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sedimentary basins 
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Abstract. Mathematical models of compaction in sedimentary basins typically 
assume a relationship between effective pressure p• and porosity •, which is of a 
non-linear type; that is, p• = p•(d). However, at depths greater than a kilometer, 
pressure solution becomes important and this relationship approaches a viscous 
one. We derive a mathematical model for viscous compaction in sedimentary basins 
and show how the model suggests different styles of behavior in the limits of slow 
•nd f•st compaction. 

1. Introduction 

Sedimentary basins evolve over millions of years and 
are of commercial and scientific interest because of their 

importance as sources of hydrocarbons. A practical 
problem of some interest in oil drilling operations is 
the occurrence of abnormal pore fluid pressures within 
the sediments. By normal pore pressures, we mean that 
the fluid pressure increases hydrostatically with depth, 
whereas abnormal fluid pressures are those in excess of 
this. The mechanism whereby overpressures are gener- 
ated is of concern, because in drilling, the borehole is 
filled with a mud whose density is chosen to balance the 
pore pressure: if the mud density is too low, the hole 
will collapse, whereas if it is too high, the surrounding 
rock can be hydrofractured. Sudden changes in pore 
pressure can therefore cause blowouts or other damage. 
Overpressuring is associated with the time it takes for 
sediments to compact under their own weight. If ten 
kilometers of sediments are deposited very rapidly, then 
the initial pore pressure will be lithostatic. Over time, 
the sediments compact, and the resultant expulsion of 
pore water allows the pore pressure to approach a hy- 
drostatic limit, and in so doing the porosity is reduced. 
At depths up to about a kilometer, this compaction 
is elastic, and due to the rearrangement of sediment 
particles. At. greater depths, cementation and pressure 
solution occur, and the latter causes further compac- 
tion; we call compaction by pressure solution viscous 
compaction, and it forms the subject of the present pa- 
per. 

One of the interesting features of overpressuring is 
that it typically occurs suddenly at depths in excess 
of 3000 meters [Hunt, 1990] and is often associated 
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with the formation of seals [Hunt, 1990; Bradley, 1975], 
which are thought to be associated with mineralization 
of, for example, calcite. Our concern in this paper, 
however, is not with the mechanics of seal formation, 
but with a quantitative description of how the balance 
between compaction and pore water expulsion can cause 
a relatively sudden transition between normally pres- 
sured and overpressured regions. 

Studies of compaction and the overpressuring phen- 
omenon were initiated by Athy [1930] and Hedberg [1936], 
and more recently, mathematical models have been de- 
veloped by 5'•uith [1971], tfeith and Rimstidt [1985], $hi 
and Wang [1986], and Wangert [1992]. The phenom- 
enon is related to consolidation in soils [Gibson et al., 
1991], and the basic governing equation is a Richards 
type nonlinear diffusion equation if the deformational 
response is nonlinear elastic. 

More specifically, consolidation suggests the use of 
a compaction law which relates the effective pressure 
p• (overburden minus pore pressure) to the sediment 
porosity, and early studies [Smith, 1971] use a compac- 
tion law of the form pe - pe(•b), where •b is the poros- 
ity. Although near-surface sediments can be expected 
to obey this kind of law, processes of dingenesis and 
pressure solution begin to occur at depths greater than 
a kilometer, and these mechanisms may alter the rhe- 
ology from an elastic one to a viscous one. 

Angevine and Turcotte [1983] studied the role of pres- 
sure solution in the compaction of sediments, and this 
work was extended by Birchwood and Turcotte [1994]. 
In this paper, we develop an approach initiated by 
Audet and Fowler [1992] and Fowler and Yang [1998], 
who studied one-dimensional compaction of a sediment- 
ary basin in a model which allowed pore fluid expul- 
sion from the elastically compacting sediments. They 
found that the resulting behavior depended critically 
on a parameter A, which represents the ratio of the 
hydraulic conductivity and the sedimentation rate; in 
particular they were able to give analytic solutions de- 
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scribing the behaviour when & >> 1 ('fast' compaction) 
and & << 1 (slow compaction). 

In this paper, we seek to derive and analyze a com- 
parable model, to describe the evolution of porosity 
and pore fluid pressure when the sediments compact 
viscously, through the mechanism of pressure solution. 
Pressure solution (see Figure 1) refers to a process 
whereby grains dissolve at intergranular contacts un- 
der non-hydrostatic stress and precipitate in the pore 
space. The resulting recrystallization is a mechanism 
whereby compaction can occur [Tada and Siever, 1989]. 
In the following section, we propose the general form of 
mathematical model which describes the compaction of 
porous media. The pressure solution compaction law is 
derived in section 3. In section 4, we nondimensionalize 
and simplify the model, finding that the compactional 
response is determined by a dimensionless parameter 
&. Sections 5 and 6 then give numerical and analytic 
solutions in the two cases & <• 1 and & >> 1, and a 
discussion of the results follows in section 7. 

2. Mathematical Model 

The sedimentary basin is characterized by a porosity 
•, and separate liquid and solid velocities u t and u s. 
The liquid has a pore pressure pt, while the whole me- 
dium (liquid-solid composite) has a stress tensor e• (the 
sign convention used is that for fluids). 

The basic equations [Audet and Fowler, 1992] are 
those of mass and momentum conservation. Mass con- 

servat•on for the solid and liquid phases respectively are 
given by 

O 

0-(1 + - 0, (1) 

+ v.[,u t] = 0; 
0t 

ocean floor 

/•'"• el•tic . • 
ompac 

••.••cViø•Sctiø•• 
depth 

Figure 1. A schematic illustration of elastic and vis- 
cous compaction in a sedimentary basin. 

liquid momentum conservation is described by Darcy's 

- u - - + p, gk], 
where k is permeability, • is liquid viscosity, pt is liquid 
density, and # is gravity (k is a unit vector upward). 
Finally, medium momentum conservation for slow flow 
is described by a force balance: 

V.•r- pgk = 0, (4) 

where 

p = pt& + p•(1 - •) (5) 

is the medium density and p, is the solid density. 
The equations must be supplemented by constitutive 

relations for pt and er, and these are respectively the 
compaction law and the medium rheology: they are 
discussed in section 3. Note that these two relations 

are distinct. A precise analogy is to the prescription of 
bulk viscosity as well as the shear viscosity in a viscous 
fluid [Batchelor, 1967, pp. 154, 253]. In writing (1) and 
(2), we assume that precipitation occurs locally; this 
has been shown to be a reasonable assumption by Yang 
[1997]. We defer a discussion of boundary conditions 
until a one-dimensional model is derived in section 4. 

3. Pressure Solution and Compaction 

A central concept in the dynamics of uncemented 
sediments is the effective stress, introduced into the 
soil mechanics literature by Terzaghi [1943]. Terzaghi's 
principle states that deformation of the sediments is de- 
termined by the effective stress, which can be defined as 
follows. Suppose that a is the specific interfacial grain 
contact area, that is, the ratio of grain surface area (per 
unit volume) in contact with other grains to the total 
grain surface area. Then 1 -a is the specific grain-pore 
fluid interfacial contact area, and (1- a)p t is the pore 
fluid pressure exerted on the grains. Now the confining 
pressure P is partitioned between the solid and liquid 
phases, and therefore the effective pressure which acts 
on the solid grains, and which therefore is responsible 
for deformation of the solid matrix, is given by 

pe = P - (1- a)p t . (6) 

Derivation of this relation is lucidly discussed by $kemp- 
ton [1960] [see also Bear and Bachmat, 1990]. Terzaghi 
assumed a = 0, which may be appropriate for soils, 
but is less so for compacting sediments. Nevertheless, 
$kempton [1960] suggested that typical values of a were 
small, and we henceforth choose a = 0. 

More generally, we define the effective stress er e as 
(with a = 0) 

er = er + 5, (7) 
where 5 represents the unit tensor; if we extend Terz- 
aghi's principle to a viscously compacting medium, it is 
natural to suppose that the constitutive relation relates 
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the effective stress to the (solid) strain rate. Thus we 
pose a rheological constitutive law in the form 

1 

•%. + p•&: - 2,(% - •v.•&:), (8) 
where q is the medium viscosity and the solid strain 
rate tensor is 

0-• •+• ß (9) 
The prescription of the effective shear viscosity • de- 

pends on the rate of pressure solution creep at the grain 
scale. In addition, this also determines the compaction 
law. Weyl [1959] and Rutter [1976] derived a creep law 
to describe pressure solution (of quartz), in the form of 
a relation between the solid dilation rate and the effect- 

ive pressure on the grains. Following Labnet [1995], we 
write this as 

--•ii = Av•M•cowDg• •p• da p•, (10) 
where the summation convention is used (•ii = tr •ij), 
and where A is a constant, • is the molar volume of 
water, c0 is the (equilibrium) concentration of quartz in 
the pore fluid, M• is the molecular weight of quartz, d is 
the average grain diameter, Dg• is the grain boundary 
diffusion coe•cient along grain contact boundaries of 
width w, R is the gas constant, and T is absolute tem- 

Thus the pressure solution compaction law perature. 
is 

where 

p• - -•V.u s, (11) 

p• RTcJ a 
• = . (12) 

A•/,• MscowD• 

This is analogous to creep controlled viscous compac- 
tion laws used in studies of magma transport in the 
Earth's mantle [McKenzie, 1984, Fowler, 1990], and 
suggests that the medium viscosity q is related to the 
compaction viscosity •; Fowler [1990] suggested that 
• • q/c), for example [cf. Batchelor, 1967, p. 253]. 

4. A Reduced, One-Dimensional Model 

Compaction is essentially a one-dimensional phenom- 
enon: variations in the horizontal are much slower than 

in the vertical because of the large aspect ratio of typical 
sedimentary basins. If z represents the vertical coordin- 
ate upward, and if we now suppose the velocities are 
purely vertical (horizontal strain rates are zero), then 
(1)-(3) are simply 

00 0 
at + •[(• - 0)•] - 0, 

o0 0 [Ou• ] _ 0, ot +• 

k Op • J •(• - •) - -7 77 + • (13) 

The compaction law is 

Otl s 

P•--• O•' (14) 
and the medium force balance (4) can be written, using 
(10) and (11), as 

4 O ( Ou •) ape Op' 3 Oz V-•zz Oz Oz pg - O. (15) 

We suppose that the sediments lie in 0 < z < h(t), 
with z - 0 being an impermeable basement. Suitable 
boundary conditions are then 

and 

u •-u t-O at z-0, (16) 

p,-/-o, 0- 00, h-v•+, •t z- h(t). (•7) 

We take the pressures to be measured relative to a ref- 
erence pressure, which is equal to the fluid pressure 
at z = h. The constant ½50 is the initial settlement 

ß 

porosity, and the relation for h is a kinematic condition 

which includes the sediment deposition rate v• (given 
as a velocity; specifically, if rh• is the sedimentation 
rate in units of mass per unit area per unit time, then 
•: •/p•00). 

4.1. Nondimensionalization 

Sedimentary basins have typical depths in the range 
1-10 km. For a particular basin the depth scale d can 
then be taken to be the average depth; then d/[v•] is a 
suitable timescale, where [v•] represents a typical value 
of the (possibly variable)v•. Using (14)and (15)(and 
taking q as constant) we can eliminate pt to obtain (13) 
in the form 

-0(• • - •): 

/• •-•+1 •+(p•-pt)(1-O)g , (18) 
and adding (13)• and (13)2 (the subscripted equation 
numbers refer to the first and second equations in the 
display (13), respectively) and integrating, (using (16)), 
we h&ve 

-•(•' - •'): •'. (19) 
We now choose g pressure scale to be •] = (p•- 
pt)gd/[40/3• + 1], and write the variables as 

z - dz*, 

t = (d/[v•])t*, 
h = dh*, 

k = k0•, 

4q ] -• •-•+1 p, 

(20) 
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where we define k0 to be the permeability at z - h, 
where q• - q•0, so that k - i when q• - q•0. The dimen- 
sionless model can be written (using (18)) as 

Ot* -•+•-•-z, [(1- )u*]--O, 

u* - •--•-z, +l-&* 

Following Smith [1971], we choose 

TM, 

with a typical value of m - 8. This large value is of 
crucial significance later. The dimensionless parameters 
are given by 

_ - p)g 
or ,•- N/[v•], where K is the hydraulic conductivity; 
also 

.-.- (p•_p,.)sd• •+1 . (24) 
The parameter A measures the ratio of the Darcy flow 

rate to the sedimentation rate. Large values of I indic- 
ate rapid compaction, or slow sedimentation. A typical 
value of v• is 10 -• m s -• (300 m Ma-•), while K 
may range from as much as 10 -um s -1 for clean sand 
to 10 -13 m s -1 for shale or marine clay [Freeze aad 
Cherry, 1979]. Thus 10 -• < • < 109; small or large 
values of A may occur, with large values being perhaps 
of greater significance. 

4.2. Values of Parameters 

The parameter E measures the efficiency of com- 
paction. In terms of the effective pressure scale [p], 
E = •[vs]/[p]d. Now the compaction law can be written 
in the dimensional form 

dq• (1 - qS)pe 
= - ' 

where d/tits is a material derivative following the solid 
matrix. Since, by choice, d is a depth scale over which 
significant variations of q• occur and since d/Ivy] is 
the timescale on which this occurs, this suggests that 
[vs]/d - O([p]/•) and thus that E - O(1). In fact, 
we could choose d by prescribing E - 1. In fact, if we 
use typical values [Rutter, 1976; Gratz, 1991; Birchwood 
and Turcotte, 1994] 

p•-2.5x 103kgm -s R-8.3Jmo1-1 K -1 

T-300K, Ms-6x 10-2kgmol-1, 

um- 2 • 10 -s m 3 mo1-1 wDso - 10 -19 m 3 s -1 
d- 10 -4m, c0-10 -4M, A-16, (26) 

we find • • 3 x 1022 Pa s, a value comparable to inferred 
estimates of the viscosity of the Earth's mantle [ Turcotte 
and Schubert, 1982]. If we take [vs] - 10 -11 m s -1, 
p,-pt • 1.5 x 103 kg m -3 # - 10 m s -2 d - 5 
kin, 1 + (4r//3•) m 1.5, then indeed (24) implies E • 1. 
Since, in assessing field data, we would typically specify 
d as the basin depth, we leave E as a parameter in the 
model and will assume it be of O(1). 

Boundary conditions for (21) are that 

u*-0 on z*-0, 

p*-0, 

/** u* z* h* . -v;+ - (t*) (27) 

5. Slow Compaction' A << 1 

For convenience, we henceforward omit the asterisks 
on the dimensionless variables. Figure 2 shows a numer- 
ical solution of the model when A = 0.01. Just as for 

the case of elastic compaction [Fowler and Yang, 1998], 
a boundary layer forms at the base, in which compac- 
tion occurs. For A • 1, we see that u = O(A), whence 
Oc)/Ot - O(•) and • • •0 everywhere. Thus k • 1, 
and u satisfies 

"O•u ] u - -A -= Oz 2 +l-q50 , (28) 
with suitable boundary conditions representing the bound- 
ary layer matching to the far field solution u = -A(1 - 
650) being 

u=0 on z=0, 

u -• -I(1 - q•0) as z -• oo. (29) 

0.25 

0.2 

½10.15 .. 

• 0.1 

0.05 

o 
0.3 0.35 0.4 0.45 0.5 

Porosity 

Figure 2. Numerical solution of (21) and (27) with 
A - 0.01, E- 1, vs - 1, and k - (q•/q•0) TM with rn- 8. 
Profiles of q• near the base are shown at times t = 2, 3, 5, 
together with the analytic approximations (dashed) de- 
termined from (31) 
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The solution is 

u - -A(1 - 0o){1 - exp[-z/(•E)•/2]}, (30) 

and the correction for q5 is then found to be 

•- q5o- (1- •o) 2 t exp[-z/(XE)•/2], (31) 

with h being given (for constant v,) by 

h • [v, - ,k(1 - q50)]t. (32) 

The accuracy of the approximation in the boundary 
layer breaks down when (•5/•50) TM < 1; since (•5/•50) = 
1- O(/k•/2t), this is when t - O(1/m/k•/2); for m = 8 
and A = 10 -2 , this is O(1), but in fact (31) is quite 
accurate even up to t = 5. Just as for the elastic case, 
slow viscous compaction limits compaction to a basal 
boundary layer. In the elastic case, this boundary layer 
grows diffusively; in the viscous case, it is essentially 
stationary. 

Although formally qS* << 1 for/k >> 1, in practice qS* = 
O(1) if m is large. For ,k - 102 , m - 8, and q50 - 0.5, 
we get qS* - 0.28. Even for,k- 106 , qS* - 0.08. The 
equations (21) are 

Oq5 0 
Ot + •zz [(1- qS)u] - 0' 

•zz+l-q 5 

p - -=--, (34) 
3z 

with the boundary conditions (27) (and we take v, as 
constant). We assume qS* = O(1) and m >> 1. 

So long as q5 > qS*, then (qS/qS*) TM is exponentially 
large (because m is large), and (34)2 then implies 

Op 

Substituting this into the q5 equation (34)• gives 

6. Fast Compaction' • >> 1 

The case where ,k >> 1 is of greater complexity and 
interest. Figure 3 shows the evolution of the porosity 
profile with time. The most prominent feature is the 
apparent relaxation of q5 near z = h to a concave func- 
tion of the depth h- z. In contrast, elastic compaction 
leads to an exponential function of depth [Fowler and 
Yang, 1998]. 

We can understand this as follows. First, it is con- 
venient to define a critical porosity qS* by 

•*-•oexp[ 1 lnA 1. (33) m 

-0.5 

-1.5 

-2.5 

-3 

-3.5 

-4 
0 0.1 0.2 0.3 0.4 0.5 

Porosity 

Figure 3. Evolution of porosity profile with time, plot- 
ted as a function of depth h- z. Parameters are the 
same as for figure 1, but ,k - 100. 

02p O[Op] OzOt +•zz U•zz -0; (36) 

Integrating with respect to z, usi.ng p- 0 on z - h, 
whence (on z- h)pt+upz - (u-h)pz -(•-u)(1-q50) 
from (3,5) (and 0 - q50), - v•(1 - q50) using (27), we 
obtain 

op Op 
at + U•zz - v,(1 - q50), (37) 

a hyperbolic equation for p with characteristic speed 
u < 0. We solve (37) withp- 0 on z - h, together 
with 

Ou 

p - (38) 
with u - 0 on z - 0, so long as q5 given by (35) is > qS*. 
We solve (37) by the method of characteristics, which 
gives 

p - v,(1- q50)(t- r), 

z - + (39) 

and determines p implicitly in terms of the parameter 
r, and the as yet unknown functions h and u. 

If we change coordinates from (z, t) to (t, r), we find 

Ou _ Ou /Oz Oz Or Or 

Oz i t Ou r) 

Thus (38) can be written in the form 

ds. (40) 

vs(1 - 00)(t - r) -u• 
(41) 

which can be integrated with respect to t to yield 
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-- v• exp - 1 (42) 2E ' 

We substitute this expression into (41) and integrate 
with respect to r, to find 

[-v•(1-4o)(t-r) 2] u - •(t) - v• exp (43) 2E ' 

Now we substitute (43)into (39)2, to find 

h(•)- z: 

-v•(1- cfø)(s- r)2] - }z(s) } ds. (44) 2E 

Simplification of this expression yields 

/.(t)-•: 

,-,v• v•(1 - 00) 
2(1-00) erf 2E (t-r). (45) 

We thus have p in (39)•, u in (43), and h- z given as 
explicit functions of t- r (and h). In particular, t- r 
depends only on depth h- z, hence so does p., and so 
therefore does 0 (from (35)). Therefore 0t = -hOz, and 
(34)1 gives, on integrating and using (27) and (43), 

O -- l - (1- ½o) exp [V•(1- &ø) (t - r) 2] 2.=. ß (46) 

For small depths, t- r oc h- z, and thus 0 = 40 - 
O[(h- z)2], as we can see in figure 3. 

It only remains to choose h so as to satisfy u: 0 on 
z: 0. If t: to(r) at z: 0, then (39)2 and (43)imply 

•(•) : - •(•,•)•, 

-v•(1 - ½0)[tb(r) - 7'] 2 
hire(7')] - vs exp[ 

Using (43)in (47)• gives 

tb(•) h[tb(7')] - vs exp[ 

]. (47) 

-v•(1 - 00)(s - 7-) 2 
2E 

]ds. (48) 

Equation (48) simplifies to 

(•(•- ½0)) •/• •= [to(•)- •] 

- - _ h[to(•)] , 
V s,•,71 ' 

so that together with (47)2, we obtain 

i_ { 

(49) 

(50) 

as the evolution equation for h. Together with (50), we 
gather t. he solutions for p, h-z, 0, and u together here. 
With A: v• (1 - 40)/2E, and •: t - 7', they are 

q5 : 1- (1 - 00) exp[AC2], 

h- z - -•- erf[A•/2½], 
u -- L- v•exp[-A½2], 
p : 2EA½, (51) 

•nd the solution of (50) is 

v•(•)•/• h- T 7 erf[A•/Ut]' (52) 
Notice that (52) implies • m•ximum h equal to hmax: 

[v•E•/2(1-•o)] •/2 = (v•/2)(•/A) •/2 Now the solution 
(51) becomes invalid if • re•ches •*, i.e., when 

A• 2 - In - •0 (53) 
This first occurs •t z: 0 when h = h* given by 

h* - T erf In . (54) •0 

Since the error function is less than one, h* • hmax, 
and the breakdown will always eventually occur. 

If we define 

- (aa) •ln •-•0 
a,s the value in (53) where breakdown occurs, then we 
have from (51) and (52) that breakdown first occurs at 
t = (*, and thereafter it occurs •t a depth h- z: h*, 
where •: (*, and 

u- u* -- }z- v• exp[-A(*2], 

p: p* = 2EA(*. (56) 

For values of t > (*, there is a transition region which 
can be analyzed as follows in section 6.1. 

6.1. Transition Region 

A suitable balance of terms in the transition region 
is effected by defining 

z - h-h*- 2 lnm+__•, 
• : w/.,. (s7) 

where 

*- 0" 
and from the solution (51)in z > 
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p* (1 - 95* ) 2 whence 
ß h x-•* - •-•-•lnrn - (70) 

Matching to the variables as r/-• oo, where 1 - r•(x-•.) 

½5 4* +O'*(z-h+h*) 

4>* exp[ 2 in m 
, p* 

u ,.., u---(z-h+h*), 

p ,.., p*-(1-ck*)(z-h+h*), (60) 

is effected to leading order by requiring 

ß 7q, W W* P* .... q, p• p* as q-•c•, (61) 

where 
2p* W* 

u* = In m + (62) 

is anticipated to be small (certainly u* - 0 at t - 
and in fact assuming u* - O(1) leads to incon. sistency). 

Changing variables to (t, q) via Ot -• Ot-rnhO 
rnOv gives, to leading order, 

}zO*•. + (1 - ck*)W v - O, 

and thus 

W - -pve 

p - -EWv, (63) 

W- W* }z65•* • (64) 
(this satisfies (61) in view of (59), (55), and (56), given 
that u* << 1), and hence 

'='•v-(•- •oo) e-• (65) 

where 

ß oo (1 - qS*)W* = hqS* (66) 
The first integral of (65) satisfying (61) is 

1._ 2 
•'"•v -+- [• -+- 1- •oo]e _ • = 1 E.), 2 (67) 2 ' 

and in order for this to match to a feasible solution 

below, we require ß -• •oo as r/ -• -oo, whence (67) 
implies 

1 -,I, 
•E-/2 - e oo (68) 

This defines •oo in terms of 3' given by (59), hence (66) 
gives W* (in terms of },), so that (62) gives u*. From 
(55) and (56), together with (62) and (66), 

U* 1-950) - }z-v, 1-95' 
2p* qS* •oo 

= -•lnrn + 
7Zrn m(1 - ½5*) 

(69) 

We note from (56) that at breakdown, when t = 
]• - vs (1 - ½0)/(1 - 4)*); (7.0) indicates that there is 

• in m) correction to h as t passes through an O(• 
Figure 4 plots the numerical solution for h at ,k = 100, 
compared to the approximations (52) for t < (* and 
(70) for t > 

6.2. Below Transition 

As q -• -•x•, we have W, p -• 0, and ß -• •. 
Reverting to the z coordinate and defining 

then to leading order 

-O*•t + (1 - ½5*)l;Vz - O, 
1 

IfV- -e•øø [-•-fE/Sz + 1- 95*], 
- -z½,. (72) 

The solution is incomplete as we have not computed 
O(1/m I terms in the transition zone: apparently, ß - 
•(z), W m -(1- 95')e •øø , i0 m 0, and the basal bound- 
ary condition W - 0 at z - 0 is satisfied by a boundary 
layer solution 

lfV--(1-gS*)e •øø 1-exp - z . 

3.5 

2.5 

1.5 

0.5 

0 
0 

(52), i i i 

i 2 3 4 5 

Time 

Figure 4. Numerical solution for h(t) when X = 100, 
together with the approximations (52) for t < (* and 
(70) for t > (* (the additive constant for (70) has not 
been determined, whence the apparent slight jump in ]• 
near t = (•*). 
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This boundary layer is passive, and h is controlled by 
the dynamics of the transition. Figure 5 plots the nu- 
merical solution for q•, together with the predicted solu- 
tions in the upper region and the transition zone. 

7. Discussion 

For a model of sedimentary basin formation which 
incorporates viscous compaction due to pressure solu- 
tion, we have been able to derive approximate solu- 
tions in the distinct limits of slow compaction, where 
;• = K/v• (< 1, K being the hydraulic conductivity and 
v• the sedimentation rate, and fast compaction, where 
& ;>> 1. When & <:< 1, compaction is limited to a basal 
boundary layer of thickness O(V•. This result is sim- 
ilar to that which occurs for elastic compaction and is 
equivalent to results obtained in viscous compaction in 
the asthenosphere [e.g., McKenzie, 1984]. 

The more realistic case to consider is when /• >> 1; 
compaction occurs throughout the basin, and the basic 
equilibrium solution which applies near the surface is a 
near parabolic profile of porosity versus depth. In fact, 
for small values of At/2• in (51), we have the depth 

Z - h- z m v•(, (73) 

whence the porosity profile is 

& m q•0 - (1 - q•0)UZ2 ' (74) 2Ev• ' 

this compares with the equilibrium elastic profile, which 
tends to be exponentially decreasing with depth. Fur- 
thermore, it is easy to show that for such small depths, 
the pore fluid is normally (that is, hydrostatically) pres- 
sured. The parabolic decrease of porosity is not oh- 

0.9 

0.8 

0.7 

'•0.6 ß 

m 0.4 

0.3 

0.2 

0.1 

O0 011 0.2 0.3 0.4 0.5 
Porosity 

Figure 5. Comparison of the numerical solution (solid) 
for • - 100 at t- 5, together with the upper (equilib- 
rium) solution and the transition solution. 

served, but this is associated with the extension of the 
viscous compaction model all the way to the top of the 
basin; in our previous paper [Fowler and Yang, 1998], 
we showed that elastic compaction does in fact give an 
exponential decrease of porosity with depth. 

However, this normally pressured solution is only 
valid to a (dimensional)depth he- dh* given by (54), 
and approximately 

2(•r/+ •)v• In (75) - ' 
where v• is the dimensional sedimentation rate. As- 
suming •/• •, this is roughly h• • [•v•/(p• - pw)g] •/•. 
Using our previous estimates, this is 4.5 km. Note that 
this is only an estimate, as • is not well constrained. At 
this depth, the permeability has decreased sufficiently 
that the hydrostatic balance no longer applies, and 
there is a narrower transition region in which the effect- 
ive pressure drops to near zero and the porosity profile 
changes shape. This transition region marks a (relat- 
ively sudden) switch from a normally pressured environ- 
ment to one with high pore pressures and is caused by 
the sharp variation of permeability with porosity. No- 
tice also that even if the permeability exponent is not 

* • ln•)] nev- large, so that &* is small [• - &0exp(-• , 
ertheless (75) (or (54))implies that the critical depth 
is still finite. Thus the switch from normally pressured 
to abnormally pressured is predicted to occur in any 
case. More generally, we might therefore expect that in 
a marine environment where stratigraphic layers cause 
sudden changes in permeability, that clay layers with 
small permeability may be associated with the forma- 
tion of abnormally high pressures. 

Porosity-depth profiles (e.g., Mudford and Best, 1989; 
Powley, 1990] often exhibit behaviour similar to that in 
figure 5' decrease of porosity with depth followed by 
a sudden switch •o a relatively uniform porosity. This 
switch is often associated with a jump to high pore pres- 
sures across a mineralized seal; what we have shown 
here is that such behaviour is intrinsic to the mechan- 

ics of a viscously tompatting layer of sediments, and 
will always occur if the basin is deep enough, purely 
due •o compaction' diagenesis or mineralization is not 
necessary. 

In a previous paper, we analyzed nonlinear elastic 
compaction [Fowler and Yang, 1998] in which the rela- 
tion between p• and & was taken as 

pe - pe(q•). (76) 

Equivalently, this can be written, using (1), as 

1 dp• 
V.u • = (77) K• dt• ' 

where t(• - -(1 - •)p•(•) > 0 is a modulus of com- 
pression and d/dt• = O/Or + u • .V is a material derivat- 
ive following the solid. Contradistinctively, the viscous 
compaction law (11) is 
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1 

v.. - (78) 
Now pressure solution only becomes significant at 

depths greater than 1 km. At shallow depths, we expect 
elastic compaction to occur, and an obvious question is 
then to enquire how both mechanisms can be included. 
We do not pursue this too far here, but an obvious 
way is to generalize the above relations to a viscoelastic 
compaction law, here of Maxwell type: 

V'uS - K• dt• f pc. (79) 
Equivalently, we would anticipate a viscoelastic rhe- 
ology for the medium; this involves material derivatives 
of tensors, and some care is needed to ensure that the 
resulting model is frame indifferent. 

At greater depths still, cementation begins to occur. 
As the grain boundaries begin to become cemented, 
pressure solution will decrease, and it can be expec- 
ted that the theology reverts to an elastic one; from the 
point of view of the sediments, compaction will cease 
and the medium will become virtually rigid, with pore 
pressure being controlled purely by Darcy flow. Incor- 
poration of these and other processes such as aliagenesis 
will form the substance of future developments. 
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