 6 shows a numerical simulation of the approach
to steady state of the tree age structure.
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¸arval regeneration. Taking the approximations in (4.1), and assuming
="1 (average weather conditions), the large larval update equation
becomes

l
t`1

"o
0
l
t
, (4.7)

where the growth rate o
0

is given by

o
0
"

j
26

j
22

j
23

CB0
#

j
21

(1!U
1
)j

22
j
23

D , (4.8)

and

j
26
"j

12
j
13

j
24

vN ps*(1!U
1
)A

f
0

g
0

#1B
3

CH1
!j

5A
f
0

g
0

#1BD
3

"5.29, (4.9)

j
24

being given by j
4
j
6
R

0
+54.3.

The parameter o
0

identi"es the "rst critical bifurcation parameter
of our analysis. If o

0
(1, then we expect small larval populations to die

away, whereas if o
0
'1, the larval population will grow exponentially.

For the parameter values we adopt here, we "nd o
0
+3.3, and growth

is predicted.

¸arval collapse. If oscillations occur, then we should not only expect
growth at low l, but collapse at high l. Approximation of the system
when l is large in (3.2) suggests v;1, hence w, S;1, and thus (from
(3.1)) l

t`1
@1, but this gives no details of the collapse or the subsequent

regeneration, although it is suggestive. On the other hand, it is quite
possible that the growth of l from small values could lead to an
endemic equilibrium, with l\1.

4.1. The three-variable outbreak model

In order to try and get some insight into the nature of the outbreak and
subsequent collapse, we are led to consider further simpli"cation of the
model with the aim of removing inessential detail.

¹ree age structure. Previously, we assumed /;s, and Fig. 6 suggests
this is in fact always reasonable. Also the mortality/generation and age
parameters W

3
and W

4
are small, and if we neglect these then the tree

age equations in (3.1) condense to

s
t`1

"(1!k¹)s
t
,

(4.10)

t
t`1

"(1!k¹)t
t
,
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of which the t equation uncouples from consideration of s. Note that
the loss of the term in W

3
precludes regeneration, which would be

necessary to describe any subsequent recovery of the forest.

Foliage update. In healthy forest, fPf
0
/g

0
+0.4 while gP1. More

generally, f(g, and Figs. 2 and 3 suggest further that essentially the
behaviour of f follows that of g, in the sense that f/g is roughly constant.
This suggests that the distinction between new and old foliage is
a cosmetic detail, and we choose to simplify the model by putting f/g to
zero (formally, based on the limit f

0
/g

0
;1). With f+0, we then have

q, u, x+0, and
w, y, z+v"g exp(!l/g),

(4.11)

=
1
+1,=

2
+j

5
v(X

1
!j

11
v),

so that, with /;s, the foliage dynamics may be represented as

g
t`1

"=
1
x#=

2
y+j

5
v2(X

1
!j

11
v)"H (v). (4.12)

¸arval growth. During the outbreak, predation and parasitism are
ine!ective, and we take the respective survival rates as 1. In addition,
we suppose vN+0.68, <+0.4 to be constant. Adopting the foliage
assumptions, the larval growth equation can be written as

l
t`1

"F(v)G(l
t
/g

t
)s

t`1
l
t
, (4.13)

where
F(v)"j

12
j
13

j
24

pvN (1!k<)v3 (H
1
!j

5
v )3,

G(x)"
1
x

(1!e~x)CB0
#

j
21
x

(1!e~x)D . (4.14)

In both (4.12) and (4.13), v (de"ned in (4.11)) is v
t
, i.e., evaluated at

time t.
The form of these functions, F, G and H, is of course determined by

the precise ecological assumptions involved. We adopt the point of
view that it is the qualitative form of these functions which is most
important. In particular, G (m) is a monotone decreasing function of m,
and we choose now to take G(m)"e~m (the more general G"c

1
e~cÈm

allows a similar analysis), which is convenient and no less appropriate.
Since exp(!l/g)"v/g, the choice of G allows G (l/g)"v/g, thus (4.13),
together with (4.12) and (4.10)

1
, become

l
t`1

"v
t
F(v

t
)s

t`1
l
t
/g

t
,

g
t`1

"H(v
t
), (4.15)

s
t`1

"(1!k¹)s
t
,
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with
v
t
"g

t
exp(!l

t
/g

t
),

(4.16)
¹"W

2
[1!v

t
]2
`

.

4.2. Larvae-foliage outbreak

In order to discuss the three variable model derived above, we begin by
considering s

t
"s* as constant. Insofar as it is only coupled as a reduc-

tion factor in (4.15)
1
, its ro( le does not seem essential to control of the

outbreak. Formally, this can be justi"ed if k is small. From (4.15), we
then have, if we de"ne ¸

t
"l

t
/g

t
(essentially larvae per foliage unit),

¸
t`1

"s*K(v
t
)¸

t
, (4.17)

where

K(v)"
vF (v)
H(v)

, (4.18)

and
v
t`1

"H(v
t
)e~Lt`1 . (4.19)

Solving (4.17) and (4.19) for ¸ and v gives g and l via g"veL, l"¸veL,
both of which are monotonic increasing functions of both v and ¸.

From its de"nition in (4.12), we see that H is bell-shaped in the
physically meaningful range 0(v(X

1
/j

11
+1.7, with the Allee e!ect

that H\v2 as vP0. It is represented in Fig. 7. To represent the
behaviour relevant in practice, we also assume that there is a certain
range in which H(v)'v, otherwise (4.19) inevitably makes v

t
P0.

F is also bell shaped in 0(v(H
1
/j

5
+2.7, and F\v3 as vP0. If

we adopt these values, in particular that X
1
/j

11
(H

1
/j

5
, then it seems

that K will be monotone increasing, with K\v2 as vP0, and KPR

as vPX
1
/j

11
, as shown in Fig. 8. We denote the unique solution of

s*K(v)"1 by v"v
K
, so v

K
is the steady foliage level that would just

sustain a steady budworm population : ¸ will grow for v'v
K

and
decay for v(v

K
. The value of v

K
itself is a decreasing function of

s* : the higher the density of mature trees in a forest, the lower the value
of v

K
. Note that for an initial state which is healthy, then v+g+1.

Slowly varying ¸. It is now convenient to think of ¸ as varying slowly.
Formally, this will be the case if v+v

K
, and in practice we consider it

a convenience rather than a necessary assumption. The point is that if
we take ¸

t`1
as a parameter in (4.19), the behaviour of v

t
is easily

ascertained. Because of the properties of H, there will be a critical value
¸
H
'0 such that if ¸"¸

H
then the graphs of v and H(v)e~L are

tangent at some value v"v
H

as in Fig. 7. In fact v
H

is the foliage level
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Fig. 7. H(v) as a function of v, given in equation (4.12). Also plotted is the graph of veL
at the critical value ¸"¸

H
for tangency.

for which the foliage growth factor in a healthy (budworm-free) forest,
H(v)/v, would be maximized; and ¸

H
is the budworm/foliage ratio that

would be just enough to reduce this maximum foliage growth factor
down to 1, so

1(max(H(v)/v)"H(v
H
)/v

H
"H@(v

H
)"eLH. (4.20)

We may call v
H

the growth-maximizing foliage level. If ¸(¸
H

then the
foliage equation (4.19) will have two positive steady states. The greater
of these, denoted by v

`
(a function of ¸), is stable and is therefore

hunted by v
t
. If ¸'¸

H
, the two positive steady states collapse in

a saddle-node bifurcation and there is an irreversible decline of v to-
wards zero. In fact, ¸

H
is the largest steady budworm density that can

be sustained.
For H given by (4.12), v

H
and ¸

H
are given by

v
H
"

X
1

2j
11

, ¸
H
"lnC

j
5
X2

1
4j

11
D . (4.21)

With the present values, v
H
+0.85, ¸

H
+0.001.

Spruce budworm infestations 401



Fig. 8. K(v) given by equation (4.18).

Let us now suppose that 0(¸@¸
H

initially; then v hunts the upper
positive steady state v

`
, and we denote the value of v

`
for ¸"0 by v0

`
:

this is the largest solution of H(v)"v, it is the steady foliage level in
a healthy forest, and in the present instance it is given by

v0
`
"v

H
[1#(1!e~LH)1@2]. (4.22)

We always have v0
`
'v

H
, but there are three possible behaviours that

can arise depending on whether v
K

lies above, between or below these
values v

H
and v0

`
.

If v
K
'v0

`
then K(v)(1, ¸ decays, and thus ¸ remains less than

¸
H
, v remains near v

`
, and the larvae cannot grow. This would

correspond to the case o
0
(1 considered above.

If v
H
(v

K
(v0

`
then initially v hunts v

`
, s*K(v

`
)'1, so that

¸ grows. This growth will continue while s*K'1, i.e. while v'v
K
,

i.e. while v
`
'v

K
. As ¸ increases, the stable positive intersection at

v
`

of H(v)"veL is decreasing. Since v
H
(v

K
, v

`
will reach v

K
and

we expect a stable endemic equilibrium value v"v
K

to occur, with
¸"ln[H(v

K
) /v

K
].
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If v
K
(v

H
then the process is similar, except that as ¸ increases,

v
`

reaches v
H

and the saddle-node transition occurs, leading to a dras-
tic reduction in v. Of course, once v(v

K
, ¸ then decreases, but once v is

past the transition, its decay cannot be helped. This corresponds to
collapse of the outbreak, with both ¸ and v (hence also g and l) tending
to zero. Since regeneration has been speci"cally excluded, there is no
possibility for further outbreaks.

Summary. We have introduced three important foliage levels:

v0
`

is the steady state foliage level in a healthy forest, so it is the
largest solution of H(v)"v.

v
H

is the foliage level that maximizes the foliage growth factor
H(v) /v.

v
K

is the foliage level that will just sustain a budworm population, so
s*K(v

K
)"1.

We always have v
H
(v0

`
, and the behaviour of the system starting

from a low value of ¸ depends on how v
K

compares with v
H

and v0
`
.

The value of v
K

itself depends on s*, the density of mature trees, and
three cases can occur:

Case 1: If the density of mature trees is low enough, then the healthy
foliage level is below that necessary to sustain a budworm
population, v0

`
(v

K
, and the larval population then collapses

with no outbreak occurring.
Case 2: If the density of mature trees is in an intermediate range, then

v
H
(v

K
(v0

`
, so the healthy foliage level can sustain a bud-

worm population, but the growth-maximizing foliage level
cannot. In this case, a stable endemic equilibrium is expected.

Case 3: If the density of mature trees is large enough, then v
H
'v

K
, i.e.

the growth-maximizing foliage level exceeds that necessary to
sustain a budworm population. In this case the analysis pre-
dicts a budworm outbreak followed by a collapse.

Figures 9, 10 and 11 show numerical simulations of the reduced
model, which illustrate (for di!ering parameter values) the three possi-
bilities outlined above: larval collapse, an endemic state, or an out-
break.

4.3. Variable age structure

The question now arises, how the inclusion of a variable age structure
modi"es the discussion above. We can write the system (4.15) in the
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Fig. 9. The two-variable larvae/foliage reduced model; larval collapse occurs when
j
24
"8.0, j

5
"0.5.

form

s
t`1

"m (v
t
)s

t
,

H(v
t
)"v

t`1
e¸

t`1, (4.23)

¸
t`1

"s
t`1

K(v
t
)¸

t
,

adopting the previous de"nitions, where the survival function m(v) is
given by

m(v)"1!kW
2
[1!v]2

`
, (4.24)

and is monotone increasing from m(0)(1 to m"1 for v71.
In particular, s

t
is non-increasing with t, and thus the function

s
t`1

K(v) increases with v from zero to in"nity as before, but decreases
as t increases (if v(1). De"ning vK

t
as the unique value where

s
t`1

K(v)"1, we see that vK
t

increases with t (if v(1).
Compared with the system described in Sect. 4.2, the constant

v
K

has been replaced by vK
t

which increases as the density of mature
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Fig. 10. Two-variable reduced model, endemic state when j
24
"17.9.

trees in the area falls. The behaviour of the system can therefore be
classi"ed using the results of the previous section.

We saw in Sect. 4.2 that in order for an outbreak followed by
a collapse to occur it was necessary to have v

K
(v

H
. In the case

presently under consideration, it will be necessary not only that the
initial value vK

0
of v

K
should be less than v

H
, but also that the rising

value of vK
t

should not reach v
H

before the outbreak occurs. Thus if vK
0

is
su$ciently far below v

H
then an outbreak-collapse response would be

expected. As before, this requires a high enough initial density of
mature trees.

If vK
0

is large enough to avoid this possibility, then vK
t

exceeds v
H

at
some time, and then a further division of cases occurs, depending on
how the range [v

H
, v0

`
] lies with respect to v"1, the critical foliage

level needed to maintain the density of mature trees in the forest.

1. If 1(v
H

then both Cases 2 and 3 described in section 4.2 occur
essentially unchanged : either endemic equilibrium if the initial
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Fig. 11. Two-variable reduced model, outbreak at normal parameter values.

density of mature trees is in an intermediate range, or a budworm
collapse if it is low enough.

2. If v
H
(1(v0

`
then there is a modi"cation because the endemic

equilibrium states (v, ¸) with v(1 are not now equilibria of the
s equation. In fact, when v(1, s will decrease steadily, and so
v
K

will rise steadily, and the endemic equilibrium states of
(4.17)}(4.19) with v(1 will move along to some value of v71. Thus
the behaviour is similar to Cases 2 and 3 of Sect. 4.2, except that the
endemic equilibria now only occupy the range 16v6v0

`
, rather

than the whole range v
H
6v6v0

`
.

3. If v0
`
(1 then the whole range of endemic equilibria is lost, and the

only behaviour possible apart from outbreak-collapse, is a simple
collapse. However, this collapse involves the s* dynamics in an
essential way, and so may take place over a longer timescale than
the collapse that results simply from the budworm-foliage interac-
tion in Case 3 of Sect. 4.2.
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Summary. The behaviour is essentially as discussed in Sect. 4.2, but
with these modi"cations:

1. If the growth-maximizing foliage level is not enough to sustain
the density of mature trees, v

H
(1, then the stable endemic equilib-

rium conditions can only occur for 16v6v0
`

, not for the whole
range of foliage levels v

H
6v6v0

`
that occurred in Case 2 of

Sect. 4.2.
2. If additionally the healthy equilibrium foliage level is not enough to

sustain the density of mature trees, v0
`
(1, then no range of stable

endemic state occurs at all, and the intermediate Case 2 of 4.2 is
replaced by an initially slow decline in the forest, as the density of
mature trees falls, followed by a more rapid decline once
s*"1/K(v0

`
) is reached.

5. Discussion

One shortcoming of the two-variable outbreak model (4.17) and (4.19)
is the fact that an outbreak is followed by collapse, with both
larval density (l) and foliage density (v and g) tending to zero.
The reason for this is, of course, that we have simpli"ed the model
by ignoring the (small) regeneration terms. Thus in order to obtain
cyclic oscillations, a regeneration mechanism must be included. Our
initial e!orts to do this, by including trees entering maturity
(/(t)"¹

21
(t)) in some way, failed abysmally. In fact, age structure

is only really relevant insofar as the reason for the collapse of foliage
density in (4.19) is the quadratic behaviour of H as vP0. In turn,
this stems from (4.12), which arises through neglecting the new foliage
( f ) terms in (4.2), and, more germanely, neglecting the term due to
trees entering maturity in the foliage update equation (2.12)

2
. Although

the new foliage terms render the foliage model (hence, in e!ect, H)
linear at small foliage density, they do not regenerate the forest on their
own. Indeed, the Jones site model speci"cally caters for the fact that
foliage-poor trees will fail to grow new foliage due to lack of photosyn-
thesis. Thus merely including new foliage in (4.12) is not the remedy we
seek.

We thus modify the reduced two-variable model at low foliage
levels by writing (2.12) in the form (for small /)

g
t`1

"

j
3
/

t`1
p (1!k<)s

t`1

#H(v
t
), (5.1)
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Fig. 12. Two-variable reduced model plus regeneration, equations (4.17) and (5.2);
oscillations occur at a value c"0.135.

noting that v
t
+g

t
when g

t
is small. A uniform approximation to the

two-variable model allowing for regeneration is then (4.17) as before,
together with

v
t`1

"[c#H (v
t
)]e!¸

t`1 , (5.2)

where

c"
j
3
/

p (1!k<)s
. (5.3)

We take c as constant, although it will vary in reality. With
values j

3
"0.604, p"0.837, k"0.63, <"0.4, /"/*"0.009,

s"s*"0.818, the latter pair corresponding to equilibrium tree age
structure at low larval levels, then c+0.011. At such a low value, the
model appears not to oscillate, or at least not on a sensible time scale.
Figure 12 shows a typical oscillation which occurs when c"0.135.
Note that in both the full and reduced (6 variable) models (see Figs. 1
and 3), the value of s during recovery is nearer s"0.4, and if we use
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(4.4) to de"ne

/"W
5
(1!s), (5.4)

then the resulting value of c which we compute is in fact 0.07.
In order to accommodate a larger value of c more realistically, we

can include the equation for s
t`1

as in (4.23)
1
, but we then also need to

include a regeneration term for s comparable to that for the foliage.
Thus we pose a reduced three variable model of the form

¸
t`1

"s
t`1

K (v
t
)¸

t
,

v
t`1

"C
c6 (1!s

t`1
)

s
t`1

#H(v
t
)D e!¸

t`1 , (5.5)

s
t`1

"m (v
t
)s

t
#W

5
(1!s

t
),

where c6 is de"ned by

c6 "
j
3
W

5
p (1!k<)

+0.046. (5.6)

Figure 13 shows oscillatory outbreaks in a solution of these equations.
We can now easily understand the cause of the oscillation (for the

two variable model) in terms of Fig. 14, which indicates the shape of the
curve c#H (v) as a function of v. As before, slow growth of ¸ at large
v causes a steepening of the line eLv in the "gure, and a collapse occurs
if ¸ reaches ¸

H
. However, for c'0, v now rapidly approaches a quasi-

stable steady state at low v (+0.2 in Fig. 14). This in turn causes rapid
collapse of ¸. With c'0, there is now a further critical value ¸c'¸

H
where the low v quasi-equilibrium disappears and v grows again
towards the large quasi-steady state. The cycle then repeats itself.

This description of the oscillation, via the cycling round a hysteresis
loop for v via slow responsive changes in ¸, is tantalisingly similar to
the Ludwig}Jones}Holling (LJH) continuous model, but there are
important di!erences. Most obviously, the LJH model apparently
concerns hysteresis in the larval population, whereas that here is
associated with foliage. In an analysis of the LJH model, Fowler (1997)
shows that for the parameters which apply in the LJH model, both
B (the larval population) and E (the energy reserve, or foliage variable)
are fast, and each has a hysteretic dependence: B varies hysteretically
with S, the branch surface area, which should be analogous to s here;
E varies hysteretically with B. This second hysteresis loop corresponds
to that which we describe here.

Perhaps a clearer comparison can be made if we write the continu-
ous equivalents of (4.15). With the de"nition of K in (4.18), and
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Fig. 13. Periodic outbreaks in a simulation of the three-variable reduced model given
by equations (5.5). The period is about 35 years, as indicated by the variation in l (larval
density), g (foliage density), and s (mature tree fraction).

including the regeneration term

c"
j
3
/

p (1!k<)s
+

c6 (1!s)
s

, (5.7)

we use l
t`1

!l
t
+l0 , etc., to rewrite (4.15) as

lQ"C
K(v)H(v)s

g
!1Dl,

gR "
c6 (1!s)

s
#H(v)!g,

sR "![1!m (v)]s#W
5
(1!s), (5.8)

where v"g exp(!l/g), we take /+W
5
(1!s) and also include the

source term in s (see (3.5)
2
) to regenerate s following an outbreak. In
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Fig. 14. Modi"cation to H(v) when c is added. Saddle node bifurcations for v occur at
the values ¸"¸

H
and ¸"¸c.

(5.8)
1,2

we have replaced s
t`1

by s. One could also justify replacing it
by m(v)s, although the di!erence would be expected to be minor. In the
two-dimensional version we would take s as constant, and ignore the
last equation. These equations are very di!erent from those of the LJH
model, even at a mechanistic level, although they both describe the
same basic processes. It is thus impressive that the behaviour of the two
models is so similar. For comparison, the LJH model (with B, S,
E replaced by l, s, g respectively) is, roughly,

lQ"lCrBG1!
l

K@ A
¹2

E
#g2

g2 BH!
bl

a@2#l2D,

gR "r
E
g A1!

g
K

E
B!

P@lg2

¹2
E
#g2

,

sR "r
s
s C1!

s
g

K
E

K
S
D . (5.9)
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In writing (5.9), we have identi"ed B/S (larvae per branch in the LJH
model) with l (larvae per ten square feet of branch area), but simply put
BQ /S"l0 , consistent with the phenomenological tone of the LJH model.

In summary, while both the LJH model and the Jones site model
represent the basic mechanisms, they do so in very di!erent ways.
Nevertheless, it is possible to reduce the Jones model methodically (in
the absence of a detailed age structure) to a skeletal model which bears
comparison with the LJH model. While the models at this level are still
very di!erent, they both exhibit oscillations due to a similar process of
cycling round hysteresis loops, and one would infer that this oscillation
mechanism is rather robust to the choice of model used.

We have also examined the e!ect of including a number of di!erent
sites, each following the dynamics of the reduced three variable model,
either with collapse (4.15) or with regeneration (5.5). Moth migration is
a very important practical consideration. The hatched moths disperse
widely via decisive &exodus #ights' from above the forest canopy in the
evening, depending on weather conditions (Greenbank et al. 1980), and
this e!ect can be modelled by including a migration term to neighbour-
ing sites. Figure 15 shows a typical result of one such simulation. We
have chosen a one-dimensional array of sites for illustrative purposes,
and have included migration by allowing a prescribed fraction (ranging
from 0.05 to 0.5) to migrate to neighbouring cells. The main e!ect of
migration is initially to cause a wave of outbreaks to propagate along
the sites. At larger times, the outbreaks in all sites become syn-
chronised. The continuous analogue of inter-site migration would be
the inclusion of a di!usion term for l in (5.9) (Ludwig et al. 1979), and
the travelling wave is expected in this case also (Murray 1989). It
should be pointed out that the size of the di!usion coe$cient would be
of O(dM 2/Dt), where dM is the root mean square distance travelled by
a (random walking) moth in a time Dt. If we assume that a female moth
lays a half of her egg complement at the natal site, and the other half at
distance dM after one or several migrations, then the appropriate value of
Dt is one year, which is the life cycle time. The migration distance can
be very large; for the root mean square, if we take d1 to be 10 km, then
the di!usion coe$cient is 100 km2 y~1, and the di!usion distance over
a typical outbreak time of 6 years is 25 km. For comparison, the Jones
site model in New Brunswick considered an area roughly 250 km
square, with each site being about 13 km square.

For the regenerative model, the typical behaviour as described
above is found over a wide range of migration parameters. In addition,
if migration is large enough, then the collapse model without regenera-
tion can also lead to a travelling wave of outbreaks, since in the
collapse phase of the outbreak, enough moths can migrate to healthy

412 D. C. Hassell et al.



Fig. 15. Sequential oscillations in adjoining sites of the regenerative model (5.5), when
a fraction 0.05 migrates to adjoining cells (0.025 to each, except at the end sites).
Twenty sites were used, of which we show only six for clarity. The initial outbreaks
take the form of a travelling wave, but by about 300 years, these have synchronised to
a spatially independent periodic solution.
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forest to initiate new outbreaks. On a "nite set of sites, however,
collapse eventually occurs everywhere.

6. Conclusions

We have shown that the Jones site model can be reduced to a set of
two, or three, di!erence equations, by making two hefty but relatively
justi"able assumptions. Firstly, the detailed age structure of the site
model is telescoped by de"ning three tree fractions, namely young,
mature and old trees, and then we showed that it is realistic to consider
only the mature tree fraction s. Secondly, although it is an essential
part of the budworm lifestyle to consume new ("rst year) foliage where
available, from the point of view of the model, the distinction between
new and old foliage appears to be a mathematical detail which is
inessential to the mechanism of oscillation.

In discussing this reduced three variable model, it becomes appar-
ent that the tree fraction variable s is also of secondary interest; the
main gist of the model, and the mechanism for oscillation, can be
understood by reference to the two variable model, (4.17) and (4.19).

In its most basic form, we can think of (4.19) as providing a year to
year di!erence equation for the foliage variable g, whose evolution is
determined by the shape of the unimodal function H(v) portrayed in
Fig. 7. The key features of this curve which allow a collapse to occur
are its maximum, and the quadratic behaviour at small v. Both of these
features follow from the assumption, enunciated before (2.7), that the
growth rate=

2
is a parabolic function of photosynthetic assimilation

AM , which is itself proportional to foliage density. This is a very reason-
able assumption, since the foliage density must saturate at a maximum
value on a healthy tree.

The dependence of this evolution from year to year is modulated by
the larval density, because the growth of foliage occurs in the summer,
while larval defoliation occurs mostly in the winter. Thus really the
foliage in September of year t#1 (g

t`1
) is determined not directly by

g
t
, but by the foliage in spring v

t
surviving from consumption by the

overwintering larvae. Evidently, the more larvae (l), then the lower
v
t
will be, and the e!ect of this in determining g

t`1
in terms of g

t
is to

stretch out the graph of H in Fig. 7 as l increases: thus, gradual increase
of l will eventually lead to collapse of the foliage via the hysteresis
implicit in Fig. 7.

Growth from year to year of the larval population is mediated in
a complicated way by the foliage, and in particular the survival
through successive instars depends essentially on the spring foliage v

t
.
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The growth is described by the function K(v) depicted in Fig. 8, thus
the larval population declines at small foliage levels, and grows at large
ones. This then allows the outbreak-collapse mechanism to operate. At
low larval densities, foliage is healthy and resides at the positive steady
state of g"H(v). As l increases, the graph of H is pulled to the right,
and at a critical value, the equilibrium disappears and the foliage
collapses. As a consequence, the larval population begins to collapse.

In principle, the low levels of l could now lead to recovery of the
foliage, though this does not actually happen in the two variable
model. Instead, recovery occurs in the Jones site model because young
trees of age less than about 20 years are resistant to budworm attack.
Thus, these trees provide a small but non-zero source of new foliage,
which has the e!ect of raising the foliage growth term from zero when
v"0 (see Fig. 14), and this allows a hysteretic switch between healthy
and diseased states as larval population varies, and regeneration of the
forest following an outbreak.

6.1. Royama+s model

Royama (1984, 1992) criticised earlier models of budworm outbreaks
for a variety of reasons. He conceptualised these (based on Morris
(1963)) as having multiple equilibrium structures, so that outbreaks
would be initiated via climatically induced transients from an endemic
state to a high budworm outbreak state at isolated centres, and these
would spread via migrations.

It is probably dynamically naıGve to suppose that cyclic weather
patterns could cause strongly periodic oscillations with 35 year periods,
as suggested by Wellington et al. (1950) and in fact both the Jones
model and the LJH model exhibit self-sustained oscillations. Nor is
it essential to the Jones/LJH theories that outbreaks are initiated
at epicentres, a notion which Royama also rejects. Royama also states
that the existence of a multiple equilibrium structure is not sub-
stantiated by data, commenting that this interpretation of the data
by Watt (1963) is inadmissible. While the criticism may be valid, it
is in fact also inaccurate to associate self-sustained oscillations
with multiple equilibria, and this in itself may sideline the criticism
of Watt's analysis. As described above, the essence of the oscillations
above can be described by a hysteretic switching between quasi-
equilibrium states } not at all the same thing, and these are very
robustly described in terms of foliage dynamics. The point is made
explicitly in the LJH model where Fowler (1997) shows that there is
typically one steady state (the intersection of the E curve and S curve
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number 2 in Fig. 11.8) in conditions where self-sustained oscillations
occur.

Royama's substantive criticisms are then two in number. The "rst is
that food shortage was not a primary universal cause of budworm
decline, since decline happens everywhere simultaneously indepen-
dently of defoliation. The second is that moth invasions only lead to an
outbreak phase (in good foliage conditions) if the population overall is
growing. Royama quotes the example of a plot (G4) in the Green River
area where large moth invasions in 1954, 1957 and 1961 led to tempo-
rary increases in larval populations, following which the declining
trend continued.

These are serious considerations, but we consider that a plausible
remedy is at hand. The e!ect of moth migration in the model is the
inclusion of a dispersal term, which has been described brie#y above. It
is perhaps easiest to understand in its continuous manifestation, as
a di!usion term (although in reality the direction of prevailing winds
will make this a severe over-simpli"cation). We mentioned an rms
dispersal distance of 10 km, which gives a di!usion distance of 10 km
over a year; but dispersals can be of much longer range, and more
particularly, by their nature are not really con"ned locally. A better
conceptualisation of migration may be via mixing, and if this is e$cient
enough, then the budworm population in a large area will essentially
respond uniformly to foliage changes; on the other hand, since trees do
not migrate, it can be expected that the stochastic nature of migrations
and landing patterns will lead to irregular distributions of defoliation
and tree mortality. The implication of this is that in assessing the
validity of the Jones model, one needs to take spatial averages of
foliage and tree density in assessing functional dependence of these on
budworm survival and fecundity. We see that from this perspective,
Royama's two criticisms are based precisely on not doing this.

Given his rejection of the foliage/budworm interaction theory,
Royama proposes that a population model of predator prey type may
explain the oscillations. The predators are various classes of parasitic
wasp which prey exclusively on the budworm larvae, and are indeed an
integral part of the budworm life cycle. It is well known that predator-
prey models can indeed oscillate, although Royama o!ers no speci"c
model. In the absence of such a model, it is di$cult to be categorical,
but we consider the following observation to make this suggestion less
likely. The occurrence of a 35 year oscillation requires a dynamical
process operating on this sort of time scale. We have seen that tree
regeneration provides exactly this in the Jones model. However, the
budworm and its parasites enjoy the same annual time scale, and it is
di$cult to see how a 35 year period could occur without some other
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controlling in#uence on the dynamics. For example, a stable period 35
orbit for a "rst order di!erence equation requires a very particular type
of functional map, and its dynamics would in any case be destroyed by
noise. We therefore consider that the Jones model remains the best one
available.

Appendix: variables and parameters

Listed here are the main variables and parameters of the model along
with their de"nition and units. In reference to Jones' original paper, his
notation is given also. Densities of spruce budworm and foliage are
denoted almost exclusively by lower case roman letters; the only
exceptions being vN , v

0
and v

1
(numbers of eggs). Upper case Greek

characters denote constant parameters which are not densities, al-
though some capital roman letters are also used for this purpose.

Quantity Jones Description and units (where applicable)

A.1. Large larval update

l N
L

large larval density (ind tsf~1)

A.2. Small larvae

S S
S

proportion of small larvae surviving
I P

SS
probability of two successful small larval
searches

G
1

P
1

probability of a successful autumn search
G

2
P
2

probability of a successful spring search
B SAR relative branch surface area of susceptible trees

after age update
s N

S
small larval density (ind tsf~1)

H
0

k
S

constant parameter

A.3. Production of eggs

E S
E

proportion of eggs surviving (constant)
e N

E
egg density (ind tsf~1)

aN e
P

potential egg density (ind tsf~1)
d e

g
egg density generated on site (ind tsf~1)

A S
F

female survival rate (constant)
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K
3

A
PF

constant parameter
K

4
B
PF

constant parameter
R P

F
proportion of adults which are female

A.4. Fecundity

M =G¹ the average relative weight of pupae
R
0

A
F1

constant parameter
R
1

A
F2

constant parameter
R
2

B
F

constant parameter
vN FEC number of eggs carried per female
v
0

} mean lower bound to egg production (number
of eggs)

v
1

} mean upper bound to egg production (number
of eggs)

A.5. Pupae

a N
A

density of adults generated on site (ind tsf~1)
P S

P
survival rate of pupae

B
0

A
P

constant parameter
B

1
B
P

constant parameter
p N

P
density of pupae (ind tsf~1)

A.6. Large larvae

K SA
L

survival rate of large larvae to instar VI
U

0
k
L

constant scaling factor
XM S@

L
survival rate from parasitism

= =
F

the weather factor
k N

6
density of instar VI larvae (ind tsf~1)

k1 Prey e!ective density of instar VI larvae (ind tsf~1)
P
j

Pred
j

large larval proportion lost to class j avian
predation

C
j

a
j

a class j predation coe$cient (constant)
PM S

PRED
net survival rate from predation

Q PRED total functional response to predation
A

0
AK &clumping' coe$cient of avian predation (con-

stant)
¸ S

L
total survival rate of large larvae to pupation
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A.7. Large larval feeding

c
0

d
0

maximum total foliage consumption (fu ind~1
year~1)

q d
1

actual new foliage consumption (fu ind~1
year~1)

r d
2

actual old foliage consumption (fu ind~1
year~1)

X DR1 relative consumption of new foliage
> DR2 relative consumption of old foliage
Z DR relative consumption of all foliage

A.8. Foliage update

f F
1

new foliage density at start of year (fu tsf~1)
g F

2
old foliage density at start of year (fu tsf~1)

h F
T

total foliage density at start of year (fu tsf~1)
f
0

} new foliage density with no budworm (con-
stant) (fu tsf~1)

g
0

} old foliage density with no budworm (constant)
(fu tsf~1)

h
0

} total foliage density with no budworm (con-
stant) (fu tsf~1)

A.9. Budworm defoliation

qN DEF1 density new foliage removed by larvae (fu tsf~1)
rN DEF2 density old foliage removed by larvae (fu tsf~1)
u F*

1
new foliage level after defoliation (fu tsf~1)

v F*
2

old foliage level after defoliation (fu tsf~1)
w F*

T
total foliage level after defoliation (fu tsf~1)

A.10. Spring foliage production

AM A photosynthetic assimilation rate
m F@

1
new foliage density due to photosynthesis (fu
tsf~1)

=
1

S
F1

fraction of new foliage surviving tree mortality
=

2
S
F2

fraction of old foliage surviving tree mortality
and aging

n F@
2

density of old foliage carried into the next year
(fu tsf~1)
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A.11. Foliage after mortality

xN Fd
1

new foliage density on trees to die (fu tsf~1)
yN Fd

2
old foliage density on trees to die (fu tsf~1)

C
0

d constant parameter
x F**

1
new foliage density after tree mortality (fu
tsf~1)

y F**
2

old foliage density after tree mortality (fu tsf~1)
z F**

T
total foliage density after tree mortality (fu
tsf~1)

A.12. Budworm induced mortality

< R
SA

susceptible branch surface area reduction fac-
tor due to budworm

¹ S
BW

measure of budworm induced tree stress
W

2
S
0

constant parameter
; F

R
relative old foliage level after defoliation

A.13. Removal of dead trees

M
i

M
i

fraction of trees in age class i dying due to
budworm

k
i

k
i

age speci"c budworm susceptibility factor
C RG

BW
fraction host land regenerated after budworm
mortality

¹
i

¹
i

fraction of host land occupied by trees of age
class i

D ¹*
sp

susceptible host land fraction before mortality
and aging

J R
L

host land fraction of surviving trees
;

i
¹*

i
fraction of land in age class i not succumbing to
budworm

W
3

} natural mortality rate in age clases 74, 75 (con-
stant)

HM RG
75

fraction of host land regenerated after natural
death

<
i

¹**
i

fraction of class i trees surviving natural mor-
tality (i"74, 75)

b SA susceptible branch surface area after tree up-
date (tsf acre~1)

p
i

p
i

branch surface area of trees in age class i (tsf
acre~1)
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CM ¹
21

fraction of host trees becoming susceptible next
year

c SA
21

surface area of trees about to become suscep-
tible (tsf acre~1)

DM ¹
sp

proportion of susceptible host land after tree
update.
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