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We develop a predictive model which has the ability to explain a postulated style
of episodic plate tectonics on Venus, through the periodic occurrence of lithospheric
subduction events. Present-day incipient subduction zones are associated with the
existence of arcuate trenches on the Venusian lithosphere. These trenches resemble
terrestrial subduction zones, and occur at the rim of coronae, uplift features thought
to be due to deep-mantle convective plumes. The model we adopt represents the
lithosphere as the thermal boundary layer which lies above a convective plume. We
assume a temperature-dependent nonlinear viscoelastic rheology, and we assume a
stress-based criterion for plastic yield. In developing this latter criterion, we are led
to a re-interpretation of the strength envelope which is commonly used in analys-
ing lithospheric stress, and we propose that the plastic yield strength has meaning
(and is ¯nite) below the lithosphere, using behaviour in the Earth as our `labora-
tory’ justi¯cation for this view. An inferred yield stress on the Earth is ca. 300 bar
(30 MPa). Our model then shows that a thickening lithosphere becomes progressively
more °uid as the stresses induced by the buoyant convective plume become large.
Failure occurs when the e®ective lithosphere viscosity becomes equal to that of the
underlying mantle. We show that reasonable expected values of yield stress in the
range 100{200 bar (10{20 MPa) for Venusian mantle rocks are consistent within the
framework of the model with radii of coronal trenches in the range 100{1200 km, and
with the approximate time (200{800 Myr) which they may take to develop.
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1. Introduction

Venus is a planet similar in size and, presumably, composition to the Earth, although
it also has striking di®erences. Most notably, a dense CO2 atmosphere causes a
greenhouse e®ect, which keeps the surface temperature at an alarming 750 K. Despite
this, there is (or was) a general expectation that the tectonic behaviour of Venus
should be much like that of Earth.

The solid Earth consists of a refractory mantle of silicate rocks surrounding a
dense iron-rich core (the outer part of which is liquid). This mantle convects because
of its thermal buoyancy. Heating of the mantle is due both to cooling of the core
and to the internal heating caused by radioactive decay of elements such as uranium
and thorium. The motion itself is due to the creep of dislocations within the solid
crystalline rock grains, and the rock thus behaves as an e®ectively viscous material,
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Figure 1. Cartoon of convection in the Earth’ s mantle.

with a viscosity that depends strongly on temperature (being more sticky where it
is cold).

It is this convective motion which drives plate tectonics on the Earth, the `plates’
being the near-rigid segments of the Earth’s surface that move due to the convec-
tion below; their rigidity is due to their relative coolness and consequent very high
viscosity.

Figure 1 shows a cartoon of the convective style on Earth. The surface plates, also
known as the lithosphere, sink into the mantle at subduction zones, where oceanic
trenches exist, and new plate is created at mid-ocean ridges, which correspond to
the upwelling parts of the convective circulation. Because the Rayleigh number of
convection is high, the motion is thermally turbulent, and there are a consequent
number of isolated thermal plumes. These can lead to partial mantle melting and
consequent volcanism, for example at hot spots such as Hawaii or Iceland (which is
also on the Mid-Atlantic Ridge).

The active plate-tectonic style of the Earth is evidenced particularly by its system
of trenches and ridges, and an obvious question to ask is whether the other terrestrial
planets have a similar convective style; the Moon, for example, does not, and its
surface is therefore essentially as old as the Solar System itself.

What of Venus? The Pioneer, Venera, and, more recently, Magellan spacecraft mis-
sions sent back an enormous quantity of data, which revealed that Venus, although
similar to Earth, has a very di®erent tectonic history. Plate tectonics is apparently
absent (Solomon et al . 1992), but impact crater distribution indicates that the di®er-
ent parts of the surface of the planet are of similar age, variously reckoned as being
ca. 500{1000 Myr (Schaber et al . 1992; Strom et al . 1994; Herrick 1994).

Nevertheless, Venus is a tectonically and convectively alive planet. There is much
evidence of past volcanism, and there are numerous topographic features that indi-
cate an actively convecting interior. Although the hypsometry of the planet is uni-
modal (unlike the bimodal continental/oceanic topography of Earth, indicating plate
tectonics), there are highlands and lowlands; the latter are often taken to consist
partly of large °ood plains, while the highlands may be indicative of convective
mantle upwellings. There are a large number of volcanic features, for example, dyke
swarms as well as volcanoes, and channels, which may be the paths of extremely long
lava °ows. There are a large number of tectonic features indicating various kinds of
tectonic deformation: tessera and wrinkle ridges are ridged features associated with
tectonic deformation. Chasmata are long, linear to arcuate features consisting of deep
troughs adjoining elevated ridges, while coronae are quasi-circular uplift features
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Figure 2. A cartoon of a lithosphere section through a Venusian corona, after Sandwell & Schu-
bert (1992). The surface looks much like that of a bubbling pan of milk, due to the arrival
of a thermal plume from below. The diagram indicates the possibility of lithospheric collapse
following plume impingement.

which may represent the surface expression of Venusian mantle plumes (Solomon &
Head 1991; Musser & Squyres 1997) below a stagnant lithosphere. They consist of a
central plateau surrounded by a raised rim and a moat. They have been described and
visualized by Squyres et al . (1992), and classi¯ed by DeLaughter & Jurdy (1999). A
schematic section through a typical corona is indicated in ¯gure 2. Reviews of some
of the geology of Venus and descriptions of its inferred structure are provided by
Philips & Hansen (1994) and Nimmo & McKenzie (1998).

We thus have a conundrum: Venus is actively convecting, but its surface indicates
that the lithosphere is stagnant; on the other hand, its apparently uniform age of
500 Myr suggests that this has not always been so. In order to explain this, Turcotte
(1993) suggested that convection in Venus’s mantle might be episodic in nature:
a long period of stagnant lid convection (Solomatov & Moresi 1996), in which the
lithosphere thickens conductively, is interrupted by a catastrophic failure of the lid
followed by overturning of the mantle, before resumption of the stagnant lid-type
convection. The existence of subduction trench-like arcuate features at the rim of
coronae (Sandwell & Schubert 1992) is then a possible indication that the Venusian
lithosphere is once again becoming unstable.

Coronae have typical radii in the range 100{300 km (DeLaughter & Jurdy 1999).
If we suppose that episodic subduction can occur, and that it is initiated after the
impingement of a plume at the base of the lithosphere, we therefore need to seek a
mechanism that can cause failure at distances of a typical order of 200 km from a
central plume, at a time of the order of 500 Myr after a previous overturning. The
present paper is concerned with providing such a model.

The structure of the paper is as follows. In x 2, we discuss the physical ingredients
of our model. In particular, we address the di±culty within mantle-convection stud-
ies of describing subduction, and how this may be resolved by using a `visco-plastic’
rheology for mantle rocks, and we then extensively discuss the reasons such a rheol-
ogy may be appropriate, and how it should be formulated. Section 3 then presents
the mathematical model to be solved. There is a detailed mathematical analysis of
this model, which occupies Appendix A, and which leads to a simpli¯cation of the
model, which describes the evolution of the lithosphere by a free-boundary problem,
following the arrival beneath it of a mantle plume. The numerical solution of this
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simpli¯ed model is described in x 4 (the details of the numerical method being rele-
gated to Appendix B), and a suite of numerical results are obtained. These describe
the point and time of lithospheric failure (and consequent subduction) in terms of
the prescribed physical parameters of the model. In x 5, these results are discussed
at length, and the conclusions of the study follow in x 6.

2. A physical model

(a) The initiation of subduction

The problem of understanding how subduction occurs has been addressed by many
authors (Turcotte et al . 1977; McKenzie 1977; Cloetingh et al . 1982, 1989; Mueller &
Phillips 1991; Shemenda 1992, Fowler 1993; Kemp & Stevenson 1996), but is by no
means conclusively resolved. The basic problem lies with the strength and rigidity of
a relatively cold lithosphere, and most authors favour a mechanism for subduction
consisting of failure of one type or another: either by formation of a thrust fault,
or through (ductile) failure of the lithosphere. In particular, the latter mechanism is
consistent with the concept of a `plastic hinge’ (Turcotte & Schubert 1982), which
can develop when the elastic core of the lithosphere disappears.

As Mueller & Phillips (1991) remark, the problem of initiating subduction on a
non-subducting planet such as Venus may be altogether di®erent (and more di±cult)
than doing so on the Earth, where relative plate motions can allow mechanisms such
as those persuasively studied by Shemenda (1992) to operate. In this paper we wish to
develop a model previously suggested by Fowler (1993) and Fowler & O’Brien (1996),
and numerically validated by Moresi & Solomatov (1995), which allows plastic failure
of the cold lithosphere through the operation of the stresses which are generated by
the underlying convection. In particular, no pre-existing convergent plate motion,
such as envisaged by McKenzie (1977), is necessary for this mechanism to occur.

Our model is based on the following concept of variable viscosity convection. Man-
tle rocks such as olivine have an e®ective viscosity which varies very strongly with
temperature. High-Rayleigh-number convection for such materials normally occurs as
a rapid °ow beneath a thick stagnant lid (Nataf & Richter 1982; Moresi & Solomatov
1995), which exists because the cold rocks towards the surface are extremely viscous.
The existence of such a thick, cold, stagnant lid causes large buoyant stresses to be
generated in the lid, and these can be of the order of kilobars, which is comparable
to the breaking strength of crustal rocks.

We have previously suggested (Fowler & O’Brien 1996) that lithospheric failure
due to such high stresses might occur in the time-dependent mode envisaged for
Venus. Speci¯cally, we analysed variable (Newtonian) viscosity convection in a two-
dimensional Cartesian geometry with horizontal coordinate x and vertical (down-
wards) depth coordinate z, and showed that, as time develops, a thick, stagnant lid
z = s(x; t) grows downwards, but that a plastically failing zone 0 < z < q(x; t) may
also occur, whose thickness grows more rapidly. At some critical time and at some
distance from the upwelling, the plastic zone reaches the base of the lithospheric lid
(see ¯gure 3), and at this value of x the e®ective viscosity of the whole vertical depth
of the lithosphere is reduced to that of the convecting mantle below, and subduction
is hypothesized to begin.

Our aim in this paper is to examine this hypothesis for the onset of subduction in
the context of the suggestion by Sandwell & Schubert (1992) (see also Schubert et
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Figure 3. The way in which the base of the plastic zone at z = q reaches the lithosphere base at
z = s, causing failure and subduction at the point of tangency. This cartoon is appropriate for
a Newtonian rheology, but we shall ¯nd later that, for a non-Newtonian rheology, failure occurs
before the plastic zone reaches the base of the lithosphere.

al . (1994)) that arcuate features on certain Venusian coronae resemble subduction
trenches on the Earth. We thus envisage a thermal plume in the rapidly convecting
Venusian mantle which drives a radial °ow outward from the corona beneath the
lithosphere. This °ow induces large stresses, and we seek to study whether these
stresses are su±cient to cause plastic failure in the way suggested by Fowler &
O’Brien. Apart from the posing of this problem in the cylindrical geometry which
is relevant to the sub-lithospheric °ow outwards from a plume, other developments
of the earlier theory are that: we include viscoelasticity in the model; we treat the
viscoelastic{plastic transition more realistically than in our previous paper; we con-
sider the e®ect of radioactive heating in the model; and we allow for stress dependence
in the viscous part of the rheology. In particular, the stress dependence of the °ow
law has a dramatic quantitative e®ect on the criterion for failure, and in fact failure
will occur before the plastic zone reaches the base of the lithosphere: this is because
the elevated stresses in the lithosphere cause a marked reduction of the viscosity
below that at the same temperature for a Newtonian °uid.

(b) Rheology of the mantle

Viscous °ow of the mantle becomes e®ective at temperatures greater than
ca. 1000 K, and is generally assumed to be given by a creep law in the form

_" = A½ n exp[ ¡ E ¤ =RT ] (2.1)

(Kirby & Kronenberg 1987), where n º 3:5 for dislocation creep, T is the tempera-
ture, R is the gas constant, and E ¤ is the activation energy, usually (e.g. for olivine)
a large quantity, so that the strain rate _" varies very strongly with temperature.
The variation with stress ½ is signi¯cant, though less pronounced. Although creep
experiments agree on this form of the viscous rheology, it needs to be realized that
applying it to the Earth requires an extrapolation in strain rates of many orders of
magnitude. One needs to be wary of this, particularly at lower temperatures, where
long-term stress weakening may cause higher rates of °ow than (2.1) would suggest.
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In particular, several authors (e.g. Kirby 1977; Tsenn & Carter 1987) have suggested
that, in e®ect, n should increase at higher stresses or lower temperatures.

At temperatures below 700{800 K, and for short-time-scale phenomena (e.g. seis-
mic waves), the mantle behaves elastically, and it is often convenient to model the
combined viscoelastic behaviour by the Maxwell model, which is most simply repre-
sented by the equation

_" =
½

2 ²
+

_½
E M

; (2.2)

where the overdot denotes a time derivative, ² is the e®ective viscosity

² =
1

2A½ n¡1
exp

µ
¡ E ¤

RT

¶
; (2.3)

and E M is an appropriate elasticity modulus (proper tensorial forms are described
below). Inspecting (2.2), we see that there is an intrinsic Maxwell time

tM =
2 ²

E M
; (2.4)

and that for t ½ tM , the behaviour is elastic, but for t ¾ t M , it is viscous.
Further, t M = t M ( ½ ; T ) depends (through ² ) on stress and temperature, and in

particular is a strong function of temperature: in the mantle, this implies that the
region where the jump between viscous and elastic behaviour occurs is fairly sharp.

(c) Failure

Crystalline mantle rocks fail if subjected to su±ciently high tensile or compressive
stresses. At low con¯ning pressures, such failure is said to be brittle and occurs by
the formation of cracks. It is usually assumed in the mantle that brittle failure is
described by Byerlee’s law (Byerlee 1978; Brace & Kohlstedt 1980), although Byerlee
was in fact concerned with rock friction. Byerlee’s law is essentially of the form

½ f = Kp; (2.5)

where p is the lithospheric pressure, and ½ f is the failure stress; the number K ¹ 1
for tensile failure. (A similar failure criterion holds for compressive failure with a
larger value of K.) Since the lithostatic pressure gradient in the Earth or Venus is
ca. 0.3 kbar km¡1, Byerlee’s law suggests a failure stress of ca. 10 kbar at a depth of
30 km. In fact, other mechanisms become operative at such depths.

Brittle failure is associated with the formation and coalescence of microcracks
(Evans et al . 1990), but at higher temperatures, plasticity prevents coalescence and,
at higher temperatures still, microcracking does not occur. Instead, strain/stress tests
(at a ¯xed strain rate) indicate that the strain " increases with stress ½ until ductile
failure occurs at the yield stress ½ d . Essentially, the strain then continues to increase
without bound and without further increase in stress. The term ductile failure in this
case refers to the onset of viscous creep behaviour, and can be described in terms
of the Maxwell model of (2.2): at a constant strain rate _", the solution of (2.2) (for
simplicity we use n = 1 for illustration) is

½ = ½ d

·
1 ¡ exp

½
¡ E M

"

½ d

¾¸
; (2.6)
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where the ductile yield stress is just the viscous stress ½ d = 2 ² _". In general, the
ductile yield stress depends strongly on temperature, and also on the deformational
time-scale _"¡1.

In fact, it is somewhat confusing to describe ½ d above as a yield stress. The confu-
sion is enhanced by the evident fact that laboratory experiments at constant strain
rate will yield stress/strain formulae similar to (2.6) whether viscous creep or plastic
failure is occurring.

It is also di±cult to extrapolate laboratory experimental results to high temper-
atures and pressures (Karato & Wu 1993), and in particular, it is hazardous to do
so in lithospheric conditions, where the corresponding strain rates are much smaller
than can be measured. However, the Earth itself acts as a laboratory which can guide
us in assessing rheological behaviour, in three separate ways.

There are three ways to describe the rheology of continua: as viscous °uids, as
elastic solids, or as plastic materials. These descriptions can be combined, as in
viscoelastic °uids, or elastic-plastic solids. We discuss some of these descriptions
below. The ¯rst point to make is that deformation in the lithosphere is accompanied
by the formation of fractures, for example, those which accompany earthquake slip on
major transform faults, such as the San Andreas fault, or intraplate fracture zones.
It is evident from this fact that a viscous or an elastic (or viscoelastic) rheology is not
wholly appropriate. The presence of such features suggests that at low temperatures
and elevated stresses, continuous (on a geological time-scale) deformation occurs via
stick{slip motion, for which the natural model is that of a plastic material with a
yield stress. In common with classical models for such materials, it is natural to
propose that deformation at lower stresses is described by a viscoelastic rheology.

Secondly, an estimate for the likely magnitude of such a yield stress is provided
by the observations of deep earthquakes in the Benio® zones of subducting slabs. If
a mean temperature di®erence of ¢T exists across a subducting slab of thickness of
thickness ds , then an estimate for the yield stress ½ c is

½ c = 1
2
¬ » agd s ¢T (2.7)

(the factor of two is used because the stress is supported on both sides), where ¬
is the thermal expansion coe±cient, » a is the density, and g is the acceleration due
to gravity. An upper limit is provided by a surface lithosphere thickness of 100 km,
and a mean temperature di®erence from surface to asthenosphere (averaged across
the lithosphere) of 600 K. If we take ¬ = 3 £ 10¡5 K¡1, » a = 3:3 £ 103 kg m¡3 and
g = 10 m s¡2, then this suggests ½ c . 300 bar. An independent lower bound can be
obtained through observed stress drops in earthquakes. Typically, these are of similar
magnitude (Henry et al . 2000). Independent estimates of the state of the stress in
the lithosphere (England & Molnar 1991; Von Herzen et al . 2001) are also in the
range 250{400 bar.

Thirdly, direct measurements of continental collision and orogeny (England &
Molnar 1997; Davies et al . 1997) are consistent with viscous lithospheric °ow with
viscosities of the order of 1022 Pa s. This is much lower than any experimentally
extrapolated continuous °ow law would suggest at low temperatures, even at elevated
stresses, but is consistent with the application of a visco-plastic °ow law, as we
suggest here.

If such stress induced failure controls the long-term °uidity of the lithosphere, then
it is likely that the yield envelope (discussed below) constructed from the brittle and
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ductile yield curves overestimates the strength at depth (Karato & Wong 1995), at
least over long time-scales. The implication is that the Byerlee law, which may be
appropriate for short time-scale strength estimates at shallow depths, is inapplicable
to the mantle-convection problem under discussion.

(d ) Elastic{perfectly plastic materials

Plastic failure (in metals, for example) is commonly associated with the attain-
ment of a ¯xed critical value of the stress, determined for example by the Tresca or
Von Mises yield criterion. Such perfectly plastic materials can be interpreted in terms
of viscous creep laws by supposing that the viscous creep law _" = f( ½ ) also saturates
at a value ½ = ½ c, the perfectly plastic yield stress: thus _" = ½ =2 ² for ½ < ½ c, and
_" = ½ c=2 ² c for ½ = ½ c. Here ² = ² c when ½ = ½ c; a rigid-plastic medium would be
one for which _" = 0 for ½ < ½ c.

Although we can interpret elastic{plastic behaviour in terms of a viscoelastic law,
it is not obvious that this is consistent with the classical treatment of such materials.
For purely elastic deformations, the strain increment in tensor form is

d"e
ij =

d ½ ij

2 ·
+

(1 ¡ 2¼ )
E

d ¼ kk ¯ ij ; (2.8)

where the superscript `e’ refers to elastic deformation, the summation convention is
used, ¯ ij is the Kronecker delta, ¼ is Poisson’s ratio, · is the shear modulus, E is
Young’s modulus, ¼ ij is the stress tensor and ½ ij = ¼ ij ¡ 1

3
¼ kk ¯ ij is the deviatoric

stress.
In an ideal plastic material (Hill 1950), we suppose that beyond failure the strain

is the sum of an elastic increment and a plastic increment d"p
ij , which is assumed

parallel to the deviatoric stress (so there is no plastic volume change); thus we have
the Prandtl{Reuss equations

d"ij = ½ ij d « + d"e
ij ; (2.9)

where « is a Lagrange multiplier, which is determined by the additional yield crite-
rion. For example, the Von Mises criterion constrains the stress to lie on the hyper-
surface

½ ij ½ ij = 2 ½ 2
c : (2.10)

How does this model relate to the Maxwell model? In incremental, tensorial form,
we would write (2.2) (noting (2.8)) as

d"ij =
½ ij

2 ²
dt + d"e

ij ; (2.11)

and we see that in conditions where a strain rate is de¯ned, the two models are
identical, with d « = dt=2 ² .

The above discussion gives us some con¯dence that a Maxwell-type model can be
used to describe both viscous and elastic behaviour and also, if necessary, Von Mises-
type yield (if the stresses are materially bounded). In the mantle, however, rock-
deformation experiments (Goetze & Evans 1979) apparently indicate that creep
continues to very high stresses: (2.1) applies for ½ < 2000 bar, and beyond this _"
increases more rapidly, but a limiting yield stress does not seem to speci¯cally occur.

Proc. R. Soc. Lond. A (2003)



Lithospheric failure on Venus 2671

st
re

ss
 (

ba
r)

depth (km)

t

t

c

v

8000

4000

6000

10000

0

2000

10 20 30 40 50

Figure 4. Brittle and ductile yield stresses ( ½ c), calculated using parameter values in the text, for
a representative Venusian lithosphere temperature. Also shown is a representative lithospheric
shear stress ( ½ v ) calculated from results in Fowler (1985) (for a purely viscous mantle).

As we have discussed above, there are di±culties in distinguishing between creep and
failure in constant-strain-rate tests, and also in extrapolating such results to mantle
conditions. In this paper, we will suppose that ductile failure does occur (as opposed
to ductile yield, i.e. creep), and that the failure criterion is represented by a relation
of Von Mises type. This suggestion is not new and has been made before (Hobbs &
Ord 1988).

(e) The yield envelope

(Plastic) failure in the Earth is often supposed to be brittle (described by Byerlee’s
law) or ductile, the latter being de¯ned by the stress at which the (sharp) switchover
between viscous and elastic behaviour occurs in the lithosphere. From (2.1) and (2.2),
this is de¯ned (for a power-law rheology) by

A½ n exp
·
¡ E ¤

RT

¸
=

½

E M td

; (2.12)

where the deformational time-scale t d = _"¡1 is prescribed. For n > 1, (2.12) de¯nes a
ductile yield envelope ½ = ½ d (T; _") as shown in ¯gure 4. Since ½ d / exp[E ¤ =(n ¡ 1)RT ]
and T increases with depth and thus pressure, ½ d is a (rapidly) decreasing function
of depth. On the other hand, the brittle yield stress ½ f increases with depth, more or
less linearly, and this gives the familiar brittle{ductile failure envelope in ¯gure 4.

The interpretation of these curves is as follows: if ½ > ½ f, brittle yield occurs, while
if ½ > ½ d the behaviour is essentially viscous. For ½ < ½ f and ½ < ½ d , the material is
elastic. Fowler (1985) showed that in the viscous lid of a convecting mantle of strongly
temperature-dependent viscosity, very high tensile stresses develop, as schematically
shown in ¯gure 4. If we suppose that these stresses also develop in the equivalent
viscoelastic mantle, then the implication for the lithosphere is that, in practice, there
would be an elastic core lying below a fractured layer (subject to brittle failure) and
above a viscously creeping mantle.
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2672 A. C. Fowler and S. B. G. O’Brien

There is a logical inconsistency in the interpretation of the ductile yield curve
in ¯gure 4, in that it assumes a prescribed value of the time-scale (here 1016 s),
whereas in fact the strain rate depends on the viscosity, and decreases rapidly with
decreasing temperature. We consider that a better approach to providing a rhe-
ological description of the lithosphere is to couple the viscoelastic model described
above with a plastic failure stress, which describes long-term continuous deformation
through short-term occasional slip events (earthquakes). We call the resulting yield
envelope the `deformational yield envelope’, to distinguish it from the brittle{ductile
yield envelope portrayed in ¯gure 4.

It is this situation that we attempt to describe in this paper. We anticipate the
existence of a failed zone at the surface, and perhaps an elastic core beneath it. Total
lithospheric failure is then deemed to occur if and when the elastic core shrinks to
zero, and if the resultant e®ective viscosity of the lithosphere becomes comparable
to that of the underlying mantle. (The reason for this second constraint is that, even
if the elastic core disappears, the viscous lid will remain immobile if it is viscous
enough.) In the application of the model to Venus, we ¯nd that the elevated surface
temperature implies that the elastic core may not actually be present (if we consider
only long time-scale deformation).

(f ) Modelling the lithosphere

Modelling elastic{plastic behaviour on the Earth is complicated by the existence of
the weak crust, which has its own (deformational) yield envelope. This complication
may be unnecessary on Venus, where the lack of water may imply that the crust is
relatively strong (Mackwell et al . 1998). At any rate, we will con¯ne our attention to
the assumption of a single lithospheric constituent with a single deformational yield
envelope.

We anticipate a zone of failure at the surface. We suppose that the shear stress is
then pinned to the yield value, and we suppose that strains are parallel to stresses;
that is, we model the failure zone as a perfectly plastic material with a Von Mises
or Tresca yield criterion.

Suppose there is an underlying elastic core. The failed zone is then e®ectively elas-
tic, with an unknown e®ective shear modulus which is determined by the require-
ment that the stress is equal to the failure value. We might model the ductile yield
line at the base of the elastic core as a sharp boundary between viscous and elas-
tic behaviours, so that the relevant boundary condition on the viscous lithosphere
beneath would be a no-slip condition. Since the stresses in the underlying viscous lid
are still high, it is also quite possible that an elastic core does not exist. On Venus,
this is in fact quite likely, because of the high surface temperature. In that case, the
failed region also behaves e®ectively viscously, and our model is then essentially that
which we used before (Fowler & O’Brien 1996).

To summarize the above discussion: the simplest, most appropriate rheology that
we can use to describe the behaviour of the lithosphere throughout its thickness
is that of a Maxwell viscoelastic material having a yield surface of Tresca type.
Two possible lithospheric zones can then occur: a brittle surface zone, and a ductile
asthenosphere, separated (or not) by an elastic core. Because of the elevated temper-
atures on Venus, we make a simplifying assumption that the elastic core is absent,
and we can check a posteriori that this is a reasonable assumption. The e®ective
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Figure 5. Geometry of the model ° ow.

rheology is then in fact viscoplastic, in the sense that we de¯ned earlier (Fowler
& O’Brien 1996). Nevertheless, lithospheric failure requires a further condition to
occur, namely that the e®ective viscosity in the failure zone decrease to the ambient
asthenospheric value. This is in line with our previous discussion.

3. Mathematical model

We consider slow (that is, high Prandtl number) convection of the Venusian mantle.
We model the rheology of the mantle by a strongly temperature-dependent visco-
elastic Maxwell material, as described in x 2. Speci¯cally, we anticipate that the
elastic term of this model will only be of signi¯cance in the (stagnant) lithosphere,
where strains and strain rates are small, and in consequence we can avoid the rigours
of frame-indi®erent material derivatives (Fowler 1997, p. 111), and assume a tensorial
constitutive law of the form (from (2.8) and (2.11))

½ ij = 2 ²

·
_"ij ¡ 1

2 ·

@ ½ ij

@t
+

(1 ¡ 2¼ )
3E

@p

@t
¯ ij

¸
; (3.1)

where
1
2 ²

= A½ n¡1 exp
·
¡ E ¤

RT

¸
; (3.2)

² is the shear viscosity, E is Young’s modulus, · is the shear modulus and ¼ is Pois-
son’s ratio. We will also suppose that a yield stress exists, beyond which either the
longitudinal stress or the second stress invariant cannot be taken. The ¯rst of these
corresponds to the Tresca criterion, the second is Von Mises’s criterion. As relent-
lessly discussed in x 2, a separate explicit description of deformation on the plastic
yield envelope is not necessary, as this is automatically included in the viscoelastic
rheology.

We now consider a cylindrically symmetric °ow centred at a mantle plume. We
take coordinates z downwards and r radially outwards, and corresponding velocity
components are w and u; the geometry is that of ¯gure 5 (with r replacing x). In
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component form, the Maxwell rheology (3.1) is

½ rr = 2 ²

·
@u

@r
¡ 1

2 ·

@ ½ rr

@t
+

(1 ¡ 2 ¼ )
3E

@p

@t

¸
;

½ zz = 2 ²

·
@w

@z
¡ 1

2 ·

@ ½ zz

@t
+

(1 ¡ 2 ¼ )
3E

@p

@t

¸
;

½ rz = ²

·
@u

@z
+

@w

@r
¡ 1

2 ·

@ ½ rz

@t

¸
;

9
>>>>>>>>=

>>>>>>>>;

(3.3)

with the deviatoric hoop stress being ½ ³ ³ = ¡ ( ½ rr + ½ zz). The Boussinesq equations
for the velocity ¯eld are then

1
r

@

@r
(ru) +

@w

@z
= 0;

@p

@r
=

1
r

@

@r
(r½ rr) +

@½ rz

@z
+

½ rr + ½ zz

r
;

@p

@z
=

1
r

@

@r
(r½ rz) +

@½ zz

@z
+ » a[1 ¡ ¬ (T ¡ Ta)]g;

9
>>>>>>=

>>>>>>;

(3.4)

where we take the gravitational acceleration g to be constant, and suppose the mantle
density is » = » a[1 ¡ ¬ (T ¡ Ta)]; here, » a is a reference value at temperature Ta, which
we shall take to be the value below the lithosphere, and ¬ is the thermal expansion
coe±cient, assumed constant. The viscosity ² in (3.3) is given by (2.3), where the
second stress invariant 2 ½ 2 is de¯ned by

2 ½ 2 = 2 ½ 2
rz + ½ 2

rr + ½ 2
zz + ( ½ rr + ½ zz)2: (3.5)

Finally, the temperature T satis¯es

@T

@t
+ u

@T

@r
+ w

@T

@z
= µr2T + Q; (3.6)

where µ is the thermal di®usivity, assumed constant, and Q is the volumetric heat
release due to radioactive decay processes.

(a) Boundary conditions

We visualize a situation where these equations describe the lithospheric dynamics
above an actively convecting mantle, but where the radial °ow is generated by the
arrival of a mantle plume. Below the lithosphere, it is appropriate for T to tend to Ta,
a constant, while the deviatoric stresses become small relative to their lithospheric
values: in particular, we can e®ectively prescribe ½ rz ! 0 below the lithosphere.

At the surface z = 0, we prescribe the surface temperature T = Ts , and also
½ rz = 0, although in line with our previous discussion, we do in fact anticipate the
existence of a failure zone 0 < z < q(r; t) in which a failure criterion of Von Mises
type would imply

½ = ½ c; (3.7)

where ½ c is the yield stress. We will take ½ c as constant, but it is simple to allow
it to depend on depth, for example. Below this, we assume an e®ectively viscous
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stagnant lithosphere q < z < s(r; t) (the assumption will be validated if the time
derivative terms in (3.3) are negligible). At z = s, there is a thin delamination
layer, which couples the sticky lid to the mobile asthenosphere, and through which
the temperature gradient changes sharply. This description is equivalent to that of
Fowler (1993) and Fowler & O’Brien (1996).

(b) Model simpli¯cation

A detailed analysis of this problem is presented in Appendix A. There we show
that a suitably non-dimensionalized version of the model admits various asymptotic
simpli¯cations, and in particular, we show that the thermal structure of the litho-
sphere and its depth is determined from the following set of equations, in which the
variables and parameters are dimensionless.

The lithospheric temperature satis¯es (A 27), that is

Tt = Tzz + h;

T = T0 on z = 0;

T = 1; Tz = ¡ on z = s:

9
>=

>;
(3.8)

Note that ¡ is not known, but that if s is determined, then ¡ can be found; thus
¡ is functionally dependent on s. The unknown lithosphere base z = s(r; t) is then
solved from the delamination layer equation (A 36),

!3

µ
rs0

¡ 3

¯̄
¯̄s0

¡

¯̄
¯̄
n¡1¶0

= Bnr¡ ; (3.9)

where Bn is shown in ¯gure 14; (3.9) is e®ectively an extra boundary condition for
the free boundary s(r; t). The boundary conditions for (3.9) are discussed in the
following section. Finally, the plastic lid base (the ductile{brittle transition layer) is
at z = q(r; t), computed from (A 82):

2(r1=2q)0 = ¡ r1=2

C

Z s

0

zTr dz: (3.10)

This equation suggests that q grows roughly like s2, and thus will eventually `catch
up’ with s; as q=s increases, the e®ective viscosity of the lithosphere progressively
decreases, and our object is to compute when it is su±ciently weak that it will sink
into the mantle. The parameters h, !, Bn and C are prescribed in Appendix A,
speci¯cally in (A 14), (A 18), (A 40) and (A 59).

4. Plume dynamics and lithosphere failure

(a) Boundary conditions

In order to solve (3.8) with (3.9), we require boundary conditions to be speci¯ed
for s. These involve a prescription of how the mantle plume, which we suppose is
emplaced at r = 0, a®ects (and indeed causes) the °ow. First we note that there is a
perfectly valid solution if ¡ = 0, when s = s(t), and (3.8) is analogous to a (Crank{
Gupta type) free-boundary problem. This corresponds to a freely growing conductive

Proc. R. Soc. Lond. A (2003)



2676 A. C. Fowler and S. B. G. O’Brien

lithosphere, without convection beneath. This eventually becomes unstable to a large-
scale circulatory °ow, but we imagine that convective instability of the hot lower
boundary, and subsequent plume development, will be more rapid.

One boundary condition follows from consideration of (A 33), which indicates that
the stream function ª in the delamination layer is proportional to rs0n=¡ n + 2 (assum-
ing s0 > 0, ¡ > 0 as we subsequently ¯nd), and in order that ª ! 0 as r ! 0 as we
require, we must specify the stronger condition

sr = 0 at r = 0; (4.1)

providing ¡ is ¯nite at r = 0 (which will be the case if s > 0 there).
The second condition that we apply is to specify s at r = 0:

s = s0(t) at r = 0: (4.2)

Imagine that a cooling lithosphere grows (uniformly) from an overturning at an ear-
lier time t = ¡ t0. At time t = 0 (when s = s00), a plume head arrives below the
lithosphere, at r = 0. The plume delivers a heat °ux to the lithosphere, which we
might characterize by prescribing ¡ at r = 0, and (we suppose) it causes a corona to
form, which we might describe by prescribing the uplift at r = 0. Clearly, prescrip-
tion of ¡ in (3.8) at r = 0 allows the determination of s = s0 there, and vice versa.
Therefore, the e®ect of the plume can equally well be described by prescribing s = s0

at r = 0. This is actually preferable, because the uplift result (A 64) can be used to
infer an estimate for s0 based on observations of actual coronal plateau elevations. In
(A 26), we have ¬ Tad º 5 km. For a typical plateau elevation of h s = 2 km, this indi-
cates ¢ s ¡ ¢ 1

s º 0:4 (where ¢ 1
s is the uplift far from the plume) and if we suppose

a linear temperature pro¯le, so that (A 64) gives ¢ s ¡ ¢ 1
s = 1

2 (1 ¡ T0)(s00 ¡ s0),
then a plume indentation of magnitude

s00 ¡ s0 º 2h s

¬ (Ta ¡ T s )d
(4.3)

is indicated and this is about 1.4 for h s = 2 km. Evidently, plumes can cause serious
indentation of the thermal lithosphere. An alternative interpretation is that plume
delivery halts growth of the lithosphere locally, so that uplift is caused as the litho-
sphere away from the plume head continues to grow.

(b) Failure

The numerical method of solution of (3.8) and (3.9) is described in Appendix B; it
yields the functions T (z; r; t), s(r; t) and q(r; t). The latter is computed, using (3.10),
in the form

q =
1

2Cr1=2

Z r

0

r1=2

·
s2

½
1
2

¡
Z 1

0

² T d ²

¾¸0

dr: (4.4)

Near r = 0, (B 12) implies

s º s0 +
­ ¡ 0n

n + 1

µ
¡ 3

0

2

¶1=n

r1+ (1=n); (4.5)

while from (3.10) we have that

q = O(r(n+ 1)=n): (4.6)
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Therefore, q < s for small r, and also (3.10) implies that q = 0 at t = 0 (since Tr = 0
then). Using a linear interpolation between grid points, we can therefore compute

Tq(r; t) = T (q(r; t); r; t); (4.7)

and Tq = T0 for r = 0 and t = 0. Failure is deemed to occur when the e®ective
viscosity at z = q becomes equal to that at z = s, which is ² = O(1). Equating the
right-hand side of (A 74) to unity de¯nes a critical value of Tq as

Tq =
µ

1 + 2(n ¡ 1)" ln
1
"

+ " ln
·

2 ¸ 2jU jT 0
q

CT 2
q

¸¶¡1

; (4.8)

and, denoting this critical value as Tc, we may approximate it as

Tc =
1

1 + 2(n ¡ 1)" ln(1=")
: (4.9)

For values n = 3:5 and " = 0:027, Tc º 0:67. Since for small h, T approaches a linear
pro¯le (in fact, quite rapidly), we see that failure will occur when, approximately,

q

s
=

1 ¡ T0

Tc ¡ T0

; (4.10)

and for Venus (with Ta = 1700 K) this is q=s º 0:41. The dependence on n is
important, since failure requires q=s = 1 for n = 1, for example. In fact, failure will
occur immediately for large enough n. For Venus, this value is about 7.5, and this is
consistent with numerical computations which suggest the same thing (Weinstein &
Olson 1992).

One might argue that failure will actually happen somewhat before this, since
numerical studies indicate that lid motion actually begins when the viscosity contrast
across the lid is about 104. This would be e®ected in (4.8) by adding a term " ln ² c

to the denominator, where ² c is the viscosity contrast at failure. With the choice
² c = 104, for example, this would change the critical value of Tc to about 0:57, and
failure would be deemed to occur earlier. On the other hand, one might argue that
the resultant high-viscosity lid would nevertheless take a long time to founder.

(c) Length-scales and parameter choices

The solution of the problem depends on the ¯ve internal parameters n, T0, h, ­
and C, as well as the initial and boundary data for s. In order to present the simplest
picture, we choose the initial and boundary data for s to be the same, that is we
specify

s = s0(const:) at t = 0 and r = 0; (4.11)

so that the solutions depend also on the one additional parameter s0. Since a proper
description of the e®ect of the plume head on the boundary condition at r = 0 is not
available, this seems reasonable. It implies that when a plume reaches the lithosphere,
it prevents further growth of the lithosphere there without any additional erosion.

Suppose that failure occurs when Tq ¯rst reaches Tc at a value r = r ¤ when t = t ¤ .
These values depend on the ¯ve dimensionless parameters T0, h, ­ , C and s0. We
take T0 to be ¯xed, but wish to consider variations of the other parameters. To do
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so, it is convenient to write the de¯nitions of these parameters in terms of various
intrinsically de¯ned length-scales. Our aim in doing so is to remove the redundancy
involved in the choice of the length-scales d and l. These were introduced in (A 2)
and (A 11) as appropriate depth and radial length-scales, and we selected values
d ¹ 100 km and l ¹ 200 km as illustrative of our expectations. In retrospect, we
should have chosen these scales so that r ¤ and t ¤ are O(1), and this we now attempt
to do.

Consulting the model (3.8){(3.10), we see that a change of the scale for r has
the single e®ect of changing the value of ­ = (Bn=!3)1=n. Since our preliminary
estimates of d and l give a value of ­ ¹ O(1), it makes sense to de¯ne l so that
­ = 1, and this we now do.

De¯ne a `viscous’ length-scale

l ² =
·

µ exp(1=")
2A"2(n¡1)(¬ Ta » ag)n

¸1=(n + 2)

(4.12)

and a `failure’ length-scale
l ½ =

½ c

¬ Ta » ag
: (4.13)

Equation (A 17) then gives

Ra =
¸ 2(n¡1)ln+ 2

ln + 2
²

; (4.14)

so that (A 18) gives

!3 =
¸ 2n + 3ln + 2"5

ln + 2
²

; (4.15)

whence

­ =
·

Bnln+ 2
²

¸ 2n + 3ln + 2"5

¸1=n

: (4.16)

From (A 59), we have

d =
l ½
C

; (4.17)

and thus we can choose ­ = 1 by de¯ning

l =
·

"5d2n+ 3

Bnln+ 2
²

¸1=n + 1

: (4.18)

Speci¯cation of the second length-scale will be completed by a choice for C.
Finally, we de¯ne also a `radiogenic’ length-scale

lQ =
µ

kTa

» aH

¶1=2

; (4.19)

so that from (A 7)

h =
µ

d

lQ

¶2

: (4.20)
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The simplest choice for C is C = 1, but a more relevant choice is

C =
(1 ¡ T0)2

6(Tc ¡ T0)
; (4.21)

for the following reason. When h is small, T relaxes (fairly rapidly, in fact) to the
linear pro¯le

T = T0 + (1 ¡ T0) ² ; (4.22)

whence (4.4) becomes

q º
µ

1 ¡ T0

6C

¶
1

r1=2

Z r

0

r1=2ssr dr; (4.23)

and if s, sr ¹ O(1), then q ¹ (1 ¡ T0)=6C. According to (4.10), failure occurs if
q=s ¹ (Tc ¡ T0)=(1 ¡ T0), and equating the two orders of magnitude for q leads
to (4.21).

For our standard set of parameters, we ¯nd l ² º 16 km, l ½ º 22 km (if ½ c =
300 bar), and lQ º 600 km. With C given by (4.21), we have C º 0:22, and thus
d º 98 km, which then implies l º 180 km. It is clear from the de¯nitions of the
parameters that variations in n, Ta and ½ c can cause signi¯cant variation in these
length-scales. However, our principal assumption, that d < l, is validated a posteriori
by these estimates.

(d ) Numerical results

By choosing C via (4.21) and ­ = 1, the lithosphere evolution problem depends on
the parameters n, T0 and h, as well as the initial lithosphere thickness s0. We begin
by taking ¯xed values n = 3:5, T0 = 0:44, h = 0:03 (which we call the reference set),
and compute the solution numerically until failure occurs, for various values of s0.

Figure 6 shows a typical result of the pro¯les of s and q at the point of failure,
while ¯gure 7 shows the corresponding pro¯le of Tq as a function of r.

Figures 8 and 9 show the computed time of lithosphere failure t¤ and the radial
distance r ¤ of the failure zone from the plume centre, both plotted as (dimensionless)
functions of the initial dimensionless lithosphere thickness s0.

We can see from ¯gures 8 and 9 that t¤ and r ¤ are increasing functions of s0, but
are relatively constant for 0 < s0 < 1. They take values

r ¤ = 44:7; t¤ = 5:1; (4.24)

as s0 ! 0. We use these values below in assessing time and place of failure, since
even if s0 is larger, a similar result will be found for plumes which punch through
the lithosphere (i.e. taking a boundary value s0 < s00).

We note further that the numerical values of r ¤ and t¤ are not as near to one
as we had hoped. There is no inconsistency in this, since one could cosmetically
re-choose d and l so that they were, but there is little point, as the dimensional
results we identify below are not altered. The principal constraint on the analysis
in this paper is that ds(r ¤ ; t ¤ ) ½ lr ¤ , and we see that for our standard parameter
set, d = 98 km, s(r ¤ ; t ¤ ) º 3:7, l = 180 km, r ¤ º 44:7, whence ds(r ¤ ; t ¤ ) º 363 km
(lithosphere thickness at point of failure), and lr ¤ º 6000 km, so that the inequality
is well satis¯ed.
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Figure 6. A typical situation at failure, where the plastic lid base q and the lithosphere
base s are shown. Parameter values used are the reference set, and s0 = 0:7.

Tc

Tq

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100
r

T

Figure 7. The pro¯le of Tq at failure, where it reaches the critical value Tc.
Parameter values used are the reference set, and s0 = 0:7.

The last point to note is that, from ¯gure 7, the temperature pro¯le Tq at the
viscoplastic transition depth z = q is a very °at function of r. Essentially, as t
approaches t ¤ , the lithosphere becomes °uid at all distances r & 20. Thus, r ¤ might
be interpreted as an upper bound on the radial position of failure, and is a relatively
imprecise estimate. As can be seen from ¯gure 10, the viscosity is relatively constant
at failure for r & r ¤ =2, and increases rapidly below this. In our estimates for failure
location, we therefore use the value r ¤ =2 rather than r ¤ .

(e) Position and time of failure

The predicted dimensional time and radial position of failure are given by tf =
d2t ¤ =µ and rf = lr ¤ =2. Using the de¯nitions of d and l in (4.17) and (4.18), we have,
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Figure 8. Time to failure t¤ as a function of the dimensionless
initial lithosphere thickness s0 , standard parameter set.
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Figure 9. Failure location r¤ as a function of the dimensionless
initial lithosphere thickness s0 , standard parameter set.

explicitly,

tf =
t¤

µ( ¬ » agC)2

µ
½ 2

c

T 2
a

¶
; (4.25)

and

rf =
r ¤

2

·
2A

µBn( ¬ » ag)n+ 3

µ
R

E ¤ C

¶2n + 3¸1=(n + 1)·
½ 2n+ 3

c T n
a exp

½
¡ E ¤

RTa

¾¸1=(n+ 1)

:

(4.26)
For our reference values, as given in table 1, we ¯nd

rf = 3004 km; tf = 1527 Ma (reference set): (4.27)
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Figure 10. Variation of viscosity at z = q, at the point of failure. Same conditions as in ¯gure 7.

Table 1. Assumed parameter values

(Those for n, Ta , ½ c, t¤ and r¤ correspond to our reference set.)

parameter value units

t¤ 5.1 |

µ 10 ¡ 6 m2 s ¡ 1

¬ 3 £ 10 ¡ 5 K ¡ 1

» a 3 £ 103 kg m ¡ 3

g 9 m s ¡ 2

C 0.225 |

½ c 300 bar (= 105 Pa)

Ta 1700 K

r¤ 44.7 |

A 3 £ 104 MPa ¡ n s ¡ 1

R 8.3 J mol ¡ 1 K ¡ 1

E¤ 535 kJ mol¡ 1

n 3.5 |

Bn 1:98 £ 10¡ 5 |

Now we wish to explore the sensitivity of the values of tf and rf to variations in
some of the parameters. These values are likely to be most sensitively dependent on
the asthenospheric temperature Ta, the °ow-law exponent n and the failure stress
½ c, none of which can be presumed to be adequately known for Venus. Figures 11
and 12 show the variation of tf and rf when each of these is varied in turn. In so
doing, we ¯x T0 (= Ts =Ta), which will not vary much over the small range of Ta we
consider. We also ¯x h, partly on the basis that, if it is small, its precise value should
not a®ect the solution signi¯cantly. Hence, r ¤ , t ¤ and C will depend only on n, and
this dependence is shown in table 2.

In ¯gure 11, we see that failure occurs at times in the range 200{800 Ma for failure
stresses in the range 100{200 bar (10{20 MPa), which does not seem unreasonable.
The radial position of failure is in the range 200{1200 km for an asthenospheric tem-
perature of 1700 K, or the lower range 80{360 km for the more Earth-like astheno-
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Figure 11. Variation of (a) failure time tf as given by (4.25), and (b) failure radius rf as given by
(4.26), as a function of ½ c for values Ta = 1700 K and 1500 K. Other parameters are standard,
in particular n = 3:5.
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Figure 12. Variation of (a) failure time tf as given by (4.25), and (b) failure radius rf as given
by (4.26), as a function of n. Other parameters as standard, in particular Ta = 1700 K and
½ c = 300 bar (30 MPa).

Table 2. Variation of parameters with n

n C Bn t¤ r¤

2.5 0.157 8:68 £ 10 ¡ 4 8.8 74.0

3 0.187 1:39 £ 10 ¡ 4 6.2 55.5

3.5 0.225 1:98 £ 10 ¡ 5 5.1 44.8

4 0.274 2:53 £ 10 ¡ 6 4.5 38.4

5 0.429 3:15 £ 10 ¡ 8 3.8 31.3

spheric temperature of 1500 K. The variation of tf and rf with the °ow exponent
is shown in ¯gure 12. The decrease in both with increasing n is largely due to the
variation of l and d with n (both t ¤ and r ¤ decrease by a factor of two between n = 3
and n = 6). This ¯gure exempli¯es the crucial importance of the nonlinearity of the
°ow law in facilitating failure in geologically sensible times.
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5. Discussion

We have set out in this paper to examine whether the hypothesis of episodic subduc-
tion on Venus advanced by Turcotte (1993) is quantitatively viable. Our method for
assessing the hypothesis is to advance a mathematical model of mantle convection, in
whose framework the hypothesis can be evaluated. Speci¯cally, we have focused on
the idea, advanced by Sandwell & Schubert (1992), that trenches surrounding certain
coronae have the signature of subduction zones on the Earth. The inevitable result
of this process is that, given the particular model we choose, we obtain parametric
constraints on the model, within which the hypothesis appears feasible.

The mathematical model represents convection in a planetary mantle, using a
fairly realistic rheology. Our principal hypothesis is that mantle rocks will fail by
e®ectively plastic creep if subjected to su±ciently high shear stresses for su±ciently
long times, and that these stresses are naturally generated in the high-Rayleigh-
number convection of a strongly variable viscosity system. This latter statement is
true (Fowler 1985), so that the e±cacy of our model relies on the way in which we
model the rheology. In our previous work (Fowler 1993; Fowler & O’Brien 1996)
we used a purely viscoplastic rheology, which is somewhat at odds with the sort of
viscoelastic rheology that is commonly used. Let us therefore rehearse our discussion
of this point.

Viscous creep in polycrystalline rocks can occur in laboratory experiments (Goetze
1978) at very high deviatoric stresses, without apparent failure. The problem is that
such results must be extrapolated through many orders of magnitude to mantle
conditions. It is well known that such deformational experiments often describe sec-
ondary creep, but that grain recrystallization leads to tertiary accelerating creep
over time-scales which are inaccessible in the laboratory. Therefore, it is plausible
to suppose that in fact such `superplastic’ creep may be truly modelled by a plas-
tic yield stress such as is used in the study of metal fatigue (Hobbs & Ord 1988).
Furthermore, we believe that the Earth itself provides a laboratory in which this
plastic yield occurs; three locations where deformation may be e®ectively described
by viscoplastic creep are: the Benio® zones in subducting lithosphere; lithospheric
fracture zones, for example, in oceanic plates; and continental collisions, such as that
between India and Asia. The buoyant stress induced across a 100 km thick slab of
lithosphere with a temperature de¯cit of 1000 K is of the order of 300 bar (30 MPa).
Over geological time, such stresses cannot be maintained by steady creep processes,
and slip events occur. The simplest model of such stick{slip motion is via an e®ective
coe±cient of friction, or in other words a yield stress. Therefore, we consider that
the plastic yield model is viable, and moreover that reasonable values for ½ c on the
Earth are of the order of 300 bar (30 MPa).

In our discussion of yield, we have considered the classical concept of brittle{
ductile yield in a viscoelastic lithosphere (¯gure 4). The nomenclature is unhelpful,
since, although the brittle yield of Byerlee’s law would indeed be modelled by an
elastic{plastic rheology, with Byerlee’s law corresponding to a slice of the yield sur-
face (Hill 1950), the `ductile’ yield curve is not a yield curve at all, but simply a
statement of the stress required to deform mantle rock at a certain strain rate. In
fact, we have shown that the classical Maxwell model of viscoelasticity also allows
for elastic{plastic modelling, providing that the `viscosity’ becomes unconstrained
on the (e.g. Tresca) yield surface.
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In summary, our rheological model is of a viscoelastic (Maxwell) material with
stress and temperature-dependent rheology, together with a plastic yield stress. This
latter concept is the only departure from convention, and our primary basis for
proposing it is the existence of such an e®ective yield stress in terrestrial plate tec-
tonics. Pressure dependence through an activation volume is not included, but for the
sorts of values usually quoted (17 cm3 mol¡1), the e®ect is small near the lithosphere
where our analysis focuses.

Given this rheology, the remainder of the paper consists of ¯nding the solution
which describes the convective out°ow associated with a mantle plume. The solution
is derived using a sequence of asymptotic approximations, each of which is para-
metrically controlled, without any arbitrary assumptions whatsoever. Although the
method is necessarily convoluted, the logical progression is based on previous work
(Morris & Canright 1984; Fowler 1985, 1993; Reese et al . 1998) in simpler systems
where perhaps the analysis is less opaque. In that sense, the conclusions follow rig-
orously from the yield hypothesis. There is some leeway insofar as one can never
be certain exactly how extreme the conditions must be before the results are `accu-
rate’; experience shows that generally in such circumstances, results are qualitatively
accurate, and quantitatively reasonable.

We consider a situation designed to represent conditions in a Venusian mantle
following an overturning (roll-over) event. In this event, the cold lithosphere sinks
to the base of the mantle, and rests there while a hot thermal boundary layer grows
underneath it. The initial temperature above this basal region is uniform (at Ta) but
after a while the lower boundary layer becomes unstable, as envisaged by Howard
(1966), and it sends up thermal plumes, which we suppose build coronae at the
surface. During the hiatus, the top surface starts to cool, and a cold sticky lithosphere
grows downward into the mantle. It is gravitationally unstable, but extremely viscous,
which precludes its subduction under normal planetary mantle conditions.

Now if a plume impacts on this growing lithosphere, a sub-lithospheric radial out-
°ow will occur, similar to that which occurs in steady two-dimensional convection
(Fowler 1985). The structure of this °ow is well known: the lithosphere has expo-
nentially small (in the viscosity number " = RTa=E ¤ ) velocity, high stresses, and is
joined to the underlying mantle by a thin delamination layer, in which the temper-
ature gradient jumps from conductive to isothermal, and, importantly, the scales of
which are self-determining.

Above the delamination layer, the stresses increase dramatically in the lithosphere,
and any reasonable value of the yield stress will cause a zone of failure adjoining the
surface. Indeed, we suppose that the common observation of bent and crumpled
surface rocks is an indication of just such failure. In dimensionless units, we denote
the depth to the delamination layer as s(r; t), and the depth of the plastic failure
zone as q(r; t), and our aim is then to derive evolution equations for these. If the
viscosity at q becomes comparable to that of the underlying mantle at r = rc, then
at rc the e®ective viscosity of the entire lithospheric column becomes equal to that
of the underlying mantle, and we suppose that subduction will be initiated. We have
no way of knowing in advance whether this will occur, or where.

If subduction is initiated in this way, then, as soon as the heavy lithosphere begins
to plunge into the mantle, the negative buoyancy associated with it increases dramat-
ically. The descending slab will drive a suddenly vigorous convective °ow towards the
subduction site, and at the same time the subduction trench will migrate backwards
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away from the plume head; as it does so, the lithosphere will peel away from the man-
tle and collapse through the mantle. One resultant possibility is an entire resurfacing
of the planet, as the old lithosphere sinks towards the core{mantle boundary. This
could only be prevented if su±cient upwelling material becomes available to replace
the sinking mantle, or if the subducting mantle is jammed in its descent, for exam-
ple, by a pressure or chemically induced increase in viscosity. Planetary resurfacing
would seem to be a likely consequence of an initial failure event.

The analysis used to calculate for s and q follows the path found by Fowler
(1985), who computed the lithosphere stresses and s in steady, purely viscous, two-
dimensional °ow; this was generalized to steady two-dimensional °ow with a plastic
failure zone (and a viscoplastic rheology) by Fowler (1993), and to an unsteady two-
dimensional viscoplastic °ow by Fowler & O’Brien (1996). In the present paper, we
have treated the unsteady °ow problem in a cylindrical geometry, and, exhorted by
the reviewers of an earlier draft, we have allowed the rheology to be fully viscoelastic-
plastic, with a stress dependent nonlinear rheology, and we have included the quanti-
tative e®ect of radiogenic heating. The stress dependence and internal heating make
for minor changes in method, and we have been able to sidestep the complications
associated with the elastic part of the rheology, ¯rstly because lithospheric strains
will be so small that material derivatives are not required in the constitutive law, and
secondly because the elevated surface temperature of Venus turns out to be enough
to warrant an assumption of no elastic layer between the upper elastic-plastic region
and the viscous region below. Consequently, the upper region is in fact viscoplastic,
and our previous analyses carry through as before; this would not apply to the Earth,
however.

Following through the analysis, we derive a reduced model for the determination
of s and q: this is (3.8){(3.10). It is only in this ¯nal phase of the analysis that the
in°uence of the plume is manifested by the boundary condition (4.2). The single
feature of our solution procedure which is arti¯cial is the assumption of a prescribed
lithosphere depth at the upwelling, rather than a formula derived from detailed
consideration of plume dynamics. We do not consider this to be a serious dereliction.

The results of the analysis, convoluted though they may be, are clear, and are
detailed in the conclusions. The onset of subduction following a global tectonic roll-
over is a likely possibility, and the time- and space-scales for its occurrence are
consistent with observations on Venus and with plausible parameter values of the
material constants.

6. Conclusions

Common discussions of brittle{ductile yield, as exempli¯ed for viscoelastic materi-
als in ¯gure 4, are misleading, as the viscous `yield’ is nothing other than perma-
nent creep. Nevertheless, plastic yield has meaning in mantle minerals, both in the
accepted form of Byerlee’s law, which may represent the brittle failure of elastic
material, and in the viscous mantle, where it is manifested in the Earth through the
existence of deep earthquakes, fracture zones, and continental collisions, which are
evidences of behaviour that may e®ectively be modelled in the long term by a visco-
plastic rheology of Tresca or Von Mises type. Direct inferences of the corresponding
yield stress give values of ca. 300 bar (30 MPa) on the Earth.
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Following a supposed mantle roll-over event on Venus 500 Myr BP, convective
plumes will emerge from the core{mantle boundary, and it seems likely that these
would appear before the establishment of a general cellular circulation. The impinge-
ment of a plume at the growing lithosphere causes uplift of the surface and litho-
sphere thinning. The resultant radial out°ow causes thinning of the lithosphere away
from the plume, and the resultant stresses induced by the large buoyancy cause the
growth of a plastically failed zone at the surface, in which the e®ective viscosity is
much reduced. At a time tf and radial distance rf the e®ective viscosity of the whole
lithosphere becomes equal to that of the underlying mantle, and the lithosphere
becomes °uid. For a yield stress ½ c of 200 bar (20 MPa), °ow-law exponent n = 3:5,
and asthenospheric temperature Ta = 1500 K, the failure time is ca. 800 Myr, and the
failure distance is ca. 400 km. These values vary for di®erent choices of ½ c, n and Ta; tf

decreases a little as Ta increases, but rf increases dramatically. Both values increase
with increasing ½ c and decreasing n. These values suggest that Turcotte’s (1993)
scenario of episodic overturn with a time-scale of the order of 500 Myr, mediated
by subduction-like failure zones at the rim of coronae, is consistent with theoretical
models of mantle convection, providing a failure stress of order 200 bar exists.

A prominent feature of the analysis is that, when lithospheric failure occurs, it does
so in a way which renders all the lithosphere outside the failure-radius °uid, while the
viscosity jumps rapidly inside this radius. The picture of plume emplacement that
this suggests is the following. A massive thermal plume erupts from the core{mantle
boundary following overturn, and the resultant deposition of cold surface rock there.
This plume rises rapidly towards the thin, rigid, young lithosphere, which it causes
to rise, like a ¯st pushing up under a stretched sheet. This broad topographic rise
is maintained until failure, when, suddenly, the lithosphere outside the plume area
collapses viscously, while the plume maintains its role as a rigid indenter under a °uid
blanket. As a consequence, the surrounding, now °uid, lithosphere will collapse, and
one would expect to see the sort of transient trenches that are observed on some
coronal rims. A striking numerical illustration of this scheme of events is given by
Smrekar & Stofan (1997). They found that a plume incident on the lithosphere
spreads under it and causes a delamination of the lithosphere, and a sinking cold
plume, which migrates back towards the plume head. As they say, this scenario
resembles that of coronae on Venus which exhibit the arcuate trenches, except that
in their model they would need some kind of lithosphere weakness in order to predict
the trenches. In this paper we have presented such a weakening mechanism.

Whether or not this weakening actually signi¯es incipient subduction is less clear:
it is certainly a realistic possibility. But even if not, what we are led to suggest is
that the maintenance of the coronal elevation and the presence of a surrounding
depression are consistent with the formation of a sudden °uidization failure of the
surrounding lithosphere. One would then expect subduction to occur elsewhere, as
the cold but °uid lithosphere sinks into the mantle. Perhaps this is what is indicated
by the chasmata (Jurdy & Stefanick 1999).

It is always attractive to con¯rm the results of analytic solutions with direct numer-
ical computations. A di±culty in doing this in planetary mantle convection arises
through the issue of extrapolation. A quantity of relevance in variable viscosity con-
vection is the viscosity contrast ¢ ² , which we can de¯ne in the present case as

¢ ² = exp
·

E ¤

R

µ
1
Ts

¡ 1
Ta

¶¸
º exp

·
E ¤

RTa

¸
; (6.1)
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if Ta = 1500 K and Ts = 750 K. We see from (4.26) that, approximately,

rf / ¢ ² ¡1=(n+ 1): (6.2)

Using the values in table 1 (but Ta = 1500 K), we have

¢ ² º 4:6 £ 1018: (6.3)

The best numerical computations can reach a ¢ ² value of about 1010. The corre-
sponding position of failure for this lower value of the viscosity contrast would be
a factor (4:6 £ 108)1=(n + 1) greater; for n = 3:5, this is a factor of 84. For failure at
400 km with ¢ ² ¹ 1018, we would have rf º 33 000 km for ¢ ² ¹ 1010. Failure would
not be seen.

We thank Don Turcotte for illuminating discussions, and Philip England for helpful advice.

Appendix A.

(a) Scaling the equations

It is convenient to follow the recipe given by Fowler & O’Brien (1996), though the
presence of the °ow-law exponent n causes some slight (but important) modi¯cation.
Extension of the boundary layer theory, for the case of Cartesian two-dimensional
°ow, to values of the °ow-law exponent n > 1 has been done by Reese et al . (1998,
1999), and much of the development below parallels that work.

We subtract the lithostatic pressure » agz from the pressure, and then scale the
stresses as

p ¡ » agz; ½ rr; ½ rz ; ½ zz ¹ ² aµ

l2
; (A 1)

where ² a is a viscosity scale, to be de¯ned below, and l is a convenient length-scale;
since we hope to ¯nd failure occurring at distances of the order of several hundred
kilometres from the centre of a plume, this gives a natural choice for the value of l,
although we will in fact eventually prescribe it in terms of other parameters of the
problem. In addition we choose scales for the other variables

T ¹ Ta; ² ¹ ² a; t ¹ l2

µ
; x ¹ l; u ¹ µ

l
: (A 2)

The resulting dimensionless equations are then

1
r

@

@r
(ru) +

@w

@z
= 0;

@p

@r
=

1
r

@

@r
(r½ rr) +

@½ rz

@z
+

½ rr + ½ zz

r
;

@p

@z
=

1
r

@

@r
(r½ rz) +

@½ zz

@z
+ Ra ¤ (1 ¡ T );

9
>>>>>>>=

>>>>>>>;

(A 3)
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½ rr = 2 ²
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¡ ¯
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¡ c
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¸
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¸
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@t
+ u

@T
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+ w

@T

@z
= r2T + h ¤ ;

½ 2 = ½ 2
rz + 1

2 [ ½ 2
rr + ½ 2

zz + ( ½ rr + ½ zz)2]:

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

(A 3 cont.)

The dimensionless parameters are a form of Rayleigh number

Ra ¤ =
¬ » agTal3

² aµ
; (A 4)

a viscosity number

" =
RTa

E ¤ ; (A 5)

a viscoelastic (Deborah) number

¯ =
² aµ

2· l2
; (A 6)

and an internal heating number

h ¤ =
» al2H

kTa

; (A 7)

where we de¯ne the volumetric heating Q in terms of the internal heating per unit
mass, H , as Q = H=cp. Since E = · (3 ¶ + 2 · )=( ¶ + · ) and ¼ = ¶ =[2( ¶ + · )], where
¼ is Poisson’s ratio, the elastic parameter c is given by

c =
1 ¡ 2¼

3(1 + ¼ )
: (A 8)

The rheological parameter ¤ is de¯ned by

¤ =
1

2A² a

µ
l2

² aµ

¶n¡1

exp
µ

E ¤

RTa

¶
; (A 9)

and will be ¯xed below by a suitable choice of ² a (which depends on the size of the
stresses in the asthenosphere).

In due course we will de¯ne an appropriate actual Rayleigh number, Ra, for the
°ow. Typical values of Ra and " are likely to be large and small, respectively. It is on
this basis that an approximate boundary-layer analysis can be attempted. In fact,
such an analysis shows that the dynamics of the stagnant lid is more or less self-
determining, and is largely independent of the details of any convective °ow below,
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Figure 13. Asthenospheric viscosity scale ² A (Pa s) as a function of asthenospheric temperature
(K), for various values of n. The implications of these curves are that vigorous sub-lithospheric
convection ( ² A < 1022 Pa s) on Venus requires asthenospheric temperatures of at least 1700 K,
if n = 3:5. Note that this graph is not of viscosity varying with temperature at di® erent depths
in the mantle.

providing the lid is of a thickness less than l. The basis for this latter supposition is
that the thermal time-scale l2=µ is ca. 3000 Myr, whereas we are interested in a time-
scale an order of magnitude smaller. If we de¯ne ¸ 2 to be the ratio of this shorter
time-scale to l2=µ, and presume that ¸ 2 ½ 1, then it is appropriate to rescale the
variables in the following way, in order that the dimensionless variables be O(1); this
leads to what we call the slab scales (slab refers to the cold lid, or lithosphere):

z ¹ ¸ ; u ¹ Ra ¤ 3=5 ¸ ; w ¹ Ra ¤ 3=5 ¸ 2; t ¹ ¸ 2; ² ¹ ( ¸ "Ra ¤ 1=5)2;

½ ¹ ½ rz ¹ ¸ 2Ra ¤ ; p ¹ ¸ Ra ¤ ; ½ rr ¹ ½ zz ¹ ¸ 3Ra ¤ :

)
(A 10)

This abstruse choice of scales follows directly from our previous work (Fowler 1985,
1993; Fowler & O’Brien 1996), and is motivated by the need to balance advection and
conduction in the delamination layer below (see (A 29)), as well as to equate shear
stress gradient with buoyancy. By choosing such a balance, we are able to e®ect a
transition between the stress and temperature in the slab and the same quantities in
the deep mantle. The particular choice of slab scales then arises as that appropriate
for matching to the delamination layer.

Note that the quantity

d = ¸ l (A 11)

is the relevant depth-scale for the lithosphere, and, like l, it will eventually be pre-
scribed in terms of physical parameters of the problem. In the meantime, we formally
assume that d ½ l. The rescaled continuity equation allows a Stokes stream function
Á via

u =
1
r

@Á

@z
; w = ¡ 1

r

@Á

@r
; (A 12)

Proc. R. Soc. Lond. A (2003)



Lithospheric failure on Venus 2691

and then the other rescaled equations are
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(A 13)

where the modi¯ed parameters are de¯ned by

¹¯ = ¯ Ra ¤ 2=5; ¹c = c=¸ 2; ! = ¸ "Ra ¤ 1=5; h = ¸ 2h ¤ ; (A 14)

and we now choose to de¯ne

¤ = Ra ¤ 3(n¡1)=5!2n: (A 15)

Bearing in mind the rescaling in (A 10), and anticipating (see (A 28)) that ½ ¹ "2

in the asthenosphere, we ¯nd that the asthenospheric viscosity scale ² A = ² a!2 is
given by

² A =
·

E ¤ 2

¬ » agl¸ 2R2T 3
a

¸n¡1 exp(E ¤ =RTa)
2A

: (A 16)

(In passing, we note that this gives explicit support to Tozer’s (1972) concept of a
viscously self-regulating mantle.) Figure 13 shows how this asthenospheric viscosity
scale varies with the ambient temperature. It is clear that Venusian asthenospheric
temperatures must be hotter than those on the Earth if the viscosity is going to
approach the sort of low values which we might expect. With a thick, stagnant
lithosphere, this is not in itself surprising. We can now ¯nally de¯ne the relevant
Rayleigh number for the °ow. This is

Ra =
¬ » agTal3

² Aµ
; (A 17)

and it follows from (A 14) that

! = ( ¸ ")5=3Ra1=3: (A 18)

Proc. R. Soc. Lond. A (2003)



2692 A. C. Fowler and S. B. G. O’Brien

At this point it is useful to get some idea of the size of the parameters. If we take
¬ = 3 £ 10¡5 K¡1, » a = 3 £ 103 kg m¡3, g = 9 m s¡2, cp º 103 J kg¡1 K¡1, Ta =
1700 K, l = 300 km, µ = 10¡6 m2 s¡1, and presume a value of ² A = 3 £ 1021 Pa s,
then

Ra º 104: (A 19)
If E ¤ = 535 kJ mol¡1, A = 3 £ 104 MPa¡n s¡1, n = 3:5 (Kirby & Kronenberg 1987),
and R = 8:3 J mol¡1 K¡1, then E ¤ =R º 64 000 K and thus

" º 0:027: (A 20)

If ¸ º 0:3, then (A 18) implies
! º 0:007: (A 21)

Then ² a º 0:6 £ 1025 Pa s and Ra ¤ º 0:5, so that if · = 0:6 £ 1011 Pa, then the
modi¯ed viscoelastic parameter ¯ in (A 14) is

¹¯ º 0:4 £ 10¡2; (A 22)

while, with H = 5 £ 10¡12 W kg¡1, k = 3 W m¡1 K¡1, the heating parameter

h º 0:033: (A 23)

Finally,
¹c º 1:3; (A 24)

assuming Poisson’s ratio is ¼ = 0:25.
The boundary conditions are those of no stress and prescribed temperature at the

top surface. If the dimensional surface temperature is T s , then

Á = 0; T = T0; ½ rz = 0; p ¡ ¸ 2 ½ zz = ¢ s at z = 0; (A 25)

where T0 = T s =Ta, and the uplift at the surface is de¯ned as

h s = ¬ Ta ¸ l ¢ s ; (A 26)

and is assumed small (in the sense that ¬ Ta ¢ s ½ 1) so that the surface conditions
can be linearized about z = 0. The conditions at large z are discussed further below
(see (A 30) and (A 31)).

We now proceed to analyse the equations, as in Fowler & O’Brien (1996), in the
separate regions of the °ow. We recall that these regions are a plastic lid 0 < z < q,
where plastic °ow occurs but °ow is small, a viscous lid q < z < s, and a delamination
layer near z = s, which joins the stagnant lid to the mobile convection below. The
assumption that there is no elastic core relies on the fact that the elastic terms
proportional to ¹¯ remain negligible.

(b) Lithosphere

In the lithosphere, i.e. the stagnant lid z < s (see ¯gure 5), we anticipate that Á is
exponentially small (as ² is exponentially large), and thus the temperature satis¯es

Tt = Tzz + h;

T = T0 on z = 0;

T = 1; Tz = ¡ on z = s:

9
>=

>;
(A 27)

Here T = 1 at z = s in order to match to the asthenospheric temperature (T = 1)
below z = s, while the temperature gradient ¡ is as yet unspeci¯ed, but is determined
by matching through the shear layer at z = s.
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(c) Delamination layer

This is a shear layer at the base of the lithosphere (see ¯gure 5), which adjusts
the temperature to its asthenospheric value, and allows the stream function to begin
to adjust towards the convective velocity ¯eld below. Importantly, it is essentially
self-determining. We put

z = s + "± ; T = 1 + "¿ ;

½ pq = "2Tpq ; Á = "2 ª ; p = "2P; ½ = "2S;

)

(A 28)

and ¯nd that to leading order (with ¸ ; "; ¹¯ ½ 1)
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e¡ ¿ ;
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r
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r
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2 ª

@ ± 2
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r
s0 @

2 ª

@ ± 2
;

"2 ¿ t ¡ " _s¿ ± +
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r
( ª ± ¿ r ¡ ª r ¿ ± ) ¹ ¿ ± ± ; S ¹ jTrz j;

9
>>>>>>>=

>>>>>>>;

(A 29)

where s0 = @s=@r, _s = @s=@t, and subscripts on variables other than stresses indicate
partial derivatives.

The boundary conditions we need to apply are

Trz ; P; ¿ ! 0 as ± ! 1; (A 30)

which allows a matching to sub-lithospheric values, and

¿ ± ! ¡ ; ª ! 0 as ± ! ¡ 1; (A 31)

which matches the variables to the lithospheric values. In writing (A 30), we follow
Fowler (1985), but in fact this detail of that paper is in error, because it neglects the
existence of a passive `outer’ thermal boundary layer that is the continuation of the
steady upwelling plume. In the present situation, we are perhaps more justi¯ed in
neglecting this layer, as we are concerned with the impingement of an isolated plume
on the lithosphere, and do not suppose that a steady circulation necessarily exists
below it.

Fowler (1985) originally suggested another possible structure to the delamination
layer, based on the idea that the lid base was relatively °at. He thought that this pos-
sibility was less likely, and in our subsequent work (Fowler 1993; Fowler & O’Brien
1996), we have followed the approach suggested here, in which lid slope is signi¯-
cant. Fowler’s (1985) study concerned Newtonian viscosity (n = 1), and his results
appear consistent with numerical solutions (e.g. Moresi & Solomatov 1995), but less
so with non-Newtonian convection (Solomatov & Moresi 1997). This issue remains
unresolved. It seems unlikely that such a fundamental distinction would depend on
the value of n, and it seems unlikely that numerical calculations alone can dictate the
correct form of solution. On the other hand, it is also the case that certain features of
the asymptotic structure of strongly variable viscosity convection are unclear; apart
from the size of the lid slope, there is the comment of the preceding paragraph, and
also the correct way to formulate boundary conditions for the lid slope equation
(here, (A 36)).
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Table 3. The dependence of Bn on n

n Bn

1 0.087

2 4:74 £ 10¡ 3

3 1:39 £ 10¡ 4

3.5 1:98 £ 10¡ 5

4 2:53 £ 10¡ 6

5 3:15 £ 10¡ 8

We can always neglect the small time derivative terms in the heat equation, but
although !3 º 0:5 £ 10¡6, we must retain the convective terms, partly because ª
becomes large as ± ! 1, and partly because the smallness of ! is o®set by other
factors, as we shall ¯nd below (see equation (B 9)). The above equations (A 29) then
simplify to the following three:

@Trz

@±
¹ s0 ¿ ;

ª ± ± ¹ rjTrz jn¡1Trze ¿ ;

!3( ª ± ¿ r ¡ ª r ¿ ± ) ¹ r¿ ± ± :

9
>>>>=

>>>>;

(A 32)

These admit a physically appropriate similarity solution, in which

¿ = g( ¹ ); Trz =
s0

¡
h( ¹ ); ª =

rs0

¡ 3

¯̄
¯̄s0

¡

¯̄
¯̄
n¡1

f( ¹ ); ² =
¯̄
¯̄ ¡

s0

¯̄
¯̄
n¡1

N (¹ ); ¹ = ¡ ± ;

(A 33)
where

h0 = g;

f 00 = jhjn¡1heg;

g00 + Bnfg0 = 0;

N =
1

jhjn¡1
e¡G;

9
>>>>>>=

>>>>>>;

(A 34)

and
g0( ¡ 1) = 1; f( ¡ 1) = 0; h(1) = 0; g(1) = 0; (A 35)

providing that
!3

r¡

µ
rs0

¡ 3

¯̄
¯̄s0

¡

¯̄
¯̄
n¡1¶0

= Bn; (A 36)

a prime denoting di®erentiation with respect to r.
The equations (A 34) and (A 35) represent a generalization of the problem studied

by Fowler (1985) for n = 1, where it was found that B1 = 0:087. We solve (A 34)
and (A 35) by using a shooting method for

H 0 = G;

F 00 = jH jn¡1HeG;

G00 + F G0 = 0;

9
>=

>;
(A 37)
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Figure 14. The dependence of Bn on n.

with

F = F 0 = 0; G0 = c; G = ¡ cM; H = H0 + 1
2
cM 2 on ¹ = ¡ M; (A 38)

where M is taken to be inde¯nitely large (in practice, M = 20 is satisfactory). We
adjust c and H0 until G and H tend to zero at ¹ ! +1. The solution of (A 34) is
then

g( ¹ ) = G( ¹ =c); h( ¹ ) = cH( ¹ =c); f( ¹ ) = cn+ 2F ( ¹ =c); (A 39)

and B is determined by

Bn =
1

cn+ 3
; (A 40)

evidently, (A 34) with (A 35) is a nonlinear eigenvalue problem for Bn. Figure 14 (see
also table 3) shows that Bn depends strongly on n. It decreases roughly exponentially,
as shown in the table. Given Bn, (A 36) determines the free boundary s in (A 27), and
in particular, we ¯nd that s0 > 0, so that the modulus signs in (A 36) are redundant.
The fact that Bn is numerically small is a vindication of the assumption that ! is
formally O(1) in (A 32), since it is really the quantity ­ = (Bn=!3)1=n (see (B 9))
which is important.

(d) Slab stress

The heat equation (A 27) together with the free-boundary condition (A 36) deter-
mines the lithosphere base, providing there is rapid convection beneath. Apparently,
(A 36) also requires speci¯cation of two boundary conditions for s: we come back to
this below.

In order to examine whether plastic °ow occurs, we need to compute the stresses
in the viscous lid; we refer to these as the slab stresses. As ± ! ¡ 1, we have from
the delamination layer (assuming s0 > 0)

¿ ¹ ¡ ± ; Trz ¹ 1
2
s0 ¡ ± 2; ª ¹ rs0n

¡ n+ 2
(1

2
¡ 2 ± 2)ne ¡ ± ; (A 41)
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and thus back in the slab scales,

½ rz ¹ 1
2
s0 ¡ (z ¡ s)2;

Á ¹ 1
"2(n¡1)

rs0n

¡ n+ 2
[1

2
¡ 2(z ¡ s)2]n exp

·
¡ (z ¡ s)

"

¸
;

¹ 1
"2(n¡1)

r

¡ 2
½ n

rz exp
µ

³

"

¶
;

9
>>>>>=

>>>>>;

(A 42)

as z ! s. Thus Á ¹ 1=² , and this motivates the introduction of a modi¯ed stream
function (also denoted ª , but not the same as in the delamination layer) by

Á = "¡2(n¡1) ª e³ ="; ³ = 1 ¡ (1=T ): (A 43)

It follows that the stress/strain-rate constitutive relations are

½ n¡1 ½ rz =
1
r

[ ³ 2
z ª + "f2 ³ z ª z + ³ zz ª g + "2 ª zz]

¡ ¸ 2

·
³ 2

r

r
ª + "

½
2 ³ r ª r

r
+ ª

@

@r

µ
³ r

r

¶¾
+ "2 @

@r

µ
ª r

r

¶¸
¡ ¯ ¤ @½ rz

@t
;

½ n¡1 ½ rr = 2
·

³ z ³ r

r
ª + "

½
³ r ª z

r
+

@

@r

µ
³ z ª

r

¶¾
+ "2 @

@r

µ
ª z

r

¶¸
¡ ¯ ¤

µ
@½ rr

@t
¡ ¹c

@p

@t

¶
;

½ n¡1 ½ zz = ¡ 2
·

³ z ³ r

r
ª +

"

r
f³ z ª r + ³ r ª z + ³ zr ª g +

"2

r
ª zr

¸
¡ ¯ ¤

µ
@½ zz

@t
¡ ¹c

@p

@t

¶
;

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(A 44)
where

¯ ¤ = ¹¯ "2ne¡ ³ =": (A 45)

To leading order, (A 13)1;2 give

@p

@r
¹ @½ rz

@z
;

@p

@z
¹ 1 ¡ T; (A 46)

together with p; ½ rz ! 0 on z = s (from (A 42) and via (A 29), which implies

p ¹ ¡ 1
2
¡ (z ¡ s)2;

½ rr ¹ ¡ s02 ¡ (z ¡ s)2;

½ zz ¹ s02 ¡ (z ¡ s)2;

9
>=

>;
(A 47)

as z ! s). It follows that, on z = q < s,

½ rz = ½ vis c;q
rz = ¡

Z s

q

(z ¡ q)
@T

@r
dz; p ¹ p ¡ ¸ 2 ½ zz ¹ ¡

Z s

q

(1 ¡ T ) dz; (A 48)

and we assume that a plastic lid exists above z = q (i.e. in z < q); this assumption
is validated below when we calculate q.

We see now that the assumption of no elastic core corresponds to the assumption
that ¯ ¤ ½ 1 at z = q (where ¡ ³ is maximal). Speci¯cally, we require that

¡ ³ < " ln(1=¹¯ "2n); (A 49)
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at z = q, that is,

1
Tq

¡ 1 < " ln(1=¹¯ "2n); (A 50)

where T = Tq at z = q. For Venus, if " = 0:027, ¹¯ = 0:4 £ 10¡2, n = 3:5, then
" ln(1=¹¯ "2n) º 0:83, so that if Ta = 1700 K, then (A 50) corresponds dimensionally
to Tq > 928 K. Since the surface temperature is ca. 750 K, we see that the assumption
of no elastic core is very reasonable.

(e) Plastic lid

By de¯nition, z = q represents the lower boundary of the region of failure 0 < z <
q. Because of our assumption that there is no elastic core, the e®ective rheology is
visco-plastic, and we still have to solve (A 13), except that the e®ective viscosity is
now determined by a suitable yield criterion.

The two commonly used failure criteria in plasticity are the Tresca yield criterion
and the Von Mises yield criterion. The former takes the dimensional form

1
2( ¼ 1 ¡ ¼ 3) = ½ c; (A 51)

where ¼ 1 and ¼ 3 are the maximum and minimum principal stresses. In the present
case, the longitudinal stresses are ¼ rr , ¼ ³ ³ and ¼ zz, and the sole deviatoric stress is
½ r³ . We then ¯nd that the principal stresses are

¼ 0
§ = 1

2( ¼ rr + ¼ zz) § 1
2 [( ¼ rr ¡ ¼ zz)2 + 4 ½ 2

r³ ]1=2;

¼ 0
³ = ¼ ³ ³ ;

)
(A 52)

and the corresponding principal deviatoric stresses ( ¼ 0
i = ¡ p + ½ 0

i) are

½ 0
§ = ( ½ rr + ½ zz) § 1

2 [( ½ rr ¡ ½ zz)2 + 4½ 2
r³ ]1=2;

½ 0
³ = ½ ³ ³ = ¡ ( ½ rr + ½ zz):

)

(A 53)

Suppose for example that ½ rr º ¡ ½ zz. Then ½ 0
+ > ½ 0

³ > ½ 0
¡, and the Tresca yield

criterion (A 51) is
( ½ rr ¡ ½ zz)2 + 4 ½ 2

r³ = 4 ½ 2
c : (A 54)

In contrast, the Von Mises yield criterion is

½ 02
+ + ½ 02

³ + ½ 02
¡ = 2½ 2

c ; (A 55)

where ½ c is the yield stress. If ½ rr º ¡ ½ zz, ½ 0
³ º 0, then this is approximately given

by
( ½ rr ¡ ½ zz)2 + 4 ½ 2

r³ = 4 ½ 2
c ; (A 56)

and we see that in this case, the two yield criteria are identical. As we will indeed
¯nd that ½ rr º ¡ ½ zz, it is convenient to work with the Von Mises criterion; in terms
of the second invariant ½ 2, we write (A 55) as

½ = ½ c: (A 57)

Proc. R. Soc. Lond. A (2003)



2698 A. C. Fowler and S. B. G. O’Brien

The above discussion refers to dimensional quantities. If we now follow the successive
scaling ½ ¹ ² aµ=l2 (A 1), and rescaling ½ ¹ ¸ 2Ra ¤ (A 10), then we ¯nd that the yield
criterion can be written as

½ =
C

¸
; (A 58)

where
C =

½ c

¬ » agTad
(A 59)

(recall that d = ¸ l); with previously adopted values, C º 0:22 for ½ c = 300 bar.
In the plastic lid, we rescale ½ rr, ½ zz as

½ rr =
1
¸ 2

Trr; ½ zz =
1
¸ 2

Tzz; (A 60)

so that the yield criterion is

¸ 2 ½ 2
rz + 1

2 [T 2
rr + T 2

zz + (Trr + Tzz)2] = C2; (A 61)

note that we suppose C2 6 O(1): evidently this is a realistic assumption.
The stress equations are (A 61), together with

@p

@r
=

@½ rz

@z
+

1
r

@

@r
(rTrr) +

Trr + Tzz

r
;

@p

@z
= 1 ¡ T +

@Tzz

@z
+

¸ 2

r

@

@r
(r½ rz);

9
>>=

>>;
(A 62)

and thus, to leading order,

p ¡ Tzz =
Z z

0

(1 ¡ T ) dz + ¢ s ; (A 63)

where ¢ s is the uplift introduced earlier in (A 26), which has to be determined. We
require the normal stress at z = q to be continuous, and it follows from (A 48)2 that
the uplift is given by the isostatic result

¢ s = ¡
Z s

0

(1 ¡ T ) dz: (A 64)

(Notice that the `uplift’ is negative: this simply refers to the level it is measured
from.)

Now with p given by (A 63), we have two equations (A 61) and (A 62)1 for the
variables Trr, Tzz, and ½ rz; a solution cannot be obtained without considering the
constitutive relations for the stresses. With the rescaling (see (A 60)), these are (from
(A 13)3{5, providing ¹¯ is su±ciently small)

¸ 2

·
½ rz

² "2 ¸ 2

¸
=

1
r

Ázz ¡ ¸ 2 @

@r

µ
1
r

@Á

@r

¶
;

·
Trr

² "2 ¸ 2

¸
= 2

@

@r

µ
1
r

@Á

@z

¶
;

·
Tzz

² "2 ¸ 2

¸
= ¡ 2

r

@2Á

@z@r
;

9
>>>>>>>>=

>>>>>>>>;

(A 65)
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and it follows from this that, in relative terms, Ázz ½ Ázr, or equivalently,

Á ¹ ru s z[1 + O( ¸ 2)]; (A 66)

where u s (r) is a (very small) surface velocity, which is to be found. We then have

Trr

² "2 ¸ 2
¹ 2u0

s ;

Tzz

² "2 ¸ 2
¹ ¡ 2

r
(ru s )0;

9
>>=

>>;
(A 67)

where a prime denotes di®erentiation with respect to r.
Below the plastic lid, (A 43) implies that the horizontal velocity is

Áz ¹ "¡(2n¡1)e³ =" ª ; (A 68)

where ª is given (if ¯ ¤ ½ 1) from (A 44) by

ª º r½ n
rz

³ 2
z

; (A 69)

since ½ º ½ rz > 0. This suggests (and we corroborate below) that the horizontal
velocity in the plastic lid is

u s = "¡(2n¡1)e³ q="U; (A 70)

where U = O(1) and ³ q = ³ jz = q. In that case

u0
s ¹

³ 0
q

"
u s ¾ u s ; (A 71)

and therefore (as we anticipated above)

Trr º ¡ Tzz º 2² "¸ 2 ³ 0
qu s : (A 72)

Because of (A 72), (A 61) is, to leading order, simply

Trr º ¡ C (A 73)

(the minus sign is chosen to give a sensible de¯nition of q below); therefore

² =
C"2(n¡1)e¡ ³ q="

2 ¸ 2 ³ 0
q jU j ; (A 74)

where we require U < 0 (back °ow) if ³ 0
q > 0 as we anticipate. In particular, ² . ² q

( ² q = ² at z = q) throughout the plastic lid. Therefore, failure of the lithosphere
requires simply that the viscosity at the `hinge’ q reaches the value at the lithosphere
base z = s. We see from (A 74) that this is equivalent to ³ q reaching a critical value.

Finally, from (A 62)1 with Trr º ¡ C º ¡ Tzz,

@½ rz

@z
º @p

@r
+

C

r
=

Z s

z

@T

@r
dz +

C

r
; (A 75)

using (A 63) and (A 64). Therefore,

½ rz =
Z z

0

Z s

z 0

@T

@r
(r; z00; t) dz00 dz0 +

Cz

r
: (A 76)
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(f ) Plastic skin

As a consequence of the calculations above, there is a jump in the shear stress
at the boundary between plastic and viscous parts of the lid. The shear stress must
jump rapidly in the vicinity of this boundary, and we call this region of rapid change
the plastic `skin’ (of the lid). The plastic and viscous values at z = q of the stresses
are (in the plastic scales), from the results given above,

T p las
rr º ¡ T p las

zz = ¡ C; ½ p las
rz =

Z s

0

zTr dz ¡
Z s

q

(z ¡ q)Tr dz +
Cq

r
;

T vis c
rr º ¡ T vis c

zz º 0; ½ vis c
rz = ¡

Z s

q

(z ¡ q)Tr dz:

9
>>>=

>>>;
(A 77)

Note the di®erent uses of subscripts r: Tr = @T =@r, whereas Trr is the radial compo-
nent of the normal stress. The discontinuity in the shear stress requires consideration
of a boundary layer near z = q, and we put

z = q + "± ;
@

@z
=

1
"

@

@±
;

@

@r
=

@

@r
¡ q0

"

@

@±
; (A 78)

where q0 = @q=@r; to leading order the stress equations are then (with the plastic
scaling)

¡ q0 @p

@±
=

@½ rz

@±
¡ q0 @Trr

@±
;

@p

@±
=

@Tzz

@±
:

9
>>=

>>;
(A 79)

Eliminating @p=@ ± and integrating across the boundary layer, we ¯nd

q0[Trr ¡ Tzz] p las
vis c = [ ½ rz ] p las

vis c : (A 80)

It follows from (A 77) that q is given to leading order by

q0 = ¡ 1
2C

·Z s

0

zTr dz +
Cq

r

¸
: (A 81)

It is because we anticipate Tr < 0 that we require the negative sign in (A 73), in
order that q0 > 0: this follows from the observation that (A 81) can be written in the
form

2(r1=2q)0 = ¡ r1=2

C

Z s

0

zTr dz: (A 82)

The solution can be formally completed by calculation of U . As in Fowler (1985),
this can be done by completion of the analysis of the plastic skin. Knowledge of U
is only necessary in evaluating the failure criterion for ³ q using (A 74), but is not
necessary in evaluating ³ q to leading order, and we omit its calculation here.

Appendix B.

Our numerical method for solving equations (3.8) and (3.9) is as follows. We de¯ne
the front-¯xing coordinate

² =
z

s(r; t)
; (B 1)
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so that T ( ² ; r; t) satis¯es

Tt ¡ st

s
² T² =

1
s2

T ² ² + h; (B 2)

with
T = T0 on ² = 0;

T = 1 on ² = 1;

)

(B 3)

and

¡ =
1
s

T²

¯̄
¯̄
² = 1

: (B 4)

We need an expression for st in order to solve (B 2); this can be obtained by di®er-
entiating T (s(r; t); r; t) = 1 with respect to t, which leads to

st =
fjT² ² j=s2g ¡ h

¡

¯̄
¯̄
² = 1

; (B 5)

as long as ¡ 6= 0. We use this for the ¯rst time-step, but thereafter use a backward
di®erence approximation. Suitable initial conditions are given by

s = s00 at t = 0; (B 6)

corresponding to the growth of a conductive lithosphere, and the corresponding initial
T pro¯le should be the solution of the Crank{Gupta problem with ¡ = 0. In practice,
we choose a cubic pro¯le

T = 1 ¡ s00 ¡ 00(1 ¡ ² ) ¡ 1
2
hs2

00(1 ¡ ² )2 ¡ [1 ¡ T0 ¡ 1
2
hs2

00 ¡ s00 ¡ 00](1 ¡ ² )3; (B 7)

in order to satisfy (B 3) and (B 4) with ¡ = ¡ 00 (we choose a small value of ¡ 00 6= 0 to
avoid di±culties in prescribing (B 5)), and also so that jT ² ² j ¹ hs2

00 (which is implied
from (B 5) if ¡ º 0).

Our algorithm is then as follows. Given the solution at time-step j ¡ 1, we step
forward T to time-step j. From this we have an estimate for ¡ in r > 0. However,
the temperature equation can be solved at r = 0 using the free-boundary condition
Tz = ¡ 0 on z = s (if ¡ 0 is prescribed), or else it can be solved directly if s0 is given in
(4.2). In our simulations, we choose this latter condition. Next we solve (3.9) at time-
step j, using the given (or computed) value of s0 in (4.2) as a boundary condition,
together with (4.1). To see how to do this, we write (3.9) as the pair of equations
(with W > 0)

@s

@r
= ­ ¡ 1+ (2=n)W 1=n;

@

@r
[rW ] = r¡ ;

9
>=

>;
(B 8)

where

­ =
µ

Bn

!3

¶1=n

: (B 9)

The value of ­ for n = 3:5 is 2:7. This ¯nally justi¯es our retention of ! in the
delamination layer (see discussion following (A 31)). We speci¯cally assume that

W = 0 on r = 0; (B 10)
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assuming ¡ is ¯nite at r = 0; hence @s=@r = 0 there. From (B 8), we ¯nd that in
fact

W ¹ 1
2
¡ 0r as r ! 0; (B 11)

and thus
µ

@s

@r

¶n

¹ ­ n

2
¡ n+ 3

0 r as r ! 0: (B 12)

If we took W 6= 0 at r = 0, then W ¹ 1=r as r ! 0, and s would have in¯nite slope
there. Solution of (B 8) is now carried out with initial conditions (B 10) and (4.2).
The solution of this problem gives us an improved estimate for s (and thus st), and
the step for T can be iterated, then the s equation again, until a prescribed tolerance
is reached.
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