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Abstract. We develop a nonlinear delay-differential equation for the human cardiovascular
control system, and use it to explore blood pressure and heart rate variability under short-term
baroreflex control. The model incorporates an intrinsically stable heart rate in the absence of
nervous control, and allows us to compare the baroreflex influence on heart rate and periph-
eral resistance. Analytical simplifications of the model allow a general investigation of the
rôles played by gain and delay, and the effects of ageing.

1. Introduction

Control of blood pressure is critical to human health. Hypertension (high blood
pressure) is associated with increased risk of myocardial infarction, stroke, kidney
failure and congestive heart failure. Elevated sympathetic tone (the mean level of
activity of the sympathetic nervous system) is in turn linked with hypertension
[16], and there is much interest in non-invasive diagnostic tools for assessing sym-
pathetic tone and the baroreflex mechanisms that generate it. Any such assessment
of baroreflex health, using natural variations in heart rate and blood pressure data,
requires a deep understanding of the way that the controlled cardiovascular system
behaves in the short term.

Recently, the clinical physiology of cardiac control has become better under-
stood and quantified, particularly under open-loop conditions (where parts of the
control system are studied in isolation), leading to a number of mathematical mod-
els of this short-term pressure control system. The challenge for these models is
to explain and understand the rôles played by different components of the system.
Nonlinear feedback loops with different delays complicate the response of the sys-
tem to changes. The bio-rhythms associated with baroreflex control remain the
subject of intensive study and debate as to their specific origin. Understanding the
way that natural variability in blood pressure and heart rate depend on the health of
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the various parts of the control system is central to non-invasive clinical techniques,
particularly those that seek to assess sympathetic tone.

We discuss the bio-rhythms associated with short-term variability in the human
cardiovascular system in the next section. Then we present the elements of physiol-
ogy needed to inform a mathematical model of the cardiac control system. Selected
existing mathematical models are then briefly reviewed. Then, a simple new model
for blood pressure and heart rate is presented, incorporating both neural and mechan-
ical feedback mechanisms.

This model can be reduced to a single delay recruitment type equation. This
simplification of the model is significant, in that it allows a deeper, more analytical
and more general mathematical analysis than is usually possible in cardiovascular
models. The three feedback loops operating in the model have inherently com-
plicated consequences for solution behaviour, but our model reduction allows us
to simplify these effects while retaining the key features of nonlinearity and time
delay.

Steady and periodic solutions are studied with analytical tools, in a detailed
exploration of how the behaviour of the system depends on sympathetic feedback
mediated by the baroreflex mechanism. In particular, the rôles of delay times and
feedback amplitudes are explored and discussed, together with the consequences
of ageing.

1.1. Rhythms observed in human cardiac systems

The earliest and most well-known rhythmic variation associated with blood pressure
is respiratory sinus arrhythmia (RSA), in which heart rate increases during inspi-
ration. Two important parts of the automatic central nervous system for controlling
the heart are the sympathetic and the parasympathic (or vagal) nervous systems.
Roughly speaking, the sympathetic system is responsible for preparing us to fight
or run, and the vagal system acts reciprocally, as well as controlling the viscera.
The vagal nervous system is known to participate in RSA, both through a central
coupling with respiration controls and through the baroreflex [26,2]. The period of
this cyclic oscillation in blood pressure and heart rate matches respiration, at about
3–6 seconds. Since we are here particularly interested in sympathetic tone rather
than vagal influences, we do not model RSA in this paper, but regard it as a source
of perturbation of blood pressure.

Slower oscillations of blood pressure, with a period of about 10 seconds, are
termed Mayer waves. There has been some debate about their cause [26]. An oscil-
lator of the requisite frequency in the central nervous system has been suggested
[10,27,14], but the most commonly ascribed cause is sympathetic (delayed) feed-
back control of blood pressure through the baroreflex control system [5,6,11,23,
34,36].

There remains some disagreement over whether Mayer waves are due to (and
most sensitive to) the gain in the baroreceptors [1], or the delay in their feedback [6,
34]. There has also been evidence presented that the sympathetic control of periph-
eral resistance is more important than sympathetic feedback to the heart muscle or
heart rate changes [23,26,31].
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Fig. 1. A sketch of the short-term baroreflex cardiac control system.

These are the most important types of short-term variability in the cardiovascu-
lar system. We do not consider longer-term effects such as blood chemistry, renal
moderation of blood volume, or thermal and hormonal responses.

2. Physiology

An excellent discussion of modelling the physiology of the human cardiovascular
control system is presented by Ottesen [29,30]. We here present a summary of the
physiology, to motivate the model to be developed in section (4). Our discussion
is necessarily much simplified, and the reality of cardiovascular action and control
is much more complicated [18]. The key elements in the short-term control of the
human cardiac system are illustrated in Fig. (1).

The heart pumps blood around the body (the systemic loop), and through the
lungs (the pulmonary loop). The action is pulsatile, with a typical resting heart rate
of about 70 beats per minute. Blood ejected from the left ventricle enters the arter-
ies at a relatively high pressure. The arteries are compliant (can stretch elastically)
and pass the blood on to the smaller arterioles and capillaries, where most of the
resistance to flow resides. Blood then enters the compliant veins at a relatively low
pressure, and passes back to the heart. The veins have a relatively small resistance
to flow, and the flow is less pulsatile there.

Starling’s Law of the heart (e.g. [33], p.175) says the strength of a contraction
increases with increasing myocardial fibre length, so that a longer filling time gives
a stronger contraction.
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The relationship between the highest value of blood pressure (systolic, just as
the heart contracts) and the lowest value of blood pressure (diastolic, just before
the next contraction) may be related to the effective resistance and capacitance of
the blood vessel system by a Windkessel model which describes the exponential
decay of arterial pressure with time between heart beats. This model is essentially
a conservation of mass model.

The heart contraction that pumps blood to the arteries is usually initiated in the
sino-atrial node, which is located in the heart wall. This node can initiate a con-
traction spontaneously, and will do so in the absence of nervous control, pulsing
at about 100 beats per minute. But the action of the sino-atrial node is controlled
by electrical pulses sent along nerves from the medulla to the heart. There are two
major systems of these nerves, the sympathetic and the parasympathetic systems,
which act together in a double-action control mechanism.

The vagal or parasympathetic nervous system is relatively fast-acting. Heart rate
is reduced within a time less than the time between heart beats, when extra signals
arrive along the vagus nerve via a fast-acting (and rapidly degradable) chemical
called acetylcholine. Conversely, the heart rate increases in response to sympa-
thetic signals, via the much slower chemical action of norepinephrine. There can
be delays of 2–5 seconds before sympathetic changes take effect. Both nervous
systems affect the heart — if vagal activity changes, the heart rate will respond.
If sympathetic activity changes, the heart rate will respond, although more slowly.
Usually, both systems change together, with an increase in vagal activity accompa-
nied by a decrease in sympathetic activity, for example. Furthermore, there is some
evidence that the vagus can pre-empt sympathetic activity.

These nervous signals also have other short term effects on the heart, includ-
ing altering the contractility and as a consequence the stroke volume. Sympathetic
signals also reach the capillaries and arterioles, increasing their resistance to flow
when the signal rate (tone) increases.

Baroreceptors are nerve fibre endings in arterial walls, with key receptors in
the aortic arch and in the carotid sinus artery in the neck. They are sensitive to the
average arterial blood pressure, and to the rate at which blood pressure increases,
firing more often during the time when the pulsatile pressure is increasing.

When blood pressure rises, for example, the baroreceptors fire more signals to
the medulla in the brain, which usually responds by sending more signals along
the vagal system, and fewer signals along the sympathetic system. The combined
effect of this double control system is to reduce heart rate, which in turn allows the
arterial blood pressure to drop, correcting the perceived change. The baroreceptor
response to arterial pressure is nonlinear [21], and is attenuated at very high and
very low pressures.

There are strong clinical links between sympathetic activity and Mayer waves
— if sympathetic activity is chemically blocked, Mayer waves are significantly
reduced or completely eliminated [4,15,3,8]. Indeed, Guyton and Harris [19] pro-
posed the term vasomotor waves for blood pressure oscillations slower than respi-
ration. Vasomotor refers to the smooth muscle in vascular walls, whose behaviour
is controlled by the sympathetic nervous system, but which is also known to vary
spontaneously.
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3. Existing Models

A number of approaches have been taken to modelling and understanding the
short-term control of blood pressure. Challenges include the nonlinearity of the
baroreflex and medulla responses, the various time delays, and the number of differ-
ent feedback loops. Another consideration for modelling is whether to explicitly
include the pulsatile nature of blood flow, or simply to consider an average pressure.

An early modelling approach was Grodins’ [17] system of algebraic equations
for the steady controlled heart, which is rearranged to give a sixth degree poly-
nomial for mean arterial pressure. A closed mechanical heart system is controlled
directly by the central nervous system and by the action of endocrines. Starling’s
Law and a Windkessel model are used, and the parameters are fitted to available
experimental results. The effects of changing peripheral resistance, blood volume,
heart rate and ventricular contraction strength are explored.

A number of modellers have used ordinary differential equations with delays,
which is an attractive approach as it allows the model to be quite faithful to the
physiology, and it offers some hope of analysing how oscillations in blood pressure
depend on the various parameters, and relating this back to the physiology. Some
of these differential (and difference) equation models are reviewed briefly here.

A seminal beat-to-beat difference model due to de Boer et al. [11] considers
the discrete beating action of the heart. Each heart beat is considered as a dis-
crete event, and the sympathetic feedback from the baroreceptors is distributed
in a delayed manner over the following 2–6 heart beats. Sympathetic response
to pressure is taken to be an arctan function, to give the characteristic sigmoidal
response curve seen in clinical studies. The model incorporates baroreflex feedback
to heart rate and peripheral resistance, Starling’s Law, a Windkessel model of the
systemic loop, and respiration effects on blood pressure, and is solved numerically.
Oscillations similar to Mayer waves are observed. The model results showed that
there are difficulties interpreting power spectra for estimating baroreflex gain, as it
is frequency dependent.

Another difference equation model [32] considers central nervous control of
heart rate with delay, using a one-third power or a hyperbolic tangent in two differ-
ent approaches to approximating the sigmoidal baroreceptor response curve. The
heart model is electric or nervous, allowing for recovery time after a contraction.
The Windkessel heart model is not used, and the mechanical coupling of outflow
through the arteries to inflow from veins is not explicitly included. The resulting
four coupled difference equations are solved numerically with white noise forcing,
and power spectra presented. Healthy and pathological spectra are observed, and
bifurcation to low-dimensional chaos. A healthy chaotic spectrum computed from
the numerical solution shows a peak near 0.1 Hz, suggestive of Mayer waves.

The work of Madwed et al. [24] is more descriptive than mathematical, and uses
feedback control modelling. An equation-free model is set up, using low-pass fil-
ters in series with feedback delay. Detailed quantitative physiological information
is provided that is useful for any mathematical model. The processes and timescales
of baroreceptor feedback on HR and BP are discussed in detail. In particular, the
delay between stimulation of arterial baroreceptors and the onset of afferent nerve
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activity is noted to be about 100-300 ms. This is the time required for the signals
to travel from baroreceptors to the medulla, then to be processed by the medulla.
It is also typical of the total times for vagal responses to be seen — the delay time
between a change in arterial pressure and an observable vagally-mediated response
at the heart.

Sympathetic nervous responses are much slower, and are more widely distrib-
uted in time. Typically there is a 2.5 s delay before β-sympathetic nerves begin to
affect heart rate, and a further 7.5 s before that effect is complete (in the absence of
any other changes). There is a 5 s delay before peripheral vasoconstriction begins,
in response to stimulation of α-sympathetic nerves, and a further 15 s delay before
vasoconstriction is complete.

A number of differential-delay equation models have been developed in recent
years. Ursino et al. [37] consider the rôle of the venous capacity, in a detailed non-
pulsatile two-compartment heart model using compliances and resistances for the
systemic and pulmonary circulations, and with baroreceptor control of peripheral
resistance, venous volume, and heart rate. They use exponentials to form the sig-
moidal baroreceptor response curve, and solve numerically the resulting fourteen
coupled ordinary differential equations with delays. Their model agrees well with
experiment, and indicates that sympathetic control of venous capacity can smoothly
compensate for a sudden loss of blood.

This model was extended subsequently [38] to allow for cardiac pulsatility,
and more accurate baroreceptor modelling. Sigmoidal feedback with different lag
times from baroreceptors to peripheral resistance, heart rate and venous capacity
was included. There is a rate-dependent component in the baroreceptor response to
pressure change. The model was presented as thirteen coupled nonlinear differen-
tial-delay equations, and was solved numerically using a control-theory approach
(that is, by first linearising the equations). Open-loop (no pressure feedback to the
baroreceptors) experiments were closely matched by the model simulations. The
effects of including pulsatility were found to depend on mean arterial pressure lev-
els. If these levels were low, pulsatility led to a reduced baroreflex. If they were high,
pulsatility had the opposite effect. Stable pressures were observed for time delays
of 2–5 seconds, with self-sustaining Mayer waves observed for time delays of more
than 8–11 seconds. It was noted that the onset and disappearance of these oscilla-
tions depended on the location of the steady-state (working point) about which the
system was linearised, and on pressure pulse amplitude, in a complicated way.

This model was further modified [36] to include eighteen coupled nonlinear
delay-differential equations, solved with a fully nonlinear numerical package. Good
agreement with experimental results is obtained. Venous unstressed volume control
is found to play the major rôle in early responses to haemorrhage.

A simpler model is presented by Ottesen [29], with no pulmonary circulation,
and a single-compartment heart model, leading to two coupled differential equa-
tions for mean arterial and venous pressures. The baroreceptor response curves are
kept general, and are taken to control heart rate only. Existence and uniqueness
of an equilibrium are established, and its stability analysed under rather general
conditions. Three coupled linear first-order delay-differential equations describ-
ing stability are obtained and studied. Oscillations consistent with Mayer waves
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are seen, and are sensitive to parameter values (delay, peripheral resistance, etc).
The model response to a sudden change in peripheral resistance is consistent with
experiment.

A hybrid model, using an integrate-and-fire model of the sinus node to generate
a discrete heart rate, but continuous variables otherwise, has been presented by
Seidel and Herzel [34]. Baroreceptor response curves are sigmoidal, with sympa-
thetic delays up to 5 s considered, and baroreceptor feedback is to the heart rate,
peripheral resistance and cardiac contractility. The integrate-and-fire model allows
more detailed and accurate modelling of the varying sensitivity of the sinus node to
central control. Four differential equations, for a single-compartment Windkessel
model of the heart driving just the systemic circulation, are solved numerically.
Steady solutions bifurcate to periodic solutions, as time delays are increased. Under
normal conditions, damped oscillations at Mayer wave frequencies are seen. Period-
doubling bifurcations to chaos, and toroidal oscillations, are noted to occur pro-
vided the phase sensitivity of the sinus node is included. Return maps for sinus
node response to single stimuli are generated, due to the integrate-and-fire feature.
These compare well with experiment.

A more recent model [1] is able to produce Mayer waves without using any
delays, simply by increasing the baroreceptor feedback gain. The model has a two-
chamber heart, with both pulmonary and systemic circulations. Hill functions are
used to give the sigmoidal baroreceptor response curves, and (instantaneous) feed-
back to heart rate, peripheral resistance, venous unstressed volume and venous com-
pliance are each considered separately. Steady state solutions are obtained for the
resulting three coupled nonlinear first-order differential equations, and the stability
of the steady states is investigated. Hopf bifurcations to oscillatory solutions consis-
tent with Mayer waves are obtained, but only in the cases of feedback to unstressed
venous volume or venous compliance, and only with very large gains. Since the
unstressed venous volume term appears with a relatively large time-constant in their
differential equation for arterial volume/pressure, this is suggestive that changes in
unstressed venous volume have effectively a delayed effect on arterial pressure.

Further modifications have been made [25] to Ursino’s model [36], by add-
ing pulmonary baroreceptors, respiratory influences, and a simplified baroreceptor
feedback model. Delay differential equations are presented, using the language of
control theory, and parameter values are assigned based on a careful analysis of
the physiology. Numerical solutions are then used to explore response to acute
haemorrhage — increased RSA is seen. A sensitivity analysis is also undertaken
— the system is most sensitive to vagal gain and delay, less sensitive to the arterial
baroreflex, and least sensitive to the pulmonary baroreflex. The system is inherently
rather stable.

4. A simple model

Our aim is to choose a model that is simple enough to allow substantial mathemat-
ical analysis, supported only peripherally by numerical computations, yet complex
enough to be faithful to as much of the physiology as possible. We use nonlin-
ear delay differential equations, for averaged cardiac variables. We explore the
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implications of this model for the sensitivity of Mayer waves to sympathetic delay
and gain, to sympathetic control of peripheral resistance and of heart rate, and to
the effects of ageing.

We follow Ottesen [29] and choose a nonpulsatile lumped-parameter model of
the systemic loop, consisting of the left ventricle, which pumps blood to the arter-
ies, the capillaries (and arterioles), the veins, and back to the left ventricle (via the
right ventricle and the lungs). The pulmonary system is neglected here. Including
it (e.g., as in [1]) would lead to one extra differential equation for the pulmonary
venous pressure. Neglecting transient behaviour in the pulmonary system allows us
to lump the action of the heart and the pulmonary system together into one cardiac
output term. Besides simplifying the model, this reflects our more central interest
in the systemic behaviour in this paper.

We further assume the system is closed with the blood being incompressibile
so that blood volume is conserved, that large arteries and veins act like compliant
vessels (so that volume changes are proportional to pressure changes), and that the
capillary system is like a resistance vessel (with flow rate depending on the pressure
drop across the system).

To this closed mechanical system we add the baroreflex control system (Fig. 1).
The baroreflex sensors detect arterial pressure and send signals to the brainstem
or medulla, which in response sends fast-acting (vagal, or parasympathetic) and
slow-acting (sympathetic) signals back to the heart, altering heart rate, and to the
arterioles and capillaries, altering the peripheral resistance. We neglect the small
delay in the parasympathetic system, and we approximate the distributed delay of
the sympathetic system with a single delay time.

Our model is essentially an extension of that introduced by Ottesen [29]. We
have added an intrinsically controlled heart rate, and baroreflex control of peripheral
resistance. In the absence of feedback from the central nervous system, the heart is
known to continue to beat spontaneously at a rate set by the firing of the sino-atrial
node. Our model explicitly includes this intrinsic controlled behaviour. We antici-
pate (and find) that this natural frequency has a significant effect on the dynamics
of the response of the cardiac system to baroreflex feedback. The importance of
peripheral resistance has been raised in a number of previous studies [23,26,29,
31], so it is useful here to also consider the relative importance of sympathetic
control of peripheral resistance and sympathetic control of heart rate.

Then equations for the conservation of average (non-pulsatile) blood volume
are:

Caṗa = − (pa − pv)

Rc

+ H�V (1)

Cvṗv = (pa − pv)

Rc

− pv

Rv

. (2)

Here, pa is the mean arterial pressure, ṗa is its time rate of change, pv is the mean
venous pressure, Ca is the compliance of the arterial system, Cv is the compliance
of the venous system, Rc is the resistance to flow through the arterial system, Rv

is the resistance to flow through the venous system, H is heart rate and �V is the
stroke volume (the volume pumped out in one heart beat).
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Central nervous control in this model affects both the heart rate H and the
peripheral resistance Rc:

Ḣ = βH Ts

1 + γ Tp

− VH Tp + δH (H0 − H) , (3)

and

Rc = R0
c (1 + αTs) , (4)

where βH is the strength of the sympathetic tone Ts and VH is the strength of
the parasympathetic or vagal tone Tp, both of which depend on the mean arterial
pressure pa . The sympathetic feedback Ts is significantly delayed, by up to ten
times the delay in parasympathetic feedback.

The parameter γ is a measure of the direct damping effect of vagal activity on
the sympathetic tone. Ottesen sets γ = 0, reflecting the fact that even if γ is of
order one it has little effect on the steady heart rate dependence on pa , it simply
shifts the sigmoidal plot of steady H vs. pa to the left a little. We use the nominal
value γ = 0.2.

The final term in the heart rate equation causes the heart (in the absence of
central nervous control) to relax to the rate H0 seen in a denervated heart, about
100 beats per minute. It is a simple representation of the idea that the oscillations
of the sino-atrial pacemaker action potential are those of a limit cycle oscillator,
and as such, it can be expected that both amplitude and phase (and thus heart rate)
respond stably to perturbation.

The dependence of peripheral resistance Rc on sympathetic tone is modelled as
a simple delayed linear dependence, measured by the parameter α. Rc varies from
the minimum value R0

c to the maximum value R0
c (1 + α), as the sympathetic tone

varies. Approximate values of the parameters are given in Table (1), and are based
on those presented by Ursino [38].

Following Ottesen [29], we take Ts(t) = g(pa(t − τ)) ≡ g(pτ
a ), where g has

the sigmoidal form sketched in Fig. 2, but is otherwise quite general, and τ is the
sympathetic time delay, typically 3–4 seconds. For the parasympathetic control, we
use the form Tp(t) = 1 − g(pa(t)) ≡ 1 − g(pa), which has no delay, since we are
neglecting the much smaller time delays in this system.

4.1. Rescaled Model

We nondimensionalise our three model equations, and calculate the sizes of the
resulting non-dimensional parameters. Parameter definitions and approximate val-
ues are listed in Table 2.

We let

pa = P0p
∗
a , pv = ρµP0p

∗
v , H = H0h

∗, t = τ t∗. (5)
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Fig. 2. The Hill function g(p) = 1/(1 + pn) with n = 3, an example of the nonlinear
(sigmoidal) feedback term used to model baroreceptor control of heart rate.

Then, immediately dropping the asterisks, the rescaled equations are

εaṗa = −pa + µρpv

1 + αTs

+ µh, (6)

εvṗv = pa − µρpv

1 + αTs

− µpv, (7)

εH ḣ = βTs

1 + γ Tp

− νTp + δ(1 − h) . (8)

Table 1. Parameter values

Parameter Definition Value

Ca arterial compliance 1.55 ml mm Hg−1

Cv venous compliance 50 ml mm Hg−1

R0
c min arteriole resistance 0.6 mm Hg s ml−1

Rv venous resistance 0.016 mm Hg s ml−1

�V stroke volume 50 ml
H0 uncontrolled heart rate 100 min−1

P0 arterial pressure 100 mm Hg
τ sympathetic delay 3 s
VH vagal tone 1.17 s−2

βH sympathetic control of heart rate 0.84 s−2

α sympathetic effect on Rc 1.3
γ vagal damping of βH 0.2
δH relaxation time 1.7 s−1
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Table 2. Nondimensional parameter definitions and values

Parameter Definition Value

εa CaR
0
c /τ 0.3

εv CvR
0
cµρ/τ 0.15

εH 1/(H0τ) 0.18
α sympathetic effect on Rc 1.3
β βH /H 2

0 0.3
γ vagal damping of βH 0.2
δ δH /H0 1
µ R0

cH0�V/P0 0.5
ν VH /H 2

0 0.4
ρ Rv/R

0
c 0.03

In the absence of other information, δ is taken to be one, assuming that if central
nervous control was removed, the heart would return to its uncontrolled rate in times
of the same order as the uncontrolled period, which is the most natural assumption.

4.2. Model Reductions

Since ρ is small compared with the other parameters, we neglect the venous pressure
pv in equation (6). This term does not appear in the heart rate equation (8). We
rename pa as simply p, so that our system is reduced to the two equations

εH ḣ = βg(p1)

1 + γ [1 − g(p)]
− ν[1 − g(p)] + δ(1 − h) , (9)

εaṗ = − p

1 + αg(p1)
+ µh , (10)

where p1 ≡ p(t − 1) and p ≡ p(t). Further simplification is possible because the
time scale of response of both h and p is quite small. Noting that εH is smaller than
εa , we will put εH = 0. This corresponds to considering a steady heart rate, ignor-
ing the faster transients in the heart rate equation. However, εH is not very much
smaller than (is only half the size of) εa . Hence we check this simplification by
later conducting a numerical comparison of solutions to the coupled equations (9)
and (10) with the stability results from the simplified system, in figs (4) and (5).
We find that the results are reassuringly close.

Then to leading order equation (9) gives

h ≈ 1 + 1

δ

[
βg(p1)

1 + γ [1 − g(p)]
− ν[1 − g(p)]

]
, (11)

and our model further reduces to the single delay-recruitment type equation

εaṗ = − p

1 + αg(p1)
+ µ

{
1 − ν

δ
[1 − g(p)]

}
+ µβg(p1)

δ[1 + γ (1 − g(p))]
. (12)
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5. Analysis

If the right-hand side of the delay-recruitment equation (12) is set equal to zero,
it implicitly defines a map from p1 to p. The properties of this map appear to be
closely linked to the behaviour of solutions to the full delay equation, particularly
for small εa [9,13,39]. In our case (for physiologically reasonable parameter val-
ues) the map is monotonically decreasing, so that it may have a two-cycle and a
fixed point, but no other periodic or chaotic behaviour. It is not surprising then
that our delay-recruitment equation (12) correspondingly has a steady-state and a
periodic solution, and does not exhibit period-doubling or chaos.

Steady states ps of equation (12) satisfy

ps

1 + αg(ps)
+ µν

δ
[1 − g(ps)] − µ = µβg(ps)

δ[1 + γ (1 − g(ps))]
. (13)

Considering the shape of g in Fig. 2, and the fact that the right-hand side of equa-
tion (13) is a decreasing function of ps (decreasing from a value µβ/δ ≈ 0.15 to
zero as p → ∞), while the left-hand side is an increasing function (from near −µ

to a positive value), it is clear that there is a unique steady state solution for a range
of parameter values near our values. We now consider the stability of this steady
solution.

5.1. Stability

Expanding p = ps +P in equation (12) for small disturbances P about equilibrium
gives

Ṗ = −BP − GP1 , (14)

where

εaB ≡ 1

1 + αg
+ µν|g′|

δ
+ µβγg|g′|

δ[1 + γ (1 − g)]2 > 0 (15)

and

εaG ≡ psα|g′|
(1 + αg)2 + µβ|g′|

δ[1 + γ (1 − g)]
> 0, (16)

with g, g′ being evaluated at ps . By P is meant P(t), and P1 means the delayed
P(t − 1).

Putting P = eσ t then gives

σ = −B − Ge−σ , (17)

and instability occurs if Re σ > 0; the instability is oscillatory if Im σ �= 0.
This is an equation whose properties are well understood, see for example

Diekmann et al. [12] or Murray [28]. It is a transcendental equation, which has an
infinite number of complex roots, no more than two of which are real. The roots
accumulate at the essential singularity at σ = ∞, and the set of Re σ is easily shown
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Fig. 3. Stability map for the solutions of equation (17). The curves demarcate the behaviours
of the two roots involved in the transition to instability. osc means oscillation and complex
conjugate roots, U means unstable, S means stable, and + and − indicate the signs of the
two roots when they are real. If only one sign is indicated, the other root has disappeared
by tending to infinity. The diagram indicates that stability occurs only if G lies within the
sector bounded by and to the right of the two curves G = −B and G = γ1(B). Note that
the region of interest for this work is just the first quadrant.

to be bounded above. There is an instability criterion which determines when all
the roots σ have negative real part, and this is indicated in Fig. (3).

Specifically, the three curves in the figure are given by G = −B, G =
exp[−(1 + B)], and the Hopf bifurcation curve γ1(B), which is given paramet-
rically by

B = − �

tan �
, G = �

sin �
, (18)

where � ∈ (0, π). In the present case, B > 0 and G > 0, so that � ∈ (π/2, π),
and instability occurs if and only if G > γ1(B). The period of the resulting oscil-
lation is 2π/�, and we expect that this will be comparable to the frequency of
oscillations that occur in practice. The dimensionless period P of the bifurcating
periodic solution is thus P → 2 as B → ∞, P → 4 as B → 0, the behaviour
being monotonic along the bifurcation curve. The dimensional period is simply Pτ .
This is consistent with 10 second Mayer waves, if the delay τ = 3 seconds (since
the corresponding value of B = 3.3).

6. Cases

6.1. Peripheral resistance effects

The full stability map depends in a complicated way on the control parameters α,
β, γ , µ and ν. In the search for simple criteria, it useful to consider the rôles of the
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Fig. 4. Stability map for α–only control. The solid curve shows the theoretical stability
limit based on the limit εH → 0, together with β = γ = ν = 0. The inclined crosses (×)
indicate non-decaying oscillatory numerical solutions of the full two-dimensional system
with εH = 0.18, β = 0.3, γ = 0.2, δ = 1, ν = 0.4, µ = 0.5, n = 3. The upright crosses
(+) indicate where numerical results exhibit oscillatory decay to a stable steady state. It can
be seen that the simple analytic asymptotic theory gives a good (over) estimate of the actual
stability boundary.

three controls separately. We begin by considering the α–sympathetic control only,
by taking α �= 0 and putting β = γ = ν = 0. This corresponds to investigating
only the sympathetic control of peripheral resistance. From this we have that the
steady state is given by

h = 1, µ = p

1 + αg
, (19)

and the parameters B and G are given by

εaB = 1

1 + αg
, εaG = pα|g′|

(1 + αg)2 . (20)

Fig. (4) shows the resultant Hopf stability curve in α–εa space. Oscillations occur
in this simplified system when εa lies below the stability curve. The figure also
shows the results of direct numerical simulations of the full equations (9) and (10),
and indicates that the simple system (with εH = 0) gives a good approximation to
the more complicated one.

6.2. Heart rate effects

The second simplified case we study is when β �= 0, but α = γ = ν = 0. This
corresponds to having only sympathetic control of heart rate. In this case the steady
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Fig. 5. Stability map for β–only control. The solid curve shows the theoretical stability
limit based on the limit εH → 0, together with α = γ = ν = 0. The inclined crosses (×)
indicate non-decaying oscillatory numerical solutions of the full two-dimensional system
with εH = 0.18, α = 1.3, γ = 0.2, δ = 1, ν = 0.4, µ = 0.5, n = 3. The upright crosses (+)
indicate where numerical results exhibit oscillatory decay to a stable steady state. It can be
seen that the simple asymptotic theory gives a good (under) estimate of the actual stability
boundary.

state is

h = 1 + βg

δ
, µ = p

h
, (21)

and the parameters B and G are given by

εaB = 1, εaG = µβ|g′|
δ

. (22)

Fig. (5) shows the resultant Hopf stability curve in β–εa space. Oscillations occur
when εa lies below the stability curve. Direct simulations of the full equations (9)
and (10) again indicate that the simple system gives a good approximation to the
more complicated one.

6.3. Solely vagal effects

Finally we consider the case where the sympathetic system is switched off, so that
α = β = 0. In this case the equations (9) and (10) reduce to two ordinary differ-
ential equations. When these are linearised about the unique steady state, one finds
that the trace of the linearised stability matrix is negative, and its determinant is
positive. Thus the steady state is always stable in this case. This agrees with the
results ofAbbiw-Jackson and Langford [1], who also find that vagal control of heart
rate does not induce instability.
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6.4. Comparison of gain versus delay

As noted in the introduction, the cause of Mayer waves continues to be the subject of
research, with disagreement over the importance of delay versus feedback gain [1,
6,34], and questions about the relative importance of feedback to the heart versus
feedback to the peripheral resistance [23,26,31].

We assess the relative importance of these factors by considering their prox-
imity to the Hopf bifurcation curve in the stability diagrams of figures (4) and (5).
When parameter values are far from the curve, then the solutions of the model are
strongly damped or strongly oscillatory. It is only near the curve that a change in
parameter values will cause a change of behaviour. In particular, when α or β are
small and the associated Hopf curve is nearly vertical, the model is more sensitive
to variations in α and β. For larger values of α and β, where the Hopf curve is
flatter, the behaviour is more sensitive to variations in εa .

Our model allows us then to compare the relative importance for the onset of
Mayer waves, of

1. the gain α in peripheral resistance control,
2. the gain β in sympathetic control of heart rate, and
3. the delay τ in these controls, which appears in εa .

Noting that typical values are α = 1.3, β = 0.3, and εa = 0.3, we draw from
Figs (4) and (5) the following points:

For small εa (large delays), the system is not very sensitive to εa (and hence to
the delay τ ), compared with gain. For larger εa (small delays), where the stability
curves are nearly horizontal, the system is much more sensitive to delay.

The effects of heart rate control are greater than those of peripheral resistance
control at values of εa ≈ 0.3, since a β value near 3–5 gives oscillation, whereas no
α values in the range zero to twenty can cause oscillation. The graphs also reveal
that on average, tracking the Hopf bifurcation curve, a change in εa of the order
of one (with changes τ of order of a factor of 3) is equivalent to a change of order
of a factor of fifty in α and of order ten in β. Hence the system is generally more
sensitive to changes in time delay than to changes in feedback gain, and is more
sensitive to changes in the sympathetic feedback to the heart than to peripheral
resistance. This result is at odds with the ideas presented in [23,26,31], and needs
further study.

6.5. Ageing

As humans age, generally their reflexes get slower, and hence we expect somewhat
longer delay times for the sympathetic system. As pointed out elsewhere [1], in
other models and in ours, regions of instability correspond to longer delay times.
This is at first glance not consistent with clinical observations, which indicate that
older people are less likely to exhibit Mayer waves [20,22].

However, perhaps more significantly, ageing also brings impaired function of
the smooth muscle walls of arterioles, resulting in less responsive peripheral resis-
tances, together with higher overall resistances and smaller arterial compliances [35].
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In terms of our model then, we would simulate ageing by decreasing the gains of
feedback to peripheral resistance and heart β and α, increasing the capillary resis-
tance R0

c , and increasing the time delay τ . Then we anticipate little change in εa ,
since increases in τ and decreases in Ca are offset by a larger value for R0

c .
The implications of these changes in parameter values are, referring to Figs (4)

and (5), that ageing corresponds to a movement from the operating point εa = 0.3,
β = 0.3, and α = 1.3 in the direction of reduced α and β, which is a movement
away from the region of unstable oscillations. Hence ageing corresponds to a move-
ment towards the region of greater stability in our model, which is consistent with
clinical observations of reduced variability with age.

7. Conclusions

We have proposed a simple model for the human cardiovascular system with baro-
receptor control feedback, which is an extension of a model by Ottesen. We have
reduced our model to a single delay-recruitment equation, and we have studied
analytically and numerically the behaviour of solutions. Steady solutions can lose
stability in a Hopf bifurcation to oscillatory solutions, consistent with Mayer waves,
as delays are increased, or as feedback gain is increased, or as peripheral resistance
is reduced. Chaotic dynamics are not a feature of our model.

Our model indicates that sympathetic control of heart rate is more important
than sympathetic control of peripheral resistance, and that solution stability is more
sensitive to delay than to gain. The consequences of ageing are considered and found
to be consistent with our model, with decreased gains giving more stable behaviour.
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