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Breaking the seal at GriITlsvotn, Iceland 

A. C. FOWLER 
Mathematical Institute, Oxford University, 24-29 St Ciles; Oxford OX13 LB, England 

ABSTRACT. Of several problems associated with theoretical explanations of the jokul
hlaups which emerge from the outlet glacier Skeioararj okull of the ice c ap Vatnajokull i n  
southeast Iceland, the mechanism of  flood ini ti atio n  i s  one that has h itherto defied 
explanation. We provide such an explanation based on a careful analysis of the classical 
Nye-Rothlisberger model; near the subglacial lake Grimsvotn, the  hydraulic potential 
gradient is towards the lake, and there is therefore a catchment boundary under the ice, 
whose location depends on the subglacial meltwater drainage character istics. As the con
di tions for a flood approach, we show that the water divide migrates towards the lake, while 
at the same time the lake pressure i ncreases. When the hydraulic potential gradient to
wards the lake is low and the refill ing rate is slow, the s eal will "break" when the catchment 
boundary reaches the lake, while the lake level is s ti l l  below flotation pressure, whereas i f  
refilling is rapid, flotation can be ach ieved before a flood is initiated. This theory can thus 
explain why the seal i s  normally broken when the lake l evel at Grimsvotn i s  still some 60 m 
below flotation level. In addi tion, we are able to explain why thejokulh laup following the 
1996 eruption did not occur until flotation level was achieved, and we s how how the cyeli
c ity and magnitude ofjokulhlaups can be explained w i thin this theory. 

1. INTRODUCTION 

Jokulhlaups are s ubglacial floods which occur, typically 
from ice-dammed l akes, at regular i ntervals. Possibly the 
best-known example is that of the j okulhlaups which emerge 
at i ntervals of 5-10 years from the outlet glacier Skeioan'tr
jokull, which drains the ice cap Vatnajokull in southeast Ice
l and. This ice cap was recently made famous by the 
subglacial eruption in 1996, which caused extensive collapse 
of the ice cover, and eventually a m assive jokulhlau p  over 
the proglacial outwash plain, Skeioanirsandur. Thesejokul
h laups are due to the existence of a subglaci al l ake, 
Grimsvotn, which l ies above the caldera of a volcano u nder
neath Vatnajokull (Fig. I). The lake exi s ts due to the h igh 
geothermal heat flux which maintains a layer of water un
derneath the ice. As can be seen from the vertical sectional 
view i n  Figure 2, the lake level is well above the level of the 
caldera rim. However, i t  is confined by a "seal" which under 
normal circumstances is maintained by the overburden 
pressure of the ice surrounding the caldera. As explained 
by Bjornsson (1976) and Nye (1976), and as i ndicated i n  Fig
ure 3, the excess ice pressure causes the hydraulic potential 
driving the water flow to have a m aximum slightly down
glacier of the lake margin. Note that the seal is indicated by 
a maximum of the difference between the curves labelled Zi 

and Zh i n  Figure 3. We will refer to this point (actually a l ine 
on the bed) as the seal (Fig. 2 or 3). I t  is important to remem
ber that even while the lake is fil li ng, there are conduits lead
i ng from the seal region both up-glacier to the lake and down
glacier to the outlet. These conduits are formed and m ai n
tained by water generated by local geothermal and fric
tional heat sources. As time passes, the lake fills until 
eventually it becomes deep enough to break through the 
seal. The resulti ng floods (the Icelandic word jokulhlaup 
means "ice-leap") emerge 50 km downstream after p assing 

under the ice, and typically last 2-3 weeks, with peak dis
charges on the order of 10 4 m3 s-l Extensive descriptions of 
these jokulhlaups are provided by Rist (1973), Bjornsson (1974, 
1988, 1992) and Tomasson and others (1981), and a variety of 
theoretical analyses have been undertaken (Nye, 1976; Spring 
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Fig. 1 .  Map of Vatnajokull showing GrimsvOln and its 
drainage pathway. From Bjo'rnsson (1 974). 
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Fig .  2. The geometry of the lake and glacier, Gninsviitn 
and Sketkardrsandur .  Redrawn by  F .  S. L. Ng from 
figure 14 oJ Bjiimsson (1974). 
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Fig. 3. 1"1 close-up if the seal region, redrawnjiomJigure 14 if 
Bjijmsson (1974). Thefigure shows the ice surface zs, the bed
rock Zb, and a hydraulic potential line ZG for two diffe rent 
values of lake level hw. Inspection if the originalfigllre indi
cates that this curve is difined by Zi = hw 
+(PiO - Pi)/ P",9, where PiO is the ice-overburden!Jressure 
at the lake margin. If we sUJ}pose ( .Nye, 1976) that P ;::::; Pi, 
then the hydraulic potential 15 1> = Pi - PiO 
+ Pw g( Zb - Zb 0 ) , where Zb = Zb 0 at the lake mmgin, and 
then Zi - Zb = hw - Zb 0 - 1>/ Pw 9, so that the maximum 
if Zb - Zi represents a hydraulic banier. Alternatively and 
confusingly, the seal can be conceptualised as a region where 
the effective pressure N = Pi - pis positive, where the water 
pressure P is calculated on the basis if a constant hydraulic 
potential (Bjiimsson, 1974, Jig. 13). In reality, neither 
assumption is precisely valid, although both are useful inter
pretable approximations. 

and Hutter, 1981, 1982; Clarke 1982; Fowler and Ng, 1996), fol
lowing the basic drainage theory due to Rothlisberger ( 1972). 

These theories h ave been more or less successful in ex
plaining the basic features of the Grimsvotn jokulhlaups. 
Specifically, the shape of the flood hydrograph is relatively 
well ( if not perfectly) explained. H owever, certain features 
rem ain puzzl ing, and the purpose of the present paper is to 
try to explain some of these. 

Most obviously, numerical models have focused on the 
flood hydrograph, but have not been concerned with the cy
clicity ofthejokulhlaups. This is associated wit h a more press-
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ing problem, namely, why the floods are typically initiated 
when the lake is at a level some 60 m below the flotation level 
(Bjornsson 1988, p. 79), or the level at which it could break the 
seal by pushing underneath the overlying ice. This is the 
problem with which we are principally concerned. In fact, 
one of the more interesting features of the 1996 jokulhlaup 
was that the flood did not begin until the flotation level was 
achieved, much to everyone's surprise. (An account of the 
eruption and subsequent jokulhlaup is given by Einarsson 
and others (1997; see also Gudmundsson and others, 1997); 
much useful information is given on a variety of websites, two 
useful entry points to which are http: / /www. hi. i s/-mmh/gos/ 
and http: / /www. spri.cam. ac. uk/jok/jok.htm.) We will seek to 
explain the onset at flotation also. In addition, the 1996 flood 
lasted j ust I day, compared to the more normal flood duration 
of 2-3 weeks. \Ve will provide a possible explanation for this. 

We will begin by reviewing the classical Nye model for 
jokulhlaups, with some slight modifications. We then show 
that this model can be reduced, as can Clarke's ( 1982), to a 
pair of ordinary differential equations, whose solution 
reveals oscillations. The amplitude of these oscillations 
grows unboundedly. We then analyze m ore closely the 
mechanisms of seal form ation and breaking, which leads to 
an enhanced approximation of the Nye m odel. This model is 
able to predict periodic outbursts, and seal-breaking before 
or at flotation, depending on the lake-refill ing rate. In this 
way, wc can provide a put ative explanation for both the 
normal mechanics of seal-breaking and the anomalous 
characteristics of the 1996 j okulhlaup. 

2. THE NYE MODEL 

The Nye (1976) model consists of five equat ions for the five 
variables Q, S, p, m and Bw, where these are, respectively, 
the volumetric water flux in the channel, its cross-sectional 
area, the channel water pressure, the i nterfacial melt rate, 
with u nits of mass per unit length of the chan nel per unit ti me, 
and the water temperature. The primary limiting assumption 
is that the channel has a semicircular cross-sect ion, cut up
wards into the ice. In real ity, it seems more likely that chan
nelled flow will occur through a broad, low-ccilinged conduit 
( Hookc and others, 1990), and that sediment erosion (Boulton 
and H indmarsh, 1987) will play an important part in control
ling the channel shape. These points have been investigated to 
some extent by Fowler and Ng (1996), particularly as they 
affect the shape of the pred icted flood hyd rograph, but we do 
not pursue them here, as our primary purpose is to under
stand the mechanism whereby flood initiation occurs, and 
this can be done satisfactorily in the context of the familiar 
Nye model. 

The equation for S is 

(2 . 1 )  

and represents the rate of change (t is time)  of cross-sec
tional area due to meltback of the channel walls ( the first 
term) and viscous closure of the ice ( t he second term). I n  
terms o f  i ts provenance, t h is equation is actually a kinematic 
boundary condition for the external viscous ice-flow 
proble m ,  since the ice/water interface is a free boundary. Pi 
is the ice-overburden pressure, Pi is the ice density, f{ is pro
portional to the flow constant in Glen's l aw, and n is the 
flow-l aw exponent, often taken as n = 3. A fur ther equation 

507 



Journal qfGlaciology 

for S follows from mass conservation of water i n  the chan
nel, which takcs the form 

as 
+ 

oQ 
= 

m 
+M 

at os p,,- ' (2.2) 

where S is downstream distance  along thc channel from the 
lake margi n, Pw is the water density, and, apart from the 
melt rate m ( which is actually i nsignificant in th is cquation, 
although of primary importance in Equation (2. 1 ) ), wc in
elude a supply term AI which  describes the base flow, de
rived from surface melt, rainfall or other s ubglacial melt. 
This term, although i rrelevant during floods, t urns out to 
be of great significance in cont rolling thc seal dynamics 
between floods. 

The momentum equation for the channel flow takes the 
form of an empi rical correlation between flow a nd turbulent 
friction, a nd it is usual to assume a Manning law: 

. ap Q2 
p"gsm Cl -

as 
= j p

"
g 

S8/3 ' 
(2 .3) 

where 9 is gravity, Cl is the downslope angle a nd j is a fric
tion factor which is related to the Manning roughness. The 
energy equation can be written i n  t he form 

(2.4) 

where ei i s  the interfacial ice temperature, assumed to be 
equal to the  freezing point, c'" is  the specific h eat of water 
and L is the latent heat. The advection of heat on the left of 
Equation (2.4 )  is balanced o n  the right by t he viscous dissi
pative heating term, and the losses due to latent- and sensi
ble-heat supply to the interface. ew is the mean bulk water 
temperature, which may ( a nd i ndeed must )  be larger than 
the interfacial ice temperature ei. There is t he n  heat transfer 
across a t urbulent boundary layer at the wall ,  and this is 
given by t he relation (Dit tus a nd Boelter, 1930) 

a1 ( P\
S
V �2 ) 0.8 

k(e", - ei) = m[L + c".(e", - eJ], (2.5) 
7]", 

where al (:::::: 0.2)  is a constant ,  7]w is the viscosity of water 
and k is i ts thermal conductivity. 

These five equations must be supplemented with an 
initial condition for S, and su i table boundary conditions, 
consisting of a flow or pressure condition at the channel inl et 
and out let. I n  practice, the water pressure, a nd hence the 
effective pressure, defincd as  N = Pi - p, is  prescribed at 
cach end. ( Note that in Nye's ( 1976) notat ion, N denotcd a 
friction constant. In  this paper, its usc is restricted to the 
effective p ressure. ) We take the origin of s (i. e. s = 0) to be 
at the i nlet to the channel, a nd we suppose the channel 
outlct at the snout of thc glacier is at 8 = so. We t hus choose 

N = 0 at s = 80, (2.6) 

while at the inlet, conservat ion of mass requires that 

dV dt = mL - Q(O, t) a t  8 = 0 ,  (2.7) 

where V is the lake volume a nd mL represents the geother
mal mel t  ratc, or more generally the lake-refilling rate (as in 
1996, when the lake refi l led rapidly due to i nf low of melted 
water from the site of the fissure eruption ( Ei narsson and 
others, 1997) ). Suppose the lake level is Z = Zw, where Z i s  
height above sea level. \lVe assume V = V(zw), and in fact 
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V'(Zw) = AL i s  the  effective lake surface area ( wh ich may 
depend on zw). Now the water pressure at the inlet is 
p",g(z". - Zb ) , where Zb is the height above sea level of the 
bedrock at the  lake margin S = 0, and this is equal to 

Pi - N. Therefore ( if  Zb and Pi d o  not vary) 

dz" __ 
dN 

(0 t Pwg clt - dt , ), (2.8) 

and thus the b oundary condi t ion at the lake inlet i s  

ALaN 
- -- = mL - Q at 8 = O. (2.9) 

Pwg at 

2.1. Non-dirnensionalisation 

The geometry of the lake and outlet glacier as described and 
drawn by Bjornsson (1974) is shown i n  Figure 2, a nd a elose
up of the seal region is shown i n  Figure 3, which also incli
cates how the  seal is maintained. The geometry defines nat
ural distance scales So rv 50 k m  a nd ho rv 1500 m for the 
variables 8 a nd z. In addition, we choose scales for the other 
variables by w ri ting 

Pi - P = NoN*, 
* s = S08 , 

()w = ()i + (Jo(J* , 
t = tot*, S = SoS*, 

m = mom*. Q = QoQ*. 

Thus, the asteri sked variables are d imensionless. 

(2.10) 

We choose t h e  scales No, eo, to, So, mo and Qo as  follows. 
We balance al l  t hree terms in Equation (2. 1) by writing 

So 
= 

mo 
= K SoNon .  (2.11) 

to Pi 
Next, we define the  basic hydraulic Erarlient q:r as 

. OPi q:r = Pw 9 sm a - 755 . (2.12) 

This quantity i s  the hydraulic  g radient that exists if the 
basal water pressure is equal to  the overburden ice pressure. 
As such, it corresponds to that d i scussed by Nye ( 1976), and 
we associate the  existence of t h e  seal with the fact that q:r is 
negative near the  lake. In terms of  this, the actual hydraulic 
gradient is defined by 

. op aN 
PwgsmCl-

as 
= W+Fs· 

(2.13) 

A natural scale for q:r is 
.T, _ Pwgho 
'1'0- --- , 

So 
since sin Cl "-' ho/so, and so we scale q:r by wri t ing 

q:r = WoW*. 

(2.14) 

(2.15) 

A balance of t erms in Equation (2.3) is now effected by having 
q:r rv f PwgQ2 / S8/3; thus 

q:r _ jPw9Q6 
0-

S08/3 
(2.16) 

I n  Equation (2.4), we balance t h e  two terms on the right; 
thus 

(2.17) 

We choose eo by balancing the la tent-heat term i n  Equation 
(2.5) with t h e  t erm on the lefthand side: ( ) 0.8 p"Qo 

al � keo = moL. 
7]", So 

(2.18) 

Finally, it would seem natural to choose the scale for Qo to 



balance the  fi rst and third t erms in Equation ( 2.9); if we do 
this by prescribing 

(2.19) 

then we find, using values prescribed below, that Qo � 

1.2 X 105 m 3 s I, which is about 15 t imes the normal peak dis
charge. This can partly bc  ascribed to the fact that these are 
only scales, but it may also p artly reflect the  fact that the 
Nye-Rothli sberger model w i th semicircular channels is 
known to predict peak discharges larger than those 
observed ( Ng, 1998). Since w e  do not want to unduly distort 
the relevant \'alues of the p arameters defined below, we in
stead choose Qo to be a typical observed peak d ischarge. 

The five relations i n  Equations (2.11) and (2.16-2.18) 
define the five scales So, mo, to, No, 80 i n  t erms of Qo, and 
wc find 

\[IoQo 
7TIo =-L- ' 

(2.20) 

T he dimensionless model equation can then be written in 
the form (dropping the asterisks on the vari ables and taking 
rI = 3) 

together wi th  boundary condit ions 

N = 0 at 8 = 1 

aN at = )..Q - 1/ at 8 = 0, 

(2.21 ) 

(2.22) 

where the p arameters in  Equations ( 2.21) and ( 2.22) arc 
given by 

(2.23) 

. 9 3 3 3 3 \ Ve assume typical values Pi cv O. x 10 kg m ,Pw cv 10 kg m , 
'I7\\,cv2xI0 3kg m IS I, kcvO.6 W m  IK I, cwcv4.2 kJkg I 

I L 2 I l' ? 0 2 I P 3 I 0 2 K , cv 3.3 x 10 kJ kg , \. = I a s , 9 rv I m s . 

Fowler: Breaking lite seal at GdmsviHn 

The defin i t ion of the frict ion factor f in Manning's 
roughness law as written here i s  

f = n'2 (R�2) 2
/
3, (2.24) 

where n' is the roughness coefficient and RIl is the hydraulic 
radius (= 5/1, where I is the perimeter). For a circular chan-

2/3 2/3 . l/'l nel (S/RH2) = (47r) � 5.4, so that Ifn' = O. l m  . s, 
then f cv 0.05 m 2/3 s2. 

Wc also t ake 80 = 50 km, ha = 1 .5 km, whence we find 
I .) 7 \[10 rv 300 Pa m , and wc suppose AL = 32 km- = 3.2 x 10 

m2, based on figure  4 of Gudmundsson and others (1995), 
which indicates a typical range of 17-33 km2 An est imate o[ 
the refilling rate can be obtained from figure 5 of t he same 
paper, which indicates that the lake level rises between hlaups 
at about 20 m a I. Together with the lake-l evel area, this  indi
cates a typical refi lling rate 0[6.4xI011 kg a I, which i s  consis
tent with the independently inferred values over the past 
century based on flood-discharge magnitude (Bj ornsson, 
1988, p. 100). If we anticipate that a typical \'alue of Qo = 

10+ 1113 S I ( from observations), t hen wc find successively t hat 

So rv 1200 m2, m.o rv !) kg m-1 s-1, 80 cv 7 K, 
to rvl.2 x 105 S (1.4 days), No cv 2 X lOG Pa (20 bar), 

(2.25) 

and the dimensionless parameters are of typical si zes 

"( rv 2, c cv 0 .05, T rv 0.9, 8", 0.14, 

D",O. Ol, )..",5, vrv2xlO-:l, (2.26) 
2 '; I where [or D w e  assume a base flow rate of 11180 = 10 m ' s , 

which represents typical discharges between jokulhlaups. 
Base flow is not o ften reported, but Bjornsson (1998, p. 1 14) 
gives values in  the region of 100 m 3 s I [or the rivers Ska[t<l. 
and Tungnaa draining western Vatn ajokull, while Rist (1977, 
1984) and Sigurosson and others (1992) repeatedly est imate 
base flow of t h e  Skeioaraljokul l  stream system to be of the 
same size. \ Ve then sce that t hese parameters are ;S 0(1) , 
which indicat es that the scales w e  h ave chosen arc sensible. 
The choice of Equation (2.19) for Qo would correspond to 
choosing).. = 1. 

2.2. Model sitnplification 

The parameters c, 8 and D arc all relat i\'ely small .  If we 
neglect them, it follows that 

Q � Q(O, t), i.e. Q::::o Q(t) 
5 � \[I-3/8Q3/'I, (2.27) 

and hence that 

(2.28) 

and thus 

(2.29) 

Wc see from th i s  t h at 8 approaches a limiting \'alue such that 
m = \[IQ over a d imensionless d i s tance o[ over ,Q1/2 Now 
since Q was scaled with a typical peak discharge, it is clear 
that in general th i s  distance will  be  very short. To accommo
date this observation, wc simpli fy the model by assuming 
that m. = \[IQ holds at all t imes, even though this  will be in
accurate [or a short t ime during m aximum discharge. \ Vc do 
not consider this a disadvant age since our primary concern 
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Fig. 4. (N, Q) phase portrait !if the solution !if Equation 
(2.30). Parameter values A = 5 and 1/ = 0.1. Logscale 
(upper) and normal scale ( lower ). 

below is not with the shape of the hydrograph, but wi th  the 
seal dynamics between Goods. 

For simplicity, let  us suppose t h at \[J is constant, equal to 
I .  It then follows that N � N(O, t) = N(t), and N and Q 
sati sfy 

Q = �Q5/4 _ �Q N3, 

N = AQ -1/, (2.30) 

where N = dN / dt . The model thus reduces in th i s  c ase to 
the solution of two ordinary differential equations! 

It is  trivial to analyze these equations. There is a fixed 
point at Q = 1// A, N = Ql/12, corresponding to steady 
Rbthlisberger drainage, but the lake-refilling equation ren
ders this always unstable; the fixed point is an unstable spiral 
if  1/ > 3.8 X 10-

4 A -1/2, otherwise i t  i s  an unstable node. 
Figure 4 shows a numerical solution of Equation (2.30)_ 

Clearly the spiral structure continues for (N, Q) away from 
the unstable fixed point. The t ime series corresponding to 
th is  diagram ( Fig_ 5) shows a sequence of j bkulhlaups of 
growing discharge, with long intervals (of 0(1/1/)) between 
the floods. If we focus on a single flood, there is clearly no 
criterion for picking which hydrograph will occur, and this 
i s  a drawback of the model. In fact ,  this is  another reason 
why the choice of Equation (2.19) for Qo would be prema
ture. Control of the  peak discharge must depend on  the  ini
t ial conditions, which in turn must depend on the  seal
breaking mechanism; therefore the  choice of Equation 
(2.19), while appealing, must in fact be irrelevant. 
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3. BREAKING THE SEAL 

We now return to the ful l  Nye model , in the  form 

(3.1) 

We h ave seen that th is  m odel can describe t he flood hydro
graph reasonably well, in its approxi m at e  form. The ques
tion now arises whether the complete m odel is  also able to  
describe the  dynamics of  the  system b etween floods, or  
whether some further p hysical process m ust be  included. 
Clearly the approxi m at ions introduced in  section 2 wil l  
not allow for a proper study. In fact, the reason there is  a seal 
at all is that the ice at the  caldera rim causes a negative hy
draulic gradient t here. In other words, \[J is not only not 
constant, it i s  in fact negative near the rim .  Pretty clearly, 
the model needs som e  adjustment there_ In order to exam
ine th i s  region more closely, we define a rescaled distance 



variable X measured downstream from the point where the 
channel (or channels) from the d ivide enter the l ake as 

s = t5X, (3.2) 

where t5 is as given in Equatio n  (2.2 3). We neglect 'Y as before, 
because the advection will certainly be negligible between 
floods. Ignoring terms in 10, the equations are then approxi
mated by 

(3.3) 

It is essential to retain w = t5D cv 1 .4 x 10 1 even though it is 
small, and i t  is also appropriate to do so when Q « 1. Simi
larly, it is valid to neglect the advection term for e if 
Q « t5 h, as is l ikely to be the case. Equations ( 3. 3) are sup
plemented by the lake-rifiLling equation 

oN at = AQ - 1/ on X = 0. (3.4) 

and wc also require that N m atch to the outer solution as 
X ---t 00: th is is effected by requir ing that 

oN 
- ---t ° as X ---t 0. (3.5) oX 

This technical condition ensures t h at the solution i n  the seal 
region blends to the approxim ate solution away from the 
seal, which as before is obtained by taking w = 1. Equation 
( 3. 3) I appl ies also if N < ° ( though, in reali ty, hydrofractur
i ng would t he n  cause much more rapid opening of the chan
nel ) ,  but if a d ifferent power law i s  used, say closure ex N°, 
then the correct closure term i n  Equation ( 3. 3) I replaces N3 
by INlo-1 N. 

3.1. An approxiIllate analysis 

Before we solve this model numerically, we aim to under
stand its l ikely behaviour. Firstly, when Q « 1, Equation 
( 3.4) indicates that N varies slowly, so that Equation (3. 3) I 
implies that S rapidly (on a tim e-scale of 0(1)) approaches 
( quasi-) equi l ibrium, i .e. 

SN3 � m � Q ( \V + ��). (3.6) 

Using Equatio n  ( 3. 3h, this leads to 

aN N24/11 
\V + oX 

= 
IQI2/1l sgn Q (3.7) 

( note that this  allows for both positive and negat ive Q, sup
posing N > 0; if N < 0, then the comment after  Equation 
( 3.5) would apply, but in fact a flood is then initiated, and 
Equation ( 3.6) i s  inappropriate). The solution for Q i s  

Q = w[X - X*(t)], (3.8) 

where X* gives the dimensionless distance of the seal down
stream from the lake. (Note, however, that the asterisk here 
no longer connotes a dimension less rather than a dimen
sional quantity; all variables are dimensionless, and the aster-
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isk denotes a particu lar value of X.) This equation ( indeed 
the whole model Equation (3. 3) ) also applies during the 
flood, when X* < ° ( of course there is then no water d ivide, 
and -wX* simply gives the dimensionless water nux at the 
i nlet). By assumption, W(X) satisfies \V(o) < 0, w(oo) > 0, 
and Equation ( 3.7) i s  to be solved subj ect to Equations ( 3.4) 
and ( 3.5), the extra condition serving to determine the un
known X*. 

3.2. A particular exaIllple 

To gain some analytic insight, we choose 

w=l-ae-bx, a>l, b>O, (3.9) 

to represent the negative value of \V near X = 0, and also so 
that \V ---t 1 as X --+ 00. (As we wil l  see below in Figure 6, 
this is in fact a real i s tic  representation of the data.) 'Ve also 
choose to replace the exponent 24/1 1 i n  Equation ( 3.7) by I, 
and ignore the denominator IQI2/1I

, for the purpose ( o nly) 
of  i l lustration. (This can be realised by choosing closure 
proportional to INlo-1 N in Equation ( 3. 3) b and the fric tion 
term on the right of  Equation ( 3. 3h to be Q I QII Sf3, with 
et = 1.5, f3 = 2.) We then have to solve 

aN 
\V + 

oX 
= N sgn Q, (3.10) 

where 

Q = w(X -X*), 

and we requirc that 

N --+ 1 as X --+ 00, 

N = NL on X = 0, 

ih = - (1/ + AWX*). 

(3.11) 

( 3 . 1 2 )  

Equation ( 3. 10) describes the variat ion with distance near the 
seal of the dimensionless effective pressure. Since N is con
s trained both by the lake-refilling boundary condit ion and 
by the necessity that i t  match to the far field value, it is neces
sary to choose the water flux into t he lake from the  seal 
region, and hence also the location X* of the divide, in order 
to find a solution. I n  particular, the d ivide is determi ned in 
principle by the lake effective pressure, and i t  i s  cons i s tent 
with the slow variation of N that X* can vary (slowly) with t. 

One finds generally that i t  is necessary that X* > ° 
( th ere is a seal) in order that N does not grow exponentially 
at +00, which would prevent satisfaction of the first condi
tion i n  Equation ( 3. 1 2). The solution i s  then 

N=-I---e + NL+ l+-- e , O<X<X*, 
a -bX ( a ) -x 

b-l b-l 

N = 1 __ a
_ e -bX 

b+l 
' X>X*, (3.13) 

where NL denotes the  dimensionless lake effective pressure, 
as yet unknown. S ince N must be continuous at the divide 
position X*, wc fi nd that its value there, N*, is given by 

N* = 1 __ a_ e - bX ' 
b+l 

= -1 - _a_ e-bX ' + (NL + 1 + _
a

_)e-X' . (3.14) 
b-l b-l 

It follows from this that the lake effective pressure is related 
to the d ivide position X* by 

N = 2 [eX' +_a
_e-

(b-I ) X ' ] _ (1 +_a_) . (3.15) L 
b2 _ 1 b - 1 

For this simplification of the non-l ine ar model Equ ation 
( 3. 7), wc sce that the lake effective pressure NL and the 
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divide effective pressure N* can both be written as  functions 
of the divide location X* ( all quantities being d imension
less). Equivalently, X* is given i n  terms of NL. In particular, 
s ince dNL/dX* = 2e-" N*, i t  fol lows that while N* > 0, X* 
is a monotonically increasing function of NL. Thus Equation 
(3. 12h implies t hat NL decreases slowly in time as the lake 
fil l s  towards the flotation level. 

\ Vc consider that a flood is in i t iated when N reaches zero 
anywhere; when this happens, channel enlargement begins 
to occur, and in practice this  would happen more rapidly 
than in the model due to lift-off of the basal ice. The most 
obvious way i n  which flotation can occur is by having NL 
reach zero, as happened in 1996. 

However, it i s  also conceivable that N reach zero some 
way downstream of the inlet .  The profile of N vs X given 
by Equation (3. 13) is either hump-shaped or monotonically 
decreasing in X < X*, and increasing in X >  X* . As a con
sequence, if flotation is to occur (N reaches zero) down
stream of the inlet, then it must be because N* reaches zero 
while NL is sti l l  posit ive. 

Finally, t here is a possible t hi rd mechanism for flood in
i t iation, and th i s  is if the divide location X* (which migrates 
backwards as the lake fi l ls)  reaches zero while NL and N* 
are positive. If this  happens, t he n  the discharge at the inlet 
becomes posit ive, and the quasi-static assumption used 
above becomes inadmissible. When the inlet d ischarge 
becomes posit ive, the posit ive feedback of the flow rate 
becomes operative, and a flood is initiated. 

The violence of the result ing flood is associated with the 
minimum effective pressure w hich is reached. This is 
because if notation occurs, t he n  the glacier wil l  l ift off its 
bed, enabling much more rapid enlargement of channel 
area than is catered for in t h e  Nye model. Equivalently, 
when the flood i s  initiated below flotation, the onset will be 
more gradual. 

Thus, as t he lake refills, a flood will be init iated when 
either the lake effective pressure NL, the water-divide effec
t ive pressure N* or the seal location X* reaches zero. Since 
NL and N* are monotonical ly  increasing funct ions of X*, 
the various possibilities can be d istinguished s imply by find
ing where the graphs of these functions intercept the  X* axis. 

Note from E quation (3.14) t h at N* increases monotoni
cally with X*, and thus as NL decreases according to Equa
t ion (3.12), so also do N* and X*.  Now if X* = 0 i n  Equation 
(3. 15), NL = 1 - [a/(b + 1 ) ] ,  and this is positive if a < b + 1. 
That is to say, as X* and NL decrease, then t he divide 
location X* reaches zero whi le  t he lake effective pressure 
NL is stil l  positive, if a < b + 1 .  Furthermore, Equation 
(3. 14) indicates t hat also N* remains positive in t his case. 
\Ne call a seal of this type a "we ak" seal, and it corresponds 

It is tempting to enquire whether other, more realistic, si m
plifications can be made to compute the critical value of NL 
when X* = O. At this crit ical value, the problem to solve is 
Equation (3.7) and Equation (3.8) with X* = 0, and this 
can be written in the form \[! + Nx = p,N2 ( N  / xt, where 
(J = 2/ 1 1  i s  small, and p, = w-a � 3.3, together with 
Nx -> 0 as X -> CXl.The cri t ical value of NL at seal failure 
is then given by N(O) . If we put (J = 0, then the resulting 
Riccati equation admits an exact solution, and one finds 
that the critical value of NL is 1 /  Vii � 0.55. 
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to  the normal Grimsvotn flood init iation. The flood i s  in
i t i ated because the r is ing lake level c auses the posit ion of 
the water divide to m igrate back towards the lake, reach ing 
it whi le the lake level is still below flotation level. 

Conversely, we define (for this s impl i fied linear model ) a 
"st rong" seal to be one for which a > b + 1. In this case, the 
functions NdX* ) and N* (X* ) are both negative when X* = 

0, and since both increase monotonically with X*, the graph 
of each intercepts t he X* axis at a posit ive value. That is to 
say, either NL or N* must reach zero, and hence flotation will 
occur, while X* is  still posit ive, so that the divide is still down
stream from the lake. In fact, i t  is always the case that NL 
reaches zero while N* > 0 if b > 1 . This follows because NL 
i s  a monotonically increasing function of N* (since both in
crease monotonically with X*), and it is straightforward to 
show that when N* = 0, i.e. X* = b-1 In [a/(b + 1 )] ,  then 
NL < O.  

To summarise: we characterise a strong seal ( in the con
text of Equation (3.9) ) as onc with a value of a > b + 1, and 
a weak seal as one with a < b + 1. vVhen the discharge at 
the lake inlet is small ( and negative, or back into the lake) 
then there is a water divide a di mensionless distance X* 
downstream from the  lake inlet. The posit ion of this  d ivide 
varies monotonically with the dimensionless lake effective 
pressure NL ; this relationship arises through the determin
ation of the discharge to the lake ( wh ich is proportional to 
the  downstream d iv ide distance) in terms of the effective 
pressure at the lake and the hydraulically controlled value 
further downstream. For a strong seal, the lake level rises to 
flotation while the  d ivide is still downst ream of the lake, 
while for a weak seal,  the drainage divide slowly migrates 
backwards as the lake refills, and reaches the lake when it 
is s t i l l  below flotat ion. In either case, t he seal is then broken 
and the next flood is i n it iated. 

Thus we see that seal-breaking when NL > 0 is consis
tent with the model, providing the reversed hydraulic gradi
ent is not too large at the inlet. Wit h  t he scale No = 20 bar 
and fai lure normally observed to occur at 6 bar, this suggests 
that  the dimensionless effective pressure NL = 0.3 when 
X* = 0, which corresponds in this  l inearised model to a 
value a � 0.7(b + 1 ) .  Figure 6 shows that in fact Equation 
(3.9) is a good fit to the measured hydraulic gradient, with 

a = b = 4. This gradient was computed from data provided 
by F. S. L. Ng, which in turn were derived from measure
ments reported by Bjornsson (1974, 1988). Measurements of 
ice surface and bedrock elevation along an assumed flowline 
were taken from m aps 3 and 4 of Bjornsson (1988), while in
dependent values of the same quantit ies (at d ifferent 
locations) were taken from figure 14 of Bjornsson (1974). 
These two datasets were concatenated, and the computed 
value of ijJ was calculated, using l inear interpolation for the 
ice surface or bedrock elevation where necessary (since sur
face and bed elevations were not a l l  measured at the same 
locations). The hydraulic gradient, computed as a s imple fi
ni te difference between two adjacent points along the flow
l ine, is then allocated to the point midway between them. 
With a = 4,  the value corresponding to fai lure at 6 bar i s  
b = 4.7, which also f i t s  the data reasonably. There i s  l i ttle 
point being too precious about this ,  in view of both the 
roughness of the data and the gross s implification of Equa
tion (3.7). Essential ly, the theory thus far is entirely consistent 
with observation. t 
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Fig. 6. Thefunction I]I (X) computed via interpolationJrom 
observations if bed and ice surface, and the approximating 
function 1 - 4 exp( -4X) . 

3.3. Nuxnerical xnethod 

We wish to validate the qualitative results by solving Equa
t ions (3.3) numerically, in the following form: 

8S = Q 
(1]1 

+ 
8N) 

_ SN3 
8t 8X 

Q = w[X - X*(t)], 1]1 8N 
_ 

QIQI  
+ 

8X - S8/3 ' 
( 3 . 16) 

together with Equations (3.4) and (3.5). One might surmise 
that since in fact  the glacier snout is at X = 1 /6  � 7, it 
m ight be easier to put N = 0 there. It will become clear that 
this is not so. 

Our time-stepping procedure is this. If we have the 
solution at t ime-step j - 1, we use Equation (3.\6) 1 to estimate 
S at time-step j. Next, we step N at X = 0 forward via Equa
tion (3.4); then we choose X* at step j so that 1]1 = Q I Q I /  S8/3 
at X = AI, which is our end integration point: this forces 
8N /8X = 0 there. Finally, we compute N at step j via quad
rature, satisfying the boundary condition at X = O. This first
order stepping procedure is then i terated using an i mproved 
Euler step for S .  In principle, iteration can be carried on until 
convergence. In practice, a fixed number of correct ive itera
tions ( five for the results shown) is used. 

It is inadvisable to try to shoot for N = 0 at X = 1 /6 be
cause Equation (3.7) has solutions which blow up at finite X. 
Direct numerical solution of Equation (3.\6) with th is bound
ary condition would require a slightly different approach. 

While this approach is designed to understand the dy
namics between floods, it is evident that the same m odel 
should also describe floods. 

3.4. Results 

Some results of solving Equations (3.\6) are shown in Figures 
7-14. It is well k nown that the Nye model has difficulty s imu
lating the 1972 Grimsvotn flood hydrograph ( Spring and 
Hutter, 1981); Bjornsson (1992) showed that Clarke's (1982) 
modified model can provide reasonable fits in some but not 
al l  cases. So we should not be sur prised that realistic values 
of the parameters fail to yield quantitative results consistent 
with observations. One reason for th i s  may be the unrealistic 
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Fig. 7 Solution ifQo ( t )  of Equation (3.16) using w = 0 . 1, 
1/ = 0 . 1 ,  A = 1, a = 4, b = 4.  
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Fig. 8. Solutionfor Nd t) of Equation (3.16) using w = 0 . 1, 
1/ = 0 . 1 ,  A = 1 ,  a = 4, b = 4. 

assumption of a semicircular channel ( Bj ornsson, 1992), and 
we imagine that ( but have not yet examined whether) a 
wide-channel theory wi 11 do much better in this respect .  
The i mportant features here are the qualitative features of 
the results, which we consider to be robust .  

The solutions of Equat ions (3.4) and (3. 16) depend on the  
two parameters w and 1/. These parameters are dimensionless 
measures of the base flow due to subglacial melting, and the  
lake-refil l ing rate, each of  them measured relative to  a typical 
peak flood discharge. Figures 7 and 8 show that at relatively 
high values of w and 1/, the steady drainage state is in fac t  
stable, in contradiction to  the results in Figures 4 and 5 ,  which 
are not controlled by the lake-inlet boundary condition. 
When both parameters are reduced, the steady state becomes 
unstable via a Hopf bifurcation, and Figures 9 and 10 show 
the resulting oscillation. Notice that the m inimum value of  
NL is  negative; there i s  nothing inconsistent with this in theory. 
the m odel applies perfectly well if N < 0 ,  since the ice would 
certainly be pushed back viscously in this case. In practice, 
however, the model is i nappropriate, s ince in reality we 
would expect lateral and forward-propagating hydraulic 
fracture, which would result in much m ore sudden f1oods. 

In our analysis above of the simplified system ( Equa
tions (3. 10-3. 12) ), we surm ised that the c ondition for a weak 
seal was that ( in terms o f  Equation (3.9) ) a was sufficient ly 
small .  Although the ( crudely) fitted values a = b = 4 deter
mine a weak seal for t he linearised problem (Equat ion  
(3. 10) ), this i s  not so for the  non-linear model (Equat ion  
(3. 1 6) ) . However, Figures 1 1  and 12  show that if a = 2 instead, 
then periodic f100ds are initiated when the lake effective 
pressure i s  positive, as  normally observed. 
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b = 4. 
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Fig. 11. NL(t) with w = 0 .0014, lJ = 0.002, A = 5, 
a = 2, b = 4 .  
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Fig. 12. Qo (t) with w = 0.0014, lJ = 0.002, A = 5, 
a = 2,  b = 4 .  
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Fig. 13. Lake iffective pressure. Parameters as for Figure 11, 
but lJ = 0 . 02for 200 < t < 220 . 
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Fig. 14. Flood IrydrograJ)/z. Parameters as for Figure 12, but 
v = 0.02for 200 < t < 220. 

Finally, we observe in Figures 13 and 14 the effect of a 
sudden change in lake-filling rate, such as that following a 
volcanic eruption.  Consulting Figures 1 1  and 12, we see that 
at t = 200, the lake level is about halfway between 
j okulhlaups, and we mimic the effect of the eruption by 
changing v from its "normal" value of 0.002 in Figures 1 1  
and 12, to a value o f  0.02 for 200 < t < 220. The effect o f  this 
change is dramatic. Despite the "normal" flood onset at 
NL � 0.17, the sudden filling causes an abrupt drop of NL 
towards and below zero, and the flood i s  initiated as  the lake 
pressure reaches flotation leveL 

4. CONCLUSIONS 

The Nye-Rothlisberger theory of jokulhlaups gives an ex
t remely successful account of the physics of subglacial floods, 
but in previous renditions it falls short of providing a full  ac
count of them. It is unable to provide a satisfactory fit to 
observed data, a shortcoming which has been associated 
with the likely non-circular shape of the channel ( Bjornsson, 
1992), but one which we do not address in this paper. More 
i mportantly in  the  present context, it has not been used to 
predict (except in  a colloquial way) the cyclic occurrence of 
jokulhlaups, nor t heir normal onset at sub-flotation lake 
pressures; nor can it distinguish a reason why the 1996 flood 
should have been delayed until flotation was reached. 

We offer the following answers to these puzzles t hrough 
an examination of the Nye model. First, as extensively dis
cussed by Bjornsson ( 1976) and Nye ( 1976), the reason there 



is a seal at all is that the  hydraulic gradient W is negative at  
the caldera r im.  In  consequence of this, the simplification 
afforded by the "outer" approximation, wherein the basic 
hydraulic gradient is t aken as constant, as  a consequence of 
which the water !lux Q i s  independent of  downstream dis
tance, cannot apply near the rim. Indeed, th is outer approx
i mation, while it  admits regular floods, allows thei r 
amplitude to grow without bound. Our first result is to show 
that t he model, with the seal region near t he rim described 
consistently by detailed consideration of  t he region near the 
lake where the hydraulic gradient i s  negative, admits a 
steady solution which i s  s table if the lake-refi l l ing and mel t
water inputs are large, but as these parameters are reduced, 
there is  a Hopf bifurcation to a periodic I i mit cycle, i . e. the 
steady state becomes unstable, leading to s table periodic so
lutions. There is no restriction in the model to positive values 
of effective pressures, and the minimum effective pressure is 
posit ive only if the seal is "weak", in the sense that the hy
draulic gradient at the rim is sufficiently small. For a weak 
seal, flood onset occurs when the lake level i s  below flota
tion, and is  caused by the migration of the seal point (which 
demarcates where !low is  towards or away from the lake) 
back towards the lake. 

Conversely, for a "strong" seal, the lake level reaches flo
tation while the seal point i s  still downstream of the margin, 
and in the Nye model the channel begins to force its way 
open by viscously pushing back the ice. In fact,  this is unrea
listic because ifOotation is reached, then in  reality the chan
nel wi l l  enlarge rapidly t hrough lateral hydraulic fracture at 
the bed. Similarly, we expect the resulting !lood to hydro
fracture rapidly downstream much l ike a turbidity current 
( with d ifferent physics), and we thus expect t hat the result
ing !loods will be violent, as seen in 1996, but we do not in
clude t hi s  in our model. Nevertheless, we do see that in a 
simulation of a jokulhlaup following an eruptive fi ll ing of  
the  lake, the  resulting flood i s  significantly more rapid and 
the discharge is larger, even with the relatively weak viscous 
opening of the channel. In addition, rapid lake refi lling can 
easily alter the onset from occurring be low flotation to oc
curring at !lotation. 

Let us t ry to explain in physical terms how the solutions 
of Nye's hydraulic model can behave in t hese two different 
ways, as i l lustrated in Figures 1 1-14. Equat ions (3.16) are es
sential ly equivalent to Nye's original model. They describe, 
respectively, channel opening and closure, the discharge in 
terms of subglacial melt rate and the discharge in terms of 
hydraul ic gradient. The lake-refilling equation, which can 
be writ ten as (3.12h, provides an evolution equation for the 
effective pressure at the lake, which decreases as the lake 
level rises. The existence of a seal, as shown in Figure 3, is 
due to the fact that the (d imensionless) basic hydraulic gradie nt  

W ( Equation (2. 12) ) is negative near the lake. This gradient 
was computed assuming that the water pressure is equal to 
the overburden pressure ( Bjornsson, 1976; Nye, 1976), whereas 
in fact t he effective press ure ( equal to the d ifference between 
them) will be non-zero. However, if the effective pressure 
gradient i s  sufficently smal l, then the basic hydraulic gradi
ent is a good indicator of the !low direction, so that a seal 
point will exist, upstream of which subglacially derived melt
water !lows backwards towards the lake. Far downstream, the 
basic hydraulic gradient is essentially constant (see Fig. 6), 
and the effect ive pressure essentially fol lows Rothlisberger's 
steady drainage characteristic, which has N IX Ql/12 Thus 
even when Q is small bet ween !loods, N will not be too 
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small, and in  the aftermath of  a !lood the lake level i s  low, so 
that the effective pressure is also high at the lake ( as in Fig. 
1 1). Thus, fol lowing a !lood, the  effective pressure is relatively 
uniform, and a seal will exist as described above. 

Now the  lake level starts to rise slowly, and as it does so, 
the effect ive  pressure there drops, causing the  gradient 
aN laX in Equation (3.16) to increase, and thus also the hy
draulic gradient. Remembering that this gradient is nega
tive up-glacier of the seal and positive down-glacier, we see 
that the increasing lake level causes the point of zero hy
draulic gradient ( the seal )  to  migrate up-glacier towards 
the lake. Because of the slow change in lake level, t he chan
nel remains essentially in a balance between o pening and 
closure, which simply determines the channel cross-section. 
There is now a competition between the dropping lake ef
fective pressu re and the backwards-migrati ng seal, asso
ciated with the  increasing hydraulic gradient. I f  the basic 

hydraulic gradient is sufficient ly negative ( a  st rong seal), 
then the lake effective pressure can reach zero before the 
seal reaches the lake; !lotation occurs, and a !lood is in
itiated. For a weak seal, the seal reaches the lake while the 
effective pressure there is s t i l l  positive, and a flood is in
itiated because the channel discharge is no longer controlled 
by the seal, but is related primarily to the cross-section, 
which now begins to grow t hrough the positive feedback op
erative in the  channel-opening term. 

'What i s  the effect on this d iscussion ofa rapid ly refi l l ing 
lake? If t he lake effective pressure changes on a t ime-scale 
similar to that over which the  cross-section adj usts itself 
(days or weeks), then the effective pressure down-glacier 
from the lake will also decrease rapidly, and t his  causes the 
channel-closure rate to decrease more rapidly. Conse
quent ly, t he ehanncl increases more rapidly in size. As long 
as the seal exists, so that the water !lux is control led by ( un
changing) subglacial melt, th i s  will have the effect of redu
cing chan nel friction, and thus the increase of the hydraulic 
gradient wi l l  be slowed down. In turn, this implies that the 
seal will m i grate more slowly up-glacier than usual, and it 
provides a mechanism whereby the seal can aet s trongly if 
!lotation is reached before the  seal reaches the lake. 

We consider that the Nye model provides a robust 
explanation o f  the yarious puzzles associated wi th flood in
itiation. But we acknowledge that the model is i mpaired in 
its ability to capture accurate quantitative data. Therefore, 
the numerical values of such quantities as !lood-cycle period 
and peak discharge are seriously inaccurate using realistic 
values of the  parameters. I t  is no doubt possible to find bet
ter simulations by judiciously tweaking parameters, but 
there is l i t t le point to this exercise. We expect t hat a satisfac
tory quantitative fit will be obtained through the  use of a 
wide-channel model, whose corresponding investigation 
awaits future work. 
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