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Abstract

We present a model for water uptake by plant roots from unsaturated soil. The model includes the simultaneous flow of water

inside the root network and in the soil. It is constructed by considering first the water uptake by a single root, and then using the

parameterized results thereby obtained to build a model for water uptake by the developing root network. We focus our model on

annual plants, in particular the model will be applicable to commercial monocultures like maize, wheat, etc. The model is solved

numerically, and the results are compared with approximate analytic solutions. The model predicts that as a result of water uptake

by plant roots, dry and wet zones will develop in the soil. The wet zone is located near the surface of the soil and the depth of it is

determined by a balance between rainfall and the rate of water uptake. The dry zone develops directly beneath the wet zone because

the influence of the rainfall at the soil surface does not reach this region, due to the nonlinear nature of the water flow in the partially

saturated soil. We develop approximate analytic expressions for the depth of the wet zone and discuss briefly its ecological

significance for the plant. Using this model we also address the question of where water uptake sites are concentrated in the root

system. The model indicates that the regions near the base of the root system (i.e. close to the ground surface) and near the root tips

will take up more water than the middle region of the root system, again due to the highly nonlinear nature of water flow in the soil.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

An adequate supply of water is one of the most
important resources required for plant growth and
function. Due to the undoubted importance of water
conditions for plant growth, much effort has been
expended on trying to quantify the amount of water a
plant requires. In normal circumstances, the amount of
water within a plant is set by a balance between the
water uptake through the roots and the rate of
transpiration through the leaves. If the water saturation,
i.e. the volume of water per unit volume of soil, is below
a level termed the ‘permanent wilting point’, then uptake
ceases, and the plant will wilt (Tinker and Nye, 2000, p.
27). If however the rainfall is very high then the plant
roots can become waterlogged. If waterlogging persists
for long periods of time then the roots can start rotting
and the plant will eventually die.
Clearly, the rate of water uptake by plants and the

factors which control this, are of fundamental interest
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from an agricultural point of view. In addition it seems
inevitable that the onset of global warming will lead to
greately altered patterns of rainfall. Therefore, under-
standing how different plant species will be affected by
different rainfall conditions is necessary to help to
predict the changes in ecosystems due to global
warming. Whilst much can be learned from empirical
studies, developing our theoretical understanding of
water uptake by plants is surely to be desired. This is
even more true in an age when genetic modification
gives us some hope of ‘‘engineering’’ plants to suit
particular rainfall patterns.
The problem of modelling water uptake by plant

roots has previously been dealt with by numerous
authors (for example, Davis, 1940; Gardner, 1964;
Landsberg and Fowkes, 1978; Rowse et al., 1978; Molz,
1981; Iwata et al., 1988; Lafolie et al., 1991; Bruckler
et al., 1991; Chen and Lieth, 1992; Clausnitzer and
Hopmans, 1994; Nye, 1994; Thornley, 1996; Bengough,
1997; Doussan et al., 1998a; Wu et al., 1999) using two
alternative approaches. One approach, of which Dous-
san et al. (1998b) is the most recent development, is to
model water flow inside the root branching structure,
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assuming that the soil is and remains fully saturated.
The other approach, of which Clausnitzer and Hopmans
(1994) is the most recent representative, calculates the
changes in soil moisture conditions assuming that the
pressure inside the root branching structure is constant
and uniform. There have been no models that link the
flow inside the root branching structure to the flow in
the soil. In this paper we consider simultaneous flow
inside the roots and in the soil, and model the water
uptake by the developing root system. We focus our
attention on annual plants, such as maize, important to
agriculture. We consider the development of the root
system to be pre-determined and not dependent on soil
moisture conditions. Although this is a simplification,
we set out in the discussion section how this assumption
could be relaxed once more data concerning this subject
becomes available.
In this paper we will assume that the soil is

homogenous. Thus, we are neglecting the soil cracking
and the fluid channels that might have formed in the soil
as a result of climate change or organisms, such as
worms cohabiting the soil with plants. Clearly, the
model set out in this paper will be closer to the
conditions in carefully controlled laboratory pot experi-
ments. We will also only calculate the variations in the
soil moisture conditions as a function of soil depth, thus
neglecting the horizontal variation in water transport.
We believe this assumption to be applicable for a
situation of field crop, i.e. the situation where the root
length density does not vary horizontally a great deal.
Additional mathematical justifications for this assump-
tion are given in the text and in appendices. The
assumption about vertical variation in soil moisture
conditions can be relaxed if the practical experimental
situation requires it. One can indeed build a full three-
dimensional model. This paper should be viewed as
introducing the mathematical methodology for dealing
with branched root system water uptake and techniques
for calculating simultaneous water movement in the soil
and inside the root system. However, as this paper is
already long, we have chosen to limit ourselves to the
one-dimensional model only.
Our model in this paper consists of coupled partial

differential equations: one for root internal pressure and
one for the soil water saturation. We will derive
analytical and numerical approximations for the solu-
tion to this problem.
2. Water movement in unsaturated soil

In describing soil water movement at the macroscale,
we conceive of the root system as being homogeneous
at the microscale, so that we can define quantities
such as root density and water uptake per unit soil
volume. The equation for conservation of water in the
soil is thus

f
@S

@t
þ = � u ¼ �Fw; ð2:1Þ

where f is the (constant) porosity of the soil, S is the
relative water saturation in the soil (S ¼ fl=f; where fl

is the volumetric water fraction), u is the volume flux of
water and Fw is the uptake of water by plant roots
(volume per unit time per unit volume of soil).
The volume flux of water is given by Darcy’s law,

i.e.

u ¼ �
k

m
½=p � rg #k�; ð2:2Þ

where k is the soil permeability, m is the viscosity of
water, p is the water pressure in the soil, r is the density
of water and g is the gravitational acceleration, and #k is
the unit vector downwards. A reasonable representation
of the soil permeability in terms of relative water
saturation is given by the following formula of Van
Genuchten (1980):

k ¼ ksKðSÞ ¼ ksS
1=2½1� ð1� S1=mÞm�2; 0omo1;

ð2:3Þ

where ks is the water permeability in fully saturated soil,
KðSÞ is the experimentally determined function showing
the reduction in water mobility in the soil due to the
reduction in relative saturation. It originates from the
fact that as the relative water saturation decreases, the
capillary and surface tension forces will become more
important resulting in lower mobility of water in the
system (Van Genuchten, 1980).
Similarly the water pressure in the soil pores can

also be linked to the relative water saturation via the
suction characteristic (Van Genuchten, 1980; see
also Fig. 1), i.e.

pa � p ¼ pcf ðSÞ; f ðSÞ ¼ ðS�1=m � 1Þ1�m; ð2:4Þ

where pa is atmospheric pressure, and pc is a character-
istic suction pressure determined from experimental
data. It is common to take pa ¼ 0 (i.e. measure gauge

pressures relative to atmospheric pressure), and we shall
follow this practice. Parameter m is experimentally
determined for different soils (Van Genuchten, 1980).
The mass conservation equation together with Dar-

cy’s law is generally known as Richards equation for
water flow in the soil. When written in terms of relative
water saturation only, it is given by

f
@S

@t
¼ = � ½D0DðSÞ=S � KsKðSÞ #k� � Fw; ð2:5Þ

where the water diffusivity in the soil is D0DðSÞ ¼
ðk=mÞj@p=@Sj; and

D0 ¼
pcks

m
1� m

m

� �
;

DðSÞ ¼ S1=2�1=m½ð1� S1=mÞ�m þ ð1� S1=mÞm � 2�: ð2:6Þ
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In the term for conduction of water due to gravity, the
(saturated) hydraulic conductivity Ks is given by

Ks ¼
rgks

m
: ð2:7Þ

Table 1 gives values of the parameters D0; pc and m for
various different soil types, and Table 2 gives other
parameters used here and later in the model. Fig. 1
shows typical forms for the relative permeability,
suction and diffusivity as a function of S:

2.1. Boundary condition at the surface of the soil

The boundary condition at the soil surface describes
the amount of water flowing into the soil due to rainfall
0

1

2

3

0.2 0.4 0.6 0.8 1

f

D

K

S

Fig. 1. Graphs of the saturation (S) dependence of hydraulic

conductivity (K), suction characteristic (f ), and soil water diffusivity

(D) given by (2.3), (2.4) and (2.6), respectively, when m ¼ 0:5:

Table 1

Values for soil parameters (Van Genuchten, 1980)

Parameter f D0 ð
10�6 m2 s�1Þ

Hygiene Sandstone 0.250 0.67

Touchet Silt Loam G.E.3 0.469 4.37

Silt Loam G.E.3 0.396 0.50

Guelph Loam (drying) 0.520 1.17

Guelph Loam (wetting) 0.434 —

Beit Netofa Clay 0.446 0.14
or watering. Thus, we take the boundary condition at
the surface of the soil to be given by

�D0DðSÞ
@S

@z
þ KsKðSÞ ¼ qs at z ¼ 0; ð2:8Þ

where qs is the volume flux of water per unit soil surface
area per unit time, i.e. rate of rainfall.
If the rainfall is very large (larger than the saturated

hydraulic conductivity), then surface ponding will occur,
and the above boundary condition is replaced by

S ¼ 1 at z ¼ 0; ð2:9Þ

which in turn implies that the water movement from the
surface will be determined by the pressure condition via
Darcy’s law (Celia et al., 1990).
In this article we will not discuss surface ponding

problems and thus only deal with the boundary
condition given by Eq. (2.8).

2.2. Boundary condition at the base of the soil layer

The boundary condition at the base of the soil will
generally depend on the site considered. If the water
table is supposed to be at a fixed level z ¼ lw; then we
should prescribe S ¼ 1 at z ¼ lw: This is the case of
efficient drainage, and may be appropriate in agricul-
ture. On the other hand, it is more appropriate for soil
Ks ðcm day�1Þ pc ð
105 PaÞ m m

108.0 0.124 0.90 10.5

303.0 0.196 0.86 7.09

4.96 0.232 0.51 2.06

31.6 0.085 0.51 2.03

— 0.049 0.64 2.76

0.082 0.645 0.15 1.17

Table 2

Miscellaneous typical parameter values

Parameter Definition Value

r Density of water 2:6
 103 kg m�3

g Gravitational acceleration 9:8 m s�2

qs Volume flux of water per unit soil

surface area

1 m yr�1

2pakr Overall radial conductivity of

water per unit length of root

7:85

10�10 m2 s�1 MPa�1

jPj Absolute value of pressure at the

base of the root

1 MPa

a Root radius 5
 10�4 m

L1 Max. length of 1st order root 8 cm

L Max. length of zero order root 50 cm

la Length of apical non-branching

zone

15 cm

ln Interbranch distance 0:7 cm
cos b Cosine of the branching angle

between zero and 1st order roots

0.5
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overlying an aquitard, and also in laboratory pot
experiments, to prescribe zero water flux at the base.
We make the latter choice here, and thus prescribe

�D0DðSÞ
@S

@z
þ KsKðSÞ ¼ 0 at z ¼ lw: ð2:10Þ

Clearly, the depth of aquitard depends on the specific
geological site considered and it can vary considerably.
In this paper we take lw to be order of 1 m, as this would
be appropriate for analysing data from pot experiments
in a container of E1 m deep (Gardner, 1964).
It is clear that the choice of the boundary condition

will quantitatively influence the outcome of the model
and thus when using this model for interpreting specific
physical situations in the field care should be taken to
define the right one. However, we believe that our choice
of zero flux boundary condition will not give qualita-
tively different results from the full saturation boundary
condition in the case where the full saturation level is
deep in the soil. The results of course change when the
level of full saturation is very near the soil surface. The
extreme example of this is waterlogged soil leading to
root death.
3. Water uptake by a single cylindrical root

In the first part of this section we describe the model
for the water flow within the single cylindrical root. The
second part of this section will deal with estimating the
water saturation profile around a single cylindrical root.
We concentrate our analysis on the differences between
roots of different sizes so as to be able to extend our
modelling in the following section to the root branching
structure scale.

3.1. Water pressure inside the single cylindrical root

Water flows from the roots to the leaves and shoots
along the xylem tubes located in the central part of the
root (see Fig. 2). Xylem vessels are tube-like structures
formed of non-living cells which provide mechanical
support to the roots and stems, and transport the water
and nutrient ions. In the case of agricultural plants like
Fig. 2. Root cross-sectional structure with all three types of xylems,

after Steudle and Peterson (1998).
maize and beans, the xylem tubes can be divided into
three different size categories: protoxylem, early metax-
ylem and late metaxylem tubes (Steudle and Peterson,
1998). Protoxylem tubes have the smallest radius, but
they are open for most of the root length.1 Early
metaxylem tubes are larger in radius than protoxylem
tubes, but they are open and functional only after a
short distance from the tip of the root. Late metaxylem
tubes are the largest in radius and they are thought to be
open and functional only at a distance from the root tip
equal to the apical non-branching zone. The exact size
of xylem tubes is strongly dependent on the root branch
order. In Table 3 we present morphological data on
xylem tubes of maize plant based on articles by Frensch
and Steudle (1989), Weerathaworn et al. (1992), and
Varney et al. (1991).
Water flow along the xylem tubes has been shown to

be very well characterized by Poiseuille law for water
flow in a cylindrical tube (Frensch and Steudle, 1989).
Thus, we take the axial flux of water (downwards) inside
the root to be given by the sum of all the fluxes in each
open and functional xylem tube, i.e. we take

qz ¼ �kz

pr

z
� rg

h i
; ð3:1Þ

where pr is the root fluid pressure inside the xylem tubes,
z is the position along the root, and the quantity

kz ¼
X

i

pniR
4
i

8m
ð3:2Þ

is known in the soil science literature as the root axial
conductivity; Ri is the radius of the xylem vessel, ni is the
number of open functional xylem vessels with radius Ri

per cross section of the root, and i is an index for
different radius categories. The units of qz are m3 s�1;
and those of kz are m

4 Pa�1 s�1: The form of kz has been
successfully validated for various different root classes
(see Table 3). We note that since, in the maize zero order
roots, the late metaxylems are not open near the apical
non-branching zone, then the axial conductivity in this
zone is much lower than in the main branching region
and in basal non-branching zone, i.e. kz;0½E�okz;0½E þ
L� (see Table 3).
Water movement from the soil across the root cortex

(see Fig. 2) to the xylem tubes is much less well
understood. In general, water is thought to move inside
the root cortical tissues along at least two separate
pathways: the apoplasmic and symplasmic pathways
(Steudle and Peterson, 1998). In the case of the
apoplasmic (sometimes also known as the passive)
pathway, water flows between the cells in response to
a pressure gradient between the xylem vessels and soil.
In the case of the symplasmic pathway the water moves
inside the cell and water movement from cell to cell
1By open xylem tube we mean open mature xylem tube that can

carry water flow.
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Table 3

Properties of xylem elements of zero and first order roots

Order i d ¼ 2a dE nE dL nL kz;i ½E� kz;i ½E þ L� Ref.

ðmmÞ ðmmÞ ðmmÞ ðm4 s�1 MPa�1Þ ðm4 s�1 MPa�1Þ

0 1000 27.4 16.2 92.3 6.6 1:875
 10�10 1:198
 10�8 (a), (b)

1 200 5 3 — — 4:6
 10�14 4:6
 10�14 (c)

a is the radius of the root, i.e. d ¼ 2a is the diameter of the root, dE is the diameter of early metaxylem elements, nE is the number of early metaxylem

elements per cross-sectional area, dL is the diameter of late metaxylem elements, nL is the number of late metaxylem elements per cross-sectional area,

kz;i ½E� is the hydraulic conductivity calculated using Poiseuille’s law, assuming that only early metaxylem elements are functioning, and kz;i ½E þ L�
is the hydraulic conductivity calculated assuming that early and late metaxylem elements are all functioning. References are: (a) Frensch and Steudle

(1989), (b) Weerathaworn et al. (1992) and (c) Varney et al. (1991).
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occurs via apoplast, plasmodesmata or cytoplasm. The
symplasmic pathway requires membrane transport
proteins to move water from extracellular space into
the cells and because of that this pathway is often called
the active pathway.
It has been very difficult to quantify the relative

importance of one pathway over the other, and there-
fore most theoretical work has been concerned with
determining the parameter for water diffusivity in the
cortical tissues applicable for passive pathway. The most
commonly used model has been the circuit analog model
(Molz, 1981). Using this model Molz determined the
diffusivity of water in the root cortical tissues to be D ¼
1:26
 10�6 m2 s�1: Various authors have also measured
the radial fluxes of water through root cortical tissues
(North and Nobel, 1996) and those measurements have
been found consistent with the cortical tissue water
diffusivity calculations. In this paper we will consider
only the passive pathway of the water for the following
reasons. The inclusion of the active pathway would
require us to introduce the chemical potentials inside the
plant roots. These potentials primarily rise because of
the nutrient uptake by the plant roots. However, in the
current paper we will not introduce the nutrient uptake
and its interplay with water uptake into our model as we
believe we can obtain valuable knowledge about the
plant-soil continuum by studying the passive pathway,
i.e. pressure driven pathway, only. This is in agreement
with a view held by Steudle and Peterson (1998). They
find that the water movement through the root system is
primarily passive, i.e. water passes through roots with-
out plant actively dedicating its resources into trans-
porting it. This is in comparison to nutrient uptake that
is generally thought to be an active process. Steudle and
Peterson (1998) also note that even though different
pathways of water movement through the root system
might be important in different regions of the root
system, the overall radial hydraulic conductivity of the
root tissues might not necessarily be altered as the
down-regulation of one of the pathways is compensated
by the up-regulation of the other. Thus, even though we
acknowledge that the nutrient uptake and resulting
osmotic pressure inside the root system can be
important for the water uptake by plant roots we will
neglect this in the current paper. The combined models
for simultaneous water and nutrient uptake will be
presented in a further publication.
Considering the passive radial water pathway only we

take the radial flux of water qr to be given by (Landsberg
and Fowkes, 1978)

qr ¼ krðp � prÞ; ð3:3Þ

where kr is the root radial water conductivity parameter;
the units of qr are m s�1; so those of kr are m Pa�1 s�1:
One can generally assume that the thickness of root
cortex tissues is proportional to the radius of the root a:
This argument is based on the root water diffusivity
model discussed in Molz (1981). Based on this the flux of
water across the cortex is inversely proportional to Da;
the thickness of the cortex. Thus, we assume in this
paper that the thickness of root cortex Da is the main
component determining the root radial water conduc-
tivity kr and that Da is proportional to the root radius a:
This implies that 2pakr is constant for roots of different
radius.
In the literature we can find several reports that deal

with the variations in root radial conductivity with root
age, environmental conditions in the soil, etc. (Steudle
and Peterson, 1998; Javot and Maurel, 2002; Henzler
et al., 1999; Jackson et al., 2000). These studies are
primarily performed to consider a single water pathway
level. However, even though one pathway might be
inhibited depending on root age, etc., the other path-
ways are thought to be able to compensate this loss and
thus the overall radial hydraulic conductivity of the
plant root might not change considerably (Steudle and
Peterson, 1998). We acknowledge that such variations in
root radial conductivity might be important for micro-
scale water movements in the soil and inside the roots,
however we will neglect such variations in this paper as
inclusion of such effects is likely to make only a small
quantitative difference to the results since the variation
in overall radial conductivity is small (Steudle and
Peterson, 1998), i.e. much less than three orders of
magnitude in comparison to the axial conductivity.
However, we will discuss in the conclusion section of
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this paper how the spatial variations in root radial
hydraulic conductivity could be incorporated into the
model presented in this paper so that with a detailed
quantitative data of the spatial dependence of the
hydraulic conductivity, the model could still be used.
The conservation of incompressible water inside a

single cylindrical plant root is given by the balance
between the axial and radial fluxes, (3.1) and (3.3)
respectively, i.e.

2pakrðp � prÞ ¼ �kz

@2pr

@z2
: ð3:4Þ

We suppose that the structural properties of the root tip
preclude an axial flux there, thus

@pr

@z
� rg ¼ 0 at z ¼ L: ð3:5Þ

At the base of the root we prescribe the driving pressure:

pr ¼ P at z ¼ 0: ð3:6Þ

Note that P; like all the pressures, is negative (relative to
atmospheric pressure). During the day time when plants
breathe Pa0 and during the night time when the
stromata are closed and thus no breathing takes place
PE0: Thus, in general, the driving pressure P is a
function of time. Eqs. (3.4)–(3.6) were first used by
Landsberg and Fowkes (1978) to calculate the root
internal pressure pr for a given soil water pressure p

profile. However, in their case the water uptake did not
influence the moisture conditions in the soil.
By solving the above Eqs. (3.4)–(3.6) we find that

during the day when Pa0 the pressure inside thick
roots, like maize zero order roots for example, is
constant and approximately equal to the pressure at
the base of the root, i.e. prðzÞEP (see Appendix A for
mathematical derivation). This is because in thick long
roots the limiting factor for water uptake is the radial
pathway, since the water movement along the root is
easy because of the large size and number of open
mature xylem vessels, i.e. kzb2pakrL

2; where L is the
length of the root. Thus, the amount of water taken up
by those large roots is fully determined by the water
pressure variations in the soil. However, the pressure
inside small thin roots, such as first order lateral
branches of maize plant, is for most part equal to the
pressure in the soil apart from the small region near the
base of the roots where the driving pressure P has an
influence. Thus, the pressure profile inside such root
is given by prðzÞ ¼ pðzÞ � ½P � pð0Þ�e�kz; where k2 ¼
2pakrL

2=kzb1 is the ratio of axial and radial con-
ductivity of the root and L is the length of the root (see
Appendix A). Thus, in small thin roots, the limiting
mechanism for water movement inside the root is the
low axial conductivity due to the small diameter of
mature open xylem vessels, i.e. kz52pakrL

2 (see
Appendix A for mathematics).
At night when the plant is not breathing, PE0; there
will not be any water uptake. However, depending on
the water pressure in the soil the plant can start bleeding
out water. In the case of large thick roots, the root
internal pressure is prðzÞErgz=L and the bleeding can
happen anywhere along the root, but the most likely site
will be near the tip, since the pressure head inside the
root is highest there (see Appendix A). In the case of
small thin roots, like maize first order roots, bleeding
out water can only happen in the very narrow region
near the base of the roots (see Appendix A) since the low
axial conductivity in comparison to the high radial
conductivity causes the pressure inside the roots to
equilibrate rapidly with the pressure outside in the soil.
Thus, there is no pressure head build up in the small thin
roots (see Appendix A). The bleeding can occur in the
region near the base where the boundary condition p ¼
0 at z ¼ 0 is still felt. However, this region is very small.
In conclusion to this section we would like to draw

attention to the fact that most of the ‘‘action’’, i.e. water
uptake or bleeding out, in the first order lateral branches
of the maize roots occurs in the very small region near
the base of those roots, i.e. near the branch point. The
width of this ‘‘active’’ region is approximately of order
E0:7 cm: This fact will enable us in Section 4 to handle
the water uptake by the root branching system with
greater ease. However before we proceed to do that, we
need to discuss the water uptake influence on the water
saturation profile in the soil surrounding cylindrical
roots.

3.2. Water saturation profile around a single root

In the previous section we developed a model for the
root internal water pressure pr in terms of the soil water
pressure p: Now we will discuss the second half of the
problem, the flow of water in the soil. As described
previously, water movement in the soil is described by
the Richards equation (2.5) for unsaturated soil. We
suppose that when looking at a small section of a root,
the root can be considered as a straight cylinder.
Since there are many roots present in the soil we

calculate the average distance between the roots based
on average root radius and average root length density
per unit volume of soil. On the macroscale it would seem
reasonable to expect that uptake and saturation could
be treated using a root density. However, it could be
that on the microscale, i.e. the inter-root distance scale,
there is a strong spatial variation in the water saturation.
This would influence the water uptake calculation on a
root system scale. Thus, the aim of this section is to find
out if such microscale variations in water saturation can
occur, and if they can what would be the impact on the
way we model the macroscale behaviour of the plant–
soil system. Thus, we approximate the presence of other
roots in the soil by using the measure of average distance
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between the roots aint and use this as a position for
reflection boundary (zero flux boundary) around a
single cylindrical root.
We will also ignore the effect of gravity because of the

small length scale which is appropriate, i.e. we are
looking at a very small section along the cylindrical root
so that the gravity induced changes in the root internal
pressure and in the water saturation in the soil are
negligible.
The model for water uptake in cylindrical radial

coordinates is then given by

f
@S

@t
¼
1

r

@

@r
D0DðSÞr

@S

@r

� �
ð3:7Þ

with boundary conditions

D0DðSÞ
@S

@r
¼ kr½pðSÞ � pr� at r ¼ a;

@S

@r
¼ 0 at r ¼ aint; ð3:8Þ

where

pðSÞ ¼ �pcðS�1=m � 1Þ1�m ð3:9Þ

is the van Genuchten suction-characteristic function
(2.4), a is the radius of the root, aint is a measure of inter-
branch distance, kr is the root radial conductivity, and pr

is the root internal pressure, PpprppðSÞ:
Non-dimensionalizing this model with rBa; tB

fa2=D0 and prBjPj we obtain the following dimension-
less equation:

@S

@t
¼
1

r

@

@r
rDðSÞ

@S

@r

� �
ð3:10Þ

with dimensionless boundary conditions

DðSÞ
@S

@r
¼ l½�ewf ðSÞ � pr� at r ¼ 1;

@S

@r
¼ 0 at r ¼ aint=a; ð3:11Þ

where

l ¼ krajPj=D0 ð3:12Þ

is the dimensionless water uptake parameter calculated
using the scale for water pressure jPj inside the plant
root, i.e. it shows the relative importance of water
uptake in comparison to the water mobility in the soil.
The other parameter

ew ¼ pc=jPj ð3:13Þ

is a dimensionless van Genuchten parameter showing
the importance of capillary suction pressure in compar-
ison to the root internal pressure. The dimensionless
suction characteristic f ðSÞ is given by Eq. (2.4).
The typical soil parameters are shown in Table 1 and

typical values for the root radial conductivity, etc. are
shown in Table 2. For Silt Loam G.E.3 we find that the
dimensionless water uptake parameters are lE2:5

10�4 and ewE2:32
 10�2: Since l51 the root surface
flux @S=@rjr¼151 for all values of root surface water
saturation.
For values fB0:4; aB5
 10�4 m; D0B10�6 m2 s�1;

the diffusive time scale fa2=D0 is very small, about 0:1 s;
compared with a seasonal plant growth period of four
months, or 107 s: The water diffusive time-scale
calculated based on the inter-root distance is 10 s
(aint=aB10) and the diffusive time-scale based on the
maximum root length is about a minute when the soil is
fully saturated. Thus, the soil water movement time-
scales are mostly much shorter than the plant growth
time-scale, and time-scales related to environmental
changes that occur over days, weeks and months. Even a
rapid rainfall event is still going to be on a longer time-
scale than the diffusive time-scale of water around a
single root. Thus, on this longer time-scale of interest, a
diffusive quasi-equilibrium between sub-branches is
reached in which, since l is very small, the saturation
profile surrounding the roots is essentially flat. In
computing the macroscopic water uptake by the plant
root system, we can therefore simply use the expression
for the flux at the root in Eq. (3.8) multiplied by the root
surface area per unit volume, where S can be taken as
the local average saturation in the soil.
We thus have the dimensional expression for the soil

water uptake in Eq. (2.1),

Fw ¼ 2paldkr½�pcf ðSÞ � pr�; ð3:14Þ

where ld is the root length density [cm of roots per cm3

of soil], and we have

ldB½pðaint � aÞ2��1E½pa2int�
�1: ð3:15Þ

This applies for roots of a fixed radius a; but since we
suppose 2pakr is constant for different roots, the
expression can be used generally for different root sizes.
4. Water uptake by growing root branching structure

The water uptake by the root system is not simply
given by Eq. (3.14), because of the interconnectedness of
the root system architecture. In order to model the effect
of this, we consider a simple model for the root
architecture consisting of zeroth and first order lateral
roots, as indicated in Fig. 3. In principle, the approach
presented below can be extended to root systems of
arbitrary order. The idea is to use the isolated cylinder
model for the smallest roots (here first order), and then
use the calculated basal flux in these roots as an input to
the uptake by the roots of next lowest order. We thus
begin with the description of root system growth
suitable for the maize plant.
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4.1. Growth of the root system

Roots of annual plants grow by generating new root
tissue at the tip of the root. Additionally, they can
develop lateral branches which in turn can grow by
generating new tissue at their tip. This pattern of
developing lateral branches from the side of the already
existing root is then repeated. It is however thought that
due to the root internal hormone regulation, there is a
non-branching zone near every root tip and near the
base/branch point. In those non-branching zones roots
cannot develop lateral branches. Thus, if the length of
the apical non-branching zone is la and that of the basal
non-branching zone is lb; then the root can develop
lateral branches only if its overall length l is larger than
the sum of non-branching zones, i.e. l > la þ lb: In the
case of maize plant there can be 3 orders of roots
present: zero order roots are the ones growing out from
the seed, first order roots branch off from the zero order
roots and second order roots branch off from first order
roots. In this paper we will consider maize roots with
zero and first order roots only. This is because in Section
3 we found that first order branches of maize roots take
up water only in a small thin region near the base.
Second order roots will take up even less water and thus
we can neglect them. This is also in agreement with
observation of Varney et al. (1991) who found that the
field grown maize plants had primarily zero and first
order branches present and not very many second order
branches. Even though we are making this simplifying
assumption in the calculations presented in the current
paper, the model developed here can easily be extended
to include more root orders should this be necessary.
Clearly, since first order lateral branches grow from

the zero order root, there will be a difference in
directionality between the growth of the zero order root
and its sub-branches. We consider that the first order
lateral branches of the maize plant grow out from the
side of the zero order root at an angle b: Assuming that
the zero order root is growing vertically downwards into
the soil, then the coordinate z1 along a first order root is
given by z1 ¼ z=cos b (see Figs. 3 and 4).
Another question that we need to address is the speed

of root growth. Clearly, the rate of root growth depends
on may factors: the nutrient and water status in the soil,
their uptake by the plant, the temperature of the soil and
air, and so on. In order to simplify the problem
presented in this paper, we consider the growth of roots
to be pre-determined. Thus, the model for root system
growth presented here is based on the observation of
root growth rather than on a mechanism of it. We also
have to note that the mechanism of root growth and its
dependence on the environment have only recently
started to be investigated in detail due to advances in
molecular biology. Thus, we do not believe that there is
enough quantitative data available in the literature to
tackle the mechanistic aspects of root system develop-
ment with enough rigour. Therefore, we use a similar
approach to that of Pages et al. (1989), Doussan et al.
(1998a, b) to model the maize root system development.
They considered the rate of root elongation to be given
by an experimentally measured parameter ri; where i

denotes the root order. They also indicate that it is
reasonable to assume that there is a maximum possible
length Ki for roots of different orders. Thus, the simplest
possible way to express this type of root elongation
mathematically is

@li

@t
¼ r1 1�

li

Ki

� �
: ð4:1Þ

By solving this equation subject to the initial condition
li ¼ li;0 (li;0 is the initial length of ith order root) at t ¼ 0
we get that the length li of ith order root as a function of
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presented in Appendix A cannot be used.
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time is given by

liðtÞ ¼ Ki þ ½li;0 � Ki� exp �
rit

Ki

� �
: ð4:2Þ

4.2. Water uptake by first order lateral branches

As discussed in Section 3 (see also Appendix A), the
water pressure inside the single first order branch of a
maize plant is given by

prðz1ÞEpðz1Þ þ ½prðz0Þ � pðz0Þ�e�kz1 ; k2 ¼
2pakrL

2
1

kz;1
;

ð4:3Þ

where kr and kz;1 are, respectively, the radial and axial
hydraulic conductivities of first order branches, a and L1

are, respectively, the radius and length of first order
branches, z0 is the location of the branch point on the zero
order root, and z1 is measured along the first order root.
As discussed in Section 3, in this situation, only a very

thin region near the base, i.e. near z0; of the root
provides resistance to water flow, since in the rest of the
region the water pressure inside the root is equal to the
water pressure in the soil. In this case the limiting
mechanism for water movement inside the root is the
low axial conductivity due to the small diameter of
the xylem vessels. The approximate expression for the
dimensional upwards water flux delivered at the base is
therefore given by

�qzEð2pkrkz;1Þ
1=2½pðz0Þ � prðz0Þ�: ð4:4Þ

We suppose that *a is the mean (radial) distance between
plants, and is given by

*a ¼ a0 þ L1 cos b ð4:5Þ

(see Fig. 4), where a0 is the zeroth order root radius. Let
c1ðzÞ be the density of first order roots on the zeroth order
roots, i.e. in a length dz of zeroth order root there are
c1ðzÞ dz first order roots; then the water uptake F1ðzÞ by
first order roots per unit volume of soil which is delivered
to the zeroth order roots is given by, using Eq. (4.4),

F1ðzÞ ¼
f2pakrkz;1g

1=2c1ðzÞ

pða0 þ L1 cos bÞ
2

½p � pr�; ð4:6Þ

where pðz; tÞ is the water pressure in the soil, prðz; tÞ is the
water pressure inside the zero order root, and we are
now supposing horizontal uniformity in the pressures,
i.e. the pressure at the base of the first order sub-branch
branching out from point z0 is equal to the pressure
inside the zero order root at position z0: The units of F1

are m3 (water) s�1 m�3 (soil) (c has units of m�1).

4.3. Water uptake by zero order roots

In addition to its own radial uptake of water from
the soil, a zero order root also takes up water from its
sub-branches (a quantity p *a2F1; volume of water per
unit time per unit zeroth order root length). Thus the
total flux per unit height to the zeroth order root is

½2pakr þ f2pakrkz;1g
1=2c1ðzÞ�ðp � prÞ ð4:7Þ

and it follows that the corresponding equation for the
zero order root internal water pressure variation is,
using mass balance,

½2pakr þ f2pakrkz;1g
1=2c1ðzÞ�ðp � prÞ ¼ �kz;0

@2pr

@z2
: ð4:8Þ

Suitable boundary conditions for this equation are

pr ¼ P at z ¼ 0;
@pr

@z
� rg ¼ 0 at z ¼ l0; ð4:9Þ

where l0 is the zeroth order root length and will depend
on time as the root grows. By its definition c is the
inverse of the average distance between the subbranches
in the branching region. We now suppose branching is
uniform, so that c ¼ 1=ln in the branching region and
c ¼ 0 in the non-branching (apical) region. This will be
appropriate in field scale studies, where an ensemble
average will yield this form for c; and is also reasonable
if ln5L (which we take to be the case, since appropriate
values for maize are ln ¼ 0:7 cm; L ¼ 50 cm). Clearly,
the model presented could easily be extended to use a
spatially varying function for c in the equations above.
For a maize plant, we use values in Table 3, together

with 2pakr ¼ 7:85
 10�10 m2 MPa�1 s�1; L ¼ 0:5 m;
ln ¼ 0:7
 10�2 m: Together with the definition of c;
we find that the parameter k2; which measures the
relative importance of radial water flow in comparison
to axial water flow (see Appendix B for details and also
Section 3), is given by

k2 ¼

2pakrL2

kz;0
¼ 0:033 for l0 � lapzpl0;

branching zone;

2pakrL2

kz;0
þ f2pakrkz;1g

1=2L2

lnkz;0
for 0pzol0 � la;

¼ 1:01 non-branching zone:

8>>>>>><
>>>>>>:

ð4:10Þ

As we can see, unlike the case of a single unbranched
zero order root, presented in Section 3, the inclusion of
water flow from the first order sub-branches into the
zero order root results in the variations of soil water
pressure p becoming important in determining the zero
order root internal pressure.2 Thus we need to couple
Eqs. (4.8) and (4.9) to the equations describing the water
flow in the soil and solve the resulting coupled equations
numerically. Before we do this we recap the expressions
for the water uptake by zero and first order roots.
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The direct water uptake F0 by the zero order root per
unit volume is given from Eq. (3.14) by

F0 ¼
2pakr

pða0 þ L1 cos bÞ
2
½p � pr�: ð4:11Þ

Thus the overall water uptake by the root system is

Fw ¼F0 þ F1

¼
2pakr þ f2pakrkz;1g

1=2c1ðzÞ

pða0 þ L1 cos bÞ
2

½pðSÞ � pr� ð4:12Þ

and this expression is used as a volume sink in solving
the Darcy–Richards equation (2.5) for S:

4.3.1. Summary: macroscopic model equations for water

uptake by growing root system

The model can then be written in the form (assuming
z dependence only)

@

@z
D0DðSÞ

@S

@z
� KsKðSÞ

� �
¼

@S

@t
þ Fw; ð4:13Þ

where

Fw ¼
2pakr þ f2pakrkz;1g

1=2c1ðzÞ

pða0 þ L1 cos bÞ
2

½pðSÞ � pr� ð4:14Þ

(or Fw ¼ 0 for z > l0).
The boundary conditions for the model are

D0DðSÞ
@S

@z
� KsKðSÞ ¼

�qs at z ¼ 0;

0 at z ¼ lw:

(
ð4:15Þ

The root internal pressure pr is calculated from

½2pakr þ f2pakrkz;1g
1=2c1ðzÞ�ð�pcf ðSÞ � prÞ

¼ �kz;0
@2pr

@z2
ð4:16Þ

with

pr ¼ �P at z ¼ 0;
@pr

@z
� rg ¼ 0 at z ¼ l0: ð4:17Þ

The functional forms of DðSÞ; KðSÞ; and f ðSÞ are
given by

DðSÞ ¼ S1=2�1=m½ð1� S1=mÞ�m þ ð1� S1=mÞm � 2�; ð4:18Þ

KðSÞ ¼ S1=2½1� ð1� S1=mÞm�2; ð4:19Þ

f ðSÞ ¼ ðS�1=m � 1Þ1�m: ð4:20Þ

In addition, we need an initial condition for S; and we
take this to be spatially uniform, i.e. at time t ¼ 0 the
relative water saturation is given by S ¼ SN: In our
simulations, we choose a zero root tip growth law given
by Eq. (4.2), i.e.

l0 ¼ K0 þ ½l0;0 � K0� exp �
r0t

K0

� �
: ð4:21Þ

As one can see this is a predetermined function for the
growth of the zero order root. We would like to stress
that this is in no way a limitation of this model as this
growth law can easily be substituted with a different
function if function (4.21) is not applicable. The
dimensionless equations of this model are presented in
Appendix C.
5. Numerical results

The above model consists of a nonlinear diffusion–
convection equation for water movement in the soil and
a second order ordinary differential equation for the
root internal pressure. We solved the diffusion–convec-
tion equation using an implicit finite difference scheme
for approximating the diffusive term and an upwind
scheme to approximate the convective term (Morton
and Mayers, 1994). The resulting system of algebraic
equations was solved using the Thomas algorithm
(Morton and Mayers, 1994). The equation for the
zero order root internal pressure is solved using a
finite difference scheme and the Thomas algorithm at
each time step of the diffusion–convection equation
solution.
The results of numerical experiments with this model

are presented in Fig. 5. We have assumed there that the
driving pressure P at the base of the root system is
constant, and that the radial hydraulic conductivity kr of
water is constant along each root, however we have
incorporated the effects of immature xylem vessels in the
manner described earlier. There are essentially two
reasons for presenting the results for this simplified case.
Firstly, we aimed to observe the changes in the soil
moisture conditions that occur over the time-scale of
months, i.e. plant growth time-scale. Thus, the constant
value of P should be considered an average daily driving
pressure, i.e. driving pressure averaged over the en-
semble of daily values for P: Secondly, the radial
conductivity has been found to depend on the age
of the root and aquaporin channel activity
(Henzler et al., 1999; Javot and Maurel, 2002); how-
ever, the exact spatiotemporal parameterization of
this dependence is not available. Thus we have neg-
lected it.
As we can see in Fig. 5 the water saturation profile

settles over a time-scale of order one month into a quasi-
steady state in the rooting region of the soil. This quasi-
steady state is characterized by a wet zone near the
surface of the soil (near z ¼ 0) if W > 0; and a dry zone
just below it. If there is no surface rainfall (W ¼ 0), then
the dry zone develops without a surface wet zone.
Because the overall water uptake in comparison to the

water mobility in the soil is small (the parameter lw51
in (C.2) in Appendix C), one might suppose that the
relative water saturation S in the soil would relax
rapidly to a quasi-equilibrium state. However, this
conclusion fails if S is too small, since then D and K

tend to zero. We define a critical value of S; Sc; when
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Fig. 5. Water profile due to water uptake by a developing root system for different rainfall patterns. The graphs on the left are for W ¼ 0 (no

rainfall), while those on the right are for W ¼ 0:05; corresponding to a high average seasonal rainfall (about 3 m yr�1). The dashed line shows the

initial condition, the dotted–dashed line corresponds to t ¼ 1 months, the solid line to t ¼ 2 months, and the dotted line to t ¼ 3 months. Parameters

are e ¼ 0:1; lw ¼ 0:1; ew ¼ 0:02; and tip growth is given by l0 ¼ 1þ ðl0;0 � 1Þe�nt with n ¼ 0:9 and l0;0 ¼ 0:1:

T. Roose, A.C. Fowler / Journal of Theoretical Biology 228 (2004) 155–171 165
this happens by the relation (see also Appendix C)

D0DðScÞ ¼
2pakr þ f2pakrkz;1g

1=2

pða0 þ L1 cos bÞ
2

: ð5:1Þ

For a typical maize plant in a silt loam soil, ScE0:59:
When SoSc; as throughout most of the simulations, we
can no longer neglect the temporal changes in relative
water saturation in the soil, i.e. right-hand side of
Eq. (4.13).
As t increases, we expect S to approach an

equilibrium solution as the current model not only
considers the water uptake from the soil, but also allows
the bleeding out of water from the plant to the soil. We
define the equilibrium value S� to be the value when the
uptake of water pressure at the base is equal to the soil
suction pressure. Thus, we define S� by

�pcf ðS�Þ þ pr ¼ 0; ð5:2Þ

i.e. in this case Fw ¼ 0: In the case of maize, S�E0:02
for prE� 1: The region where the value of S reaches S�

in a time-scale of plant growth comes about because all
the water being supplied at the surface of the root has
been taken up in the top region of the soil, i.e. in the
region from 0 to z�: Thus, the value z� can be defined as
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a solution to

qs ¼
Z z�

0

Fw dz: ð5:3Þ

A more rigorous expression can also derived for z� (see
Appendix C). For a typical maize plant calculation as
shown in Fig. 5, the value of z� should be around 0:5;
and we see that this is in a good agreement with
numerical simulations.3

The region below this, z > z�; corresponds to the
development of a dry zone. This dry zone extends to the
surface if there is no rainfall, as there is then nothing to
keep S > S�: The dry zone is of finite depth, since there
is a further wet zone connecting to the far field water
table. This lies in zXl0; since we must have Fw ¼ 0 in
order that R� ¼ W �

R z�
0 Fw dz can take the very small

constant value which enables S to approach SN in the
far field. We can also derive a condition (see Appendix
C) when such dry zone in the middle of the rooting
region appears, i.e. if

qso
2pakr þ f2pakrkz;1g

1=2c1ðzÞ

pða0 þ L1 cos bÞ
2

1�
C

2

� �
;

C ¼
k2la

1þ k2l0la
; ð5:4Þ

then the dry zone can develop in the middle of the
rooting zone.
6. Conclusions

In this article we have set out to calculate the water
uptake by a typical agricultural plant such as maize. We
have done this by combining a model for the soil water
saturation with a model for the variation of the water
pressure in the root system itself. In order to make the
model tractable, we have used a number of approxima-
tions. In particular, we have found that the variation of
water saturation in the vicinity of a single root is small,
and this allows us to derive the individual root uptake in
terms of the local saturation. We have also allowed in
the model for the fact that the root system has a
branched architecture, so that the n-th order roots
supply water to the ðn � 1Þ-th order roots. In the version
presented here, only zeroth order and first order roots
are included.
Our principal result is that as a result of water uptake

by a plant, a dry zone will develop in the soil, in the
lower part of the rooting zone, providing the surface
rainfall is sufficiently low. The explicit criterion is given
by Eq. (5.4), and the fraction of the root system which is
wet is z�; given by Eq. (5.3). Using values in Table 2, we
have CE0:23; which is relatively small, so that Eq. (5.3)
3Dimensionless z� ¼ W=lw ¼ 0:05=0:1 ¼ 0:5 (see Appendix C).
can be written approximately as

z�E
Vs

Vr

¼
p *a2qs

2pakrjPjL
ð6:1Þ

and this quantity is the perfusion ratio, i.e. Vs is the
surface volume supply rate per plant, and Vr is the
uptake by the root system. The approximate criterion
for the occurrence of a dry zone is simply that VsoVr;
and is due to the fact that the capillary suction
parameter pc is much smaller than the root internal
driving pressure jPj: If Vs > Vr; then the plant becomes
waterlogged, and this is easily seen in the model, because
in this case

qs >

Z l0

0

Fw dz; ð6:2Þ

so that there is no steady state. For a maize root system
with a maximum length of the roots 50 cm; the critical
level of rainfall for this to occur is about 5 cm day�1:
The modelling presented in this article also helps to

address the question of where the main sites of water
uptake by plant root systems are. This question has been
of great interest to experimental and theoretical
biologists (Varney and Canny, 1993; Doussan et al.,
1998a, b). Experimental studies have found that most of
the water uptake by a zero order root occurs near the tip
of the root (Varney and Canny, 1993). This has been
explained assuming a variation in root radial conduc-
tivity, since younger tissues of root epidermis are
thought to have higher radial conductivity (Doussan
et al., 1998a, b).
We indeed confirm the fact that there is, in addition to

the local maximum in water uptake near the base, also a
local maximum for water uptake at the root tip. Fig. 6
shows the (dimensionless) root system water uptake as a
function of depth in a developing root system. With the
development of a dry zone is associated a drop in the
water uptake in the midst of the root system. However,
this is not because of variation in the internal root
conductivity, but because of the long-range water
movement limitations in the soil (we have kept the root
radial conductivity constant along the root). The tip of
the root is continuously growing into soil which is less
depleted of water and thus the tip region is able to take
up more water. Because of the highly nonlinear
dependence of diffusion and convection of water on
the water saturation of the soil, the fast reduction in soil
water content in the middle part of the rooting region
causes the diffusion to become much slower there than
near the tip region, therefore decreasing the flow of
water into this region of low saturation. Thus we find
that at low levels of rainfall the middle part of the root
system takes up a negligible amount of water.
In the case of high rainfall (but not in drought) there

will be another local maximum for water uptake near
the top of the soil z ¼ 0: Indeed, when the rainfall
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supply rate satisfies VsBVr; then the saturation remains
relatively high throughout the rooting zone. In that
situation the dominant site for water uptake is near the
base of the stem from where it is easiest to transport it to
stem and leaves.
When a plant is young, the root system is not deep,

and so it is supplied with water everywhere. However, as
roots grow into deeper layers in the soil the total amount
of water taken up increases, and once this water uptake
becomes larger than the rainfall supply rate, a dry zone
develops in the middle of the root system where the soil
is still relatively highly saturated with water.
Fig. 7 shows graphs of the total plant water uptake as

a function of time. It can be seen that when there is no
water flux from the surface of the soil, then the water
uptake by the plant stops after about 10–30 days
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Fig. 7. Overall rate of water uptake FP ¼ p *a2L
R l0
0 Fw dz; where Fw is

given by (4.12), by the full plant in litres per day for initial water

saturations SN ¼ 0:25; 0:5 and 0:75; the curves increase as SN

increases. The left-hand graphs are for dry conditions (W ¼ 0), and

the right-hand graphs are for wet conditions (W ¼ 0:05). The time t is

measured in days.
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depending on the initial saturation. However, when the
water flux at the surface of the soil is non-zero then the
rate of water uptake by the plant reaches a constant
level. This constant level is determined directly by the
equilibrium saturation profile that develops near the soil
surface. The rate at which it develops is dependent on
the initial water saturation in the soil.
The prediction about the development of dry zones

predicted in this paper is partially supported by
experimental evidence presented by Gardner (1964),
Rowse et al. (1978) and Molz and Remson (1970). These
authors show the development of a dry zone near the
top of the soil when there is either no, or only a very
small amount of water applied to the surface of the soil.
This dry zone appears to be quite similar to the dry zone
that is shown in Fig. 5 graphs for zero water application
at the surface of the soil (left-hand column of Fig. 5).
However, clearly, more controlled experiments measur-
ing the changes in soil moisture conditions and root
architecture in response to the well-defined water
application and evaporation at the surface of the soil
are needed.
The development of wet and dry regions as suggested

here has important implications for root physiology and
thus also for overall plant ecophysiology; in addition, it
affects plant susceptibility to pest attack and fungal
diseases, since the soil organisms responsible for these
require water for survival. Plant beneficial mycorrhizal
fungi have been found to increase the plant nutrient
uptake by a factor of three (Marschner, 1995; Smith
and Read, 1997). However, it has also been found
that mycorrhizal fungi cannot grow in very dry soil
(Bowling, 1976; Marschner, 1995), such as might occur
in the dry zone predicted here.
The development of wet and dry regions may also act

as a protection against groundwater pollution due to
surface fertilization. As the water and therefore also
solute mobility is very low in the dry region, the dry
region acts as a barrier for water and solute movement,
and decreases the risk of groundwater pollution.
However, since most of the fertilizer will then be
trapped in the wet surface region, the pollution of
aquifers due to surface runoff may be increased. We
have already developed a preliminary model for nutrient
uptake by growing root system in absence of water
movement (Roose et al., 2001). A detailed model for
simultaneous water and nutrient uptake by a branching
root system will be presented in another paper.
In this paper we found that as a result of water uptake

the significant heterogeneity in vertical water saturation
in the soil can develop. This modelling was appli-
cable for a field crop where the horizontal variations
in the root density are small. We expand the mo-
delling presented in this paper to determine if similar
patterns can emerge in the plant ecosystems where
there are significant horizontal variations in root
density. The extensions of the model to two or three
dimensions requires new numerical simulations rather
than a new model. However, such multidimensional
numerical simulations are beyond the scope of this
paper.
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Appendix A. Non-dimensionalization and analysis of the

single cylindrical root model

We non-dimensionalize Eqs. (3.4)–(3.6) by choosing
the following scales for the variables:

zBL; prBjPj; pBjPj; ðA:1Þ

where L is the length of the root, and jPj is the
magnitude of the root internal pressure at the base. We
obtain the following dimensionless model:

k2ðp � prÞ ¼ �
@2pr

@z2
ðA:2Þ

with boundary conditions

pr ¼ p0 at z ¼ 0;
@pr

@z
¼ e at z ¼ 1; ðA:3Þ

where p0 is the dimensionless water pressure at the base
(p0 ¼ �1 during plant breathing and p0 ¼ 0 during non-
breathing) and e ¼ rgL=jPj51 on the basis that
L5jPj=rg; i.e. with jPj ¼ 1 MPa; r ¼ 2:6
 103 kg m�3;



ARTICLE IN PRESS
T. Roose, A.C. Fowler / Journal of Theoretical Biology 228 (2004) 155–171 169
g ¼ 9:8 m s�2; this is valid if L539 m: The most
important dimensionless parameter in above model is

k2 ¼ 2pakrL
2=kz ðA:4Þ

that largely determines the behaviour of the system.
The solution of above equation is given by

prðzÞ ¼ p0 � k2
Z

Gðx; xÞ½pðxÞ � p0� dx

� eGðx; x ¼ 1Þ; ðA:5Þ

where the Green’s functions is given by

Gðx; xÞ ¼

�1
k sinhðkzÞ½coshðkxÞ

� tanhðkÞ sinhðkxÞ� 0pzpxp1;

�1
k sinhðkxÞ½coshðkzÞ

� tanhðkÞ sinhðkzÞ� 0pxpzp1:

8>>><
>>>:

ðA:6Þ

Large thick roots k51: For long thick roots such as
zero order roots of maize (see Table 3), k251 and
therefore the leading Oðk0Þ solution after expanding
e7kzB17kz þ Oðk2Þ becomes given by

prðzÞBp0 þ ez: ðA:7Þ

Thus, when plant is breathing and p0 ¼ �1 then the
uptake of water from at any point in the soil is
qrðzÞppðzÞ þ 1� ez: If however plant is not breathing
and p0 ¼ 0 then qrppðzÞ � ez and depending on the
value of e plant can bleed out water.

Small thin roots kb1: For small thin roots like first
order lateral branches of maize, k2b1; and leading
order expansion in k gives

prðzÞEpðzÞ þ ½p0 � pð0Þ�e�kz �
e
k
e�kð1�zÞ: ðA:8Þ

Thus the water uptake is in this case qrðzÞpe�kz; i.e. the
uptake of water is occurring only in a very thin region
near the base of the root since e�kzB0 for zb1=k:
Appendix B. Dimensionless model for water movement

inside the branched zero order root

Non-dimensionalizing equations (4.8)–(4.9) with

zBL; prBjPj; pBrgL; ðB:1Þ

we get the following dimensionless equations:

k2ðzÞðp � prÞ ¼ �
@2pr

@z2
; ðB:2Þ

where

k2 ¼ k20 þ k201cðzÞ; ðB:3Þ

wherein we have defined

c ¼ lnc1; ðB:4Þ
ln is the distance between first order sub-branches. The
parameters are given by

k20 ¼
2pakrL

2

kz;0
; ðB:5Þ

which is the dimensionless water uptake parameter for
zero order roots, and

k201 ¼
f2pakrkz;1g

1=2L2

lnkz;0
; ðB:6Þ

which is a parameter representing water flow from first
order sub-branches into the zero order root. Suitable
boundary conditions for this equation, neglecting
gravity, are

pr ¼ �1 at z ¼ 0;
@pr

@z
¼ 0 at z ¼ l0; ðB:7Þ

where l0 is the dimensionless zeroth order root length
and will depend on time, as the root grows towards its
dimensionless maximum of one. By its definition, the
average value of c is one in the branching region, and
to be specific, we now suppose branching is uniform, so
that c ¼ 1 in the branching region and c ¼ 0 in the non-
branching (apical) region. For a maize plant, we use
values in Table 3, together with 2pakr ¼ 7:85

10�10 m2 MPa�1 s�1; L ¼ 0:5 m; ln ¼ 0:7
 10�2 m; to
compute values of k0 and k01 for both branching and
non-branching zones (the difference being that in the
branching zone, the presence of late metaxylem elements
leads to an enhanced axial conductivity in zeroth order
roots). Together with the definition of c; we then find
that

k2 ¼
0:033 for l0 � l�a pzpl0;

1:01 for 0pzol0 � l�a ;

(
ðB:8Þ

where l�a ¼ la=L is the dimensionless length of the zero
order root apical non-branching zone. As we can see,
including the uptake by the first order branches means
the total non-dimensional water uptake is of Oð1Þ; which
implies that the variations in the soil pressure p can
influence very strongly the zero order root internal
pressure. Thus we need to solve this equation
numerically.
Appendix C. Dimensionless model for water uptake by

developing root branching structure

We non-dimensionalize the Darcy–Richards equation
(4.13) using scales zBL;

tBtD ¼
fp *a2

2pakrjPj
; ðC:1Þ
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pBjPj and prBjPj: The model can then be written in the
form (assuming z dependence only)

@

@z
DðSÞ

@S

@z
� eKðSÞ

� �
¼ lw

@S

@t
þ F

� �
; ðC:2Þ

where

F ¼ ð1þ dcÞð�ewf ðSÞ � prÞ ðC:3Þ

(or F ¼ 0 for z > l0) and the parameters are

lw ¼
2pakrjPjL2

p *a2D0
; d ¼

kz;1

2pakrl2n

� �1=2

; e ¼
KsL

D0
;

ew ¼
pc

jPj
: ðC:4Þ

The boundary conditions for the model are

DðSÞ
@S

@z
� eKðSÞ ¼

�W at z ¼ 0;

0 at z ¼ lw;

(
ðC:5Þ

where

W ¼
qsL

D0
ðC:6Þ

and the root internal pressure pr is calculated from

k2ð�ewf ðSÞ � prÞ ¼ �
@2pr

@z2
ðC:7Þ

with

pr ¼ �1 at z ¼ 0;
@pr

@z
¼ 0 at z ¼ l0: ðC:8Þ

In addition, we need an initial condition for S; and we
take this to be spatially uniform, thus S ¼ SN at t ¼ 0:
In our simulations, we choose a root tip growth law
given by

l0 ¼ 1� ð1� l0;0Þe�nt: ðC:9Þ

This is a dimensionless version of Eq. (4.2) for zero
order roots.
Estimated values for the parameters, using Tables 1–

3, are lw ¼ 0:075; d ¼ 1:11; whence 1þ dc ¼ 1 for z >
l0 � l�a (apical region), ¼ 2:11 for zol0 � l�a (branching
region); ewE0:023; eE0:23; WE0:013; l�a ¼ 0:3; k is
given by (B.8). The value of the time scale tD is 29.6
days, so a growth time scale of 25 days (eventual length,
50 cm; divided by initial growth rate, 2 cm day�1 (Pag"es
et al., 1989)) would give n ¼ 0:84:
In order to understand and quantify the observed wet

and dry zone development, we note firstly that with the
choice of tDB29 days as a time-scale, dimensionless
times XOð1Þ (as in Fig. 5) correspond to a plant root
development time-scale of the order of weeks.
Secondly, because the parameter lw51 in (C.2), one

might suppose that S would relax rapidly to a quasi-
equilibrium state. However, this conclusion fails if S is
too small, since then D and K tend to zero. We define a
critical value of S; Sc; by the relation

DðScÞ ¼ lw: ðC:10Þ
For lw ¼ 0:1 and m ¼ 0:5; ScE0:59: When SoSc; as
throughout most of the simulations, we can no longer
neglect the right-hand side of Eq. (C.2).
As t increases, we expect S to approach an

equilibrium solution of Eq. (C.2) satisfying

@S

@z
¼

eKðSÞ � R

DðSÞ
; ðC:11Þ

where

R ¼ W � lw

Z z

0

F dz: ðC:12Þ

Taking ew to be small in Eq. (C.3), we have, approxi-
mately,

FEð1þ dcÞð�prÞ ðC:13Þ

and F is a positive function of z (and t; through the
dependence of pr on l0); also F ¼ 0 for z > l0:
Both W and lw are small, so that also R is small, but

because DðSÞ goes rapidly to zero as S-0; then
@S=@z-7N in the same limit. Fig. 8 shows @S=@z as
a function of S for three different (very small) values of
R: If F is positive (as is the case for S not close to zero),
R decreases as z increases. Evidently, S decreases until
RE0 at a depth z�; where S ¼ S�; say. If z�ol0; then
for z > z�; R becomes negative, and S will subsequently
increase indefinitely. Hence z�Xl0; and thus in fact z� ¼
l0; since F ¼ 0 for z > l0 (and so R is constant). But with
F given explicitly by Eq. (C.13), l0 given by Eq. (C.9), R

will generally not be zero at z ¼ l0: The only possibility
is that S becomes so small that the neglected ewf ðSÞ term
becomes significant, and we thus identify S� as a zero of
F ; it is given by

S� ¼ f �1ð�pr=ewÞ: ðC:14Þ

In the case of maize, S�E0:02 for prE� 1:
The region below the surface wet zone where S > S�;

i.e. for z > z�; corresponds to the development of a dry
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zone. This dry zone extends to the surface if there is no
rainfall, as there is then nothing to keep S > S�: The dry
zone is of finite depth, since there is a further wet zone
connecting to the far field water table. This lies in zXl0;
since we must have F ¼ 0 in order that R can take the
very small constant value which enables S to approach
SN in the far field. The depth z� to the dry zone is given
approximately by

z�E
W

lw

¼
Z z�

0

�pr dz ðC:15Þ

and this dry zone exists providing z�ol0: Bearing in
mind from Eq. (B.8) that k2 is small except near l0; the
solution for �pr is approximately

�pr ¼ 1� Cz; ðC:16Þ

where

C ¼
k2l�a

1þ k2l0l�a
ðC:17Þ

and k2 takes its value at l0: Thus we find the
approximation

z� ¼
1� f1� 2CW=lwg

1=2

C
; ðC:18Þ

since l0-1 as t-N; a necessary and sufficient for a dry
zone to appear is (approximately)

Wolw 1�
C

2

� �
: ðC:19Þ
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