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OSCILLATIONS IN A MATURATION MODEL OF BLOOD CELL
PRODUCTION∗

IVANA DROBNJAK† , A. C. FOWLER† , AND MICHAEL C. MACKEY‡

Abstract. We present a mathematical model of blood cell production which describes both the
development of cells through the cell cycle, and the maturation of these cells as they differentiate to
form the various mature blood cell types. The model differs from earlier similar ones by considering
primitive stem cells as a separate population from the differentiating cells, and this formulation
removes an apparent inconsistency in these earlier models. Three different controls are included
in the model: proliferative control of stem cells, proliferative control of differentiating cells, and
peripheral control of stem cell committal rate. It is shown that an increase in sensitivity of these
controls can cause oscillations to occur through their interaction with time delays associated with
proliferation and differentiation, respectively. We show that the characters of these oscillations are
quite distinct and suggest that the model may explain an apparent superposition of fast and slow
oscillations which can occur in cyclical neutropenia.
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1. Introduction. A number of hematological diseases are characterized by os-
cillations in the circulating density of various types of blood cells. These include
chronic myelogenous leukemia (CML), cyclical neutropenia (CN), polycythemia vera
(PV) and aplastic anemia (AA). Examples of blood cell counts for CML and CN are
shown in Figures 1 and 2.

A review of the clinical data and a discussion of possible mechanisms for the
oscillations are given by Haurie, Dale, and Mackey [10]. These mechanisms focus on
the role of negative feedback control on proliferation and differentiation of blood cells
within the bone marrow, together with time delays due to cell cycling and maturation.
There are consequently a number of different ways in which oscillations can occur,
and one object of mathematical modelling of blood cell development is to understand
which of these effects may be responsible for these oscillations.

Blood cells are produced through a process of differentiation from primitive stem
cells in the bone marrow. These pluripotential stem cells begin to develop along one of
several different cell lineages, forming blast cells which eventually develop through a
number of different stages to form the various kinds of blood cells. The most numerous
are the red blood cells, or erythrocytes, whose normal density in the blood is about
5 × 106 cells μl−1. Their primary function is in transporting oxygen to the tissues.
Platelets are formed by the fragmentation of megakaryocytes, which develop in the
bone marrow. Platelets are present at levels of 5×105 cells μl−1, and their function is
in blood clotting. Finally, there are a number of different white blood cells, the most
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Fig. 1. Oscillations in white blood cell, platelet, and reticulocyte numbers in a patient with
chronic myelogenous leukemia. The units are white blood cells, 105 cells μl−1; platelets, 105 cells
μl−1; reticulocytes, 104 cells μl−1. This research was originally published in Blood. G. Chikkappa
et al. Periodic oscillation of blood leukocytes, platelets, and reticulocytes in a patient with chronic
myelocytic leukemia. Blood. 1976;47:1023–1030. c©the American Society of Hematology.

common of which are neutrophils (5000 cells μl−1) and lymphocytes (2000 cells μl−1),
which form constituent parts of the immune system. The normal levels of these cells
are controlled by a number of mechanisms, and an excess or deficit of the various cell
types defines certain kinds of disease; for example, anemia refers to a low red blood
cell count, below 4 × 106 cells μl−1.

There are a number of features in Figures 1 and 2 which are of note. In CML,
there are regular oscillations in white blood cell counts with a long period ranging
from 40 to 80 days (see Fortin and Mackey [7]). The other cell lines (platelets and
reticulocytes, i.e., erythrocyte precursors) also oscillate in a similar fashion (Figure 1
does not show this well; see Fortin and Mackey [7] for other examples).

A similar observation is true of cyclical neutropenia. Oscillation periods are
on the order of 20 days, during which there is a marked collapse of the neutrophil
count to vanishingly low levels (see Dale and Hammond [4] and Guerry et al. [9]).
Other cell types oscillate, but only the neutrophils appear to oscillate fairly regularly:
Oscillations in other cell types (e.g., red blood cells, platelets, reticulocytes, and
lymphocytes) are marked by irregularity and high frequency noise (see Guerry et
al. [9]). This latter feature is well illustrated in Figure 2.

The purpose of the present paper is to throw some light on these observations
by the study of a model of blood cell proliferation and differentiation. This model
is similar to those of previous authors, particularly that of Mackey and Rudnicki
[13], and describes the stem cell and developing (blast) cell populations as functions
of time, age (time through the proliferative cell cycle), and maturation (stage in
the differentiation process). Fokas, Keller, and Clarkson [6] describe a model with
discrete generations in the development of blast cells, while Mackey and Rudnicki
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Fig. 2. Oscillations in neutrophil, platelet, and reticulocyte numbers in a patient with cyclical
neutropenia. The units are neutrophils, 103 cells μl−1; platelets, 105 cells μl−1; and reticulocytes,
104 cells μl−1. This research was originally published in Blood. C. Haurie, D. C. Dale, and M. C.
Mackey. Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms
and mathematical models. Blood. 1998;92:2629–2640. c©the American Society of Hematology.

[13] develop a corresponding continuous model (i.e., the developmental stage is a
continuous variable).

In this paper we use a continuous model to describe the development of a single cell
lineage following the committal of stem cells. Three separate controls are implemented
in the model, namely the proliferative control of stem cells, the proliferative control of
developing blast cells, and the peripheral control of stem cell committal by circulating
blood cell density. We show that variation of parameters in all three control systems
can cause oscillations, and that the characters of these oscillations are very different.
This allows us some potential insight into the mechanisms that may be operative in
some of these dynamic blood diseases.

2. A model of maturation of blood cell production. We consider all cell
lineages to consist of populations of two types, proliferative and resting phase (cf. Fig-
ure 3). These are denoted p and n, respectively, and are functions of age a (time since
the inception of the proliferative cell cycle) and maturation m (degree of maturation,
measured in maturation units (mat), which could be, for example, cell generation
number). Also, p and n are functions of time t. Thus, we have p = p(t,m, a) and
n = n(t,m, a). The dimensions of p and n are cells age−1 mat−1.

In the cell population, there will be a finite number which are primitive and have
not begun differentiation. These cannot be characterized in terms of p and n at m = 0,
since the latter are cell densities with respect to a and m. The primitive stem cells
are characterized by cell densities p0(t, a) and n0(t, a), such that p0 da and n0 da are
the numbers of primitive stem cells (with m = 0) of age in (a, a + da).
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Fig. 3. Schematic evolution of cells. Each cell ages as it goes through its cell cycle, before
dividing and entering a resting (G0) phase; at the same time, the cells mature. The time-like
variables a (age) and m (maturation) are independent.

The basic model is similar to that described by Mackey and Rudnicki [13]. It has
been analyzed in various versions by Rey and Mackey [16], Crabb, Mackey, and Rey
[3], and Mackey and Rudnicki [14]. However, a particular feature of these previous
models was the assumption of zero maturation rate at maturation state zero. This
leads to some odd behavior, which we believe arises because the model does not
properly identify the role played by primitive stem cells. In our formulation of the
model, we do not make this assumption.

Specifically, Mackey and Rudnicki [13], [14] assumed a model in which the cell
density depended on stage of maturation m, age through the cell cycle a, and time
t. As a consequence, the number of cells of zero age in the cell cycle is zero, as is
the number of cells of zero maturation. As is common in age-structured population
models, the migration of cells away from age zero through the cell cycle is balanced
by a renewal equation, which here takes the form of recruitment from the resting cell
population. However, there is in general no recruitment to the stem cell population at
zero maturation, and as a consequence, the Mackey–Rudnicki model generally leads
to a disappearance of the cells as they migrate down the maturation stage without
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replenishment. In their model, they were able to avoid this unattractive option by
allowing a rate of maturation V (m) which tended to zero as m → 0. The effect of
this assumption is to make the time of maturation infinite, and in addition it causes
strange irregular behavior to occur (see Dyson, Villella-Bresson, and Webb [5]). We
consider that an implication of the lack of recruitment of stem cells is that they
must be represented in the model as a compartment of finite number and therefore
cannot be represented in terms of a density dependent on both m and a. In fact,
consistent with previous models of stem cells (see Mackey [11], [12]), we suppose that
the stem cell population can be represented as a density dependent on a and t only.
This assumption removes the Mackey–Rudnicki awkwardness and does not require an
artificial and unnatural choice (with its artificial consequences) of maturation rate.

The evolution of the system is illustrated schematically in Figure 3. We suppose
that cell mortality occurs at a rate γ (for proliferating cells only), and that cell
maturation occurs continuously at a rate V (for both proliferative and resting phases).
We suppose that both γ and V may depend on maturation stage m, but not on t.
Conservation of proliferative cells then implies

∂p

∂t
+

∂p

∂a
+

∂(V p)

∂m
= −γp,(2.1)

where the units of V are mat d−1 (maturation units per day). We suppose (2.1)
applies during a cycle of length τ (which might depend on m), thus for 0 < a < τ .
For a > τ , the cells in the resting phase satisfy the equation

∂n

∂t
+

∂n

∂a
+

∂(V n)

∂m
= −Rn,(2.2)

which differs from (2.1) by the rate of recruitment R back to the proliferative phase,
where resting cell mortality is taken to be zero. Equation (2.2) applies for a > τ .

At the end of the cell cycle, a = τ , we apply a boundary condition describing the
conversion of p to n. Mackey and Rudnicki [13] allow a very general condition, on the
basis that cells at maturation M can divide to form cells at maturation g(M) ≤ M .
Specifically, this implies 2p[t,M, τ(M)] dM = n[t, g(M), τ{g(M)}] dg. If we write
m = g(M), M = h(m) (thus h = g−1), then this becomes

n[t,m, τ(m)] = 2p[t, h(m), τ{h(m)}]h′(m),(2.3)

where g(m) ≤ m implies h(m) ≥ m.
A boundary condition for p at a = 0 follows from the recruitment condition (the

renewal equation)

p(t,m, 0) = RN(t,m),(2.4)

where we introduce the total resting cell density

N =

∫ ∞

τ

nda.(2.5)

Now we integrate (2.2) from a = τ to a = ∞, taking n → 0 as a → ∞ (which
is necessary if there is a finite number of cells). We suppose that V = V (m) is
independent of a and t, and that R = R(t,m) is independent of a. Then

∂N

∂t
+

∂(V N)

∂m
= −RN + 2p[t, h(m), τ{h(m)}]h′(m),(2.6)
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adopting (2.3).
We need to solve (2.1) for p. We use the method of characteristics and begin

by applying the recruitment condition (2.4). Specifically, we apply the parametric
conditions

t = s, m = μ, a = 0, p = R(s, μ)N(s, μ),(2.7)

valid for s, μ > 0; then the characteristic solution is

a = t− s,

∫ m

μ

dρ

V (ρ)
= t− s,

p = R(s, μ)N(s, μ) exp

[
−
∫ t

s

[γ + V ′(m)] dt

]
.(2.8)

Define a function ν(m, a) by ∫ m

ν

dρ

V (ρ)
= a.(2.9)

Then a = t− s, μ = ν(m, a). Also dt = dm/V (m) on a characteristic; thus for t > a
(and also ν > 0),

p(t,m, a) = R[t− a, ν(m, a)]N [t− a, ν(m, a)] exp

[
−
∫ m

ν(m,a)

{γ + V ′(ρ)} dρ

V (ρ)

]
.

(2.10)

Simplifying and putting a = τ , we have

p(t,m, τ) = R[t− τ, ν(m, τ)]N [t− τ, ν(m, τ)] exp

[
−
∫ m

ν(m,τ)

γ dρ

V (ρ)

]
V [ν(m, τ)]

V (m)

(2.11)

for t > τ and ν > 0. Finally, (2.6) becomes

∂N

∂t
+

∂

∂m
(V N) = −RN

+ 2h′(m)R[t− τ, ν{h(m), τ}]N [t− τ, ν{h(m), τ}]

× exp

[
−
∫ h(m)

ν{h(m),τ}

γ dρ

V (ρ)

]
V [ν{h(m), τ}]

V [h(m)]
.(2.12)

Note that ∫ m

ν(m,τ)

dρ

V (ρ)
≡ τ.(2.13)

It is convenient to define a modified maturation variable ξ by

ξ =

∫ m

0

dρ

V (ρ)
;(2.14)

ξ has units of time, and indeed it is equal to the elapsed time during maturation.
Note that ν > 0 if ξ > τ . The lower limit can be chosen for convenience and allows
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us to fix ξ at some reference point; here we choose this to be the initial maturation
stage (note that this cannot be done if V (0) = 0). Define also

η(ξ) =

∫ h(m)

0

dρ

V (ρ)
(2.15)

(note η ≥ ξ since h ≥ m). Now if

F (m) ≡ f(ξ),(2.16)

then we find

F [h(m)] = f(η),

F [ν{h(m), τ}] = f(η − τ).(2.17)

We change the variable from m to ξ and define

v(ξ) ≡ V (m),

M ≡ NV(2.18)

(note that Mdξ = Ndm, so that M is cell density in terms of the variable ξ; the units
of M are cells d−1). After a little manipulation, we find

∂M

∂t
+

∂M

∂ξ
= −RM + Q,(2.19)

where

Q = 2η′(ξ)R[t− τ, η − τ ]M [t− τ, η − τ ] exp

[
−
∫ η

η−τ

γ dξ

]
,(2.20)

where we write γ, R, and M as dependent on ξ rather than m. This equation applies
if t > τ and η > τ .

In order to find the form of the source term for t < τ or η < τ , we must solve
(2.1) for p using the initial data from m = 0 and t = 0. If, specifically, we have an
initial condition

p = pI(m, a) at t = 0,(2.21)

then after some algebra we find that

Q = 2η′(ξ)pI [η − t, τ − t]v(η − t) exp

[
−
∫ η

η−t

γ dξ

]
, t < τ, η > t.(2.22)

The definition of Q in t > η and η < τ requires consideration of the stem cell
evolution, and we now turn to this. Conservation laws for the stem cell densities p0

and n0 are

∂p0

∂t
+

∂p0

∂a
= −(γ0 + V0)p0,

∂n0

∂t
+

∂n0

∂a
= −(V0 + R0)n0,(2.23)

where V0 is the rate of loss of stem cells to maturation, R0 is the stem cell recruitment
rate from the resting phase, and γ0 is the mortality rate of stem cells in the proliferative
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phase. We allow R0, V0, and γ0 to depend on t, but we assume they are independent
of a. Note that V0 �= 0, indeed V0 �= V (0), as the units of V0 and V are not even the
same: V has units of mat d−1, while V0 has units of d−1. Note also that p0 and n0

have units of cells age−1 (unlike p and n).
The primitive loss to maturation must balance the source for p and n at m = 0;

thus

V0p0 = (V p)|m=0, V0n0 = (V n)|m=0,(2.24)

and the units are consistent.
Analogously to (2.4) and (2.3), we have

p0(t, 0) = R0(t)N0(t),

n0(t, τ) = 2p0(t, τ),(2.25)

where

N0 =

∫ ∞

τ

n0 da.(2.26)

Integration over a now yields

dN0

dt
= −V0N0 −R0N0 + 2p0|a=τ ,(2.27)

and

(NV )|m=0 = N0V0.(2.28)

In order to find p0 we must solve

∂p0

∂t
+

∂p0

∂a
= −(γ0 + V0)p0(2.29)

with parametric initial conditions

p0 = p00(α), a = α > 0, t = 0,

p0 = R0(s)N0(s), a = 0, t = s > 0.(2.30)

For t > a, the solution is

p0 = R0(t− a)N0(t− a) exp

[
−
∫ t

t−a

[γ0(t
′) + V0(t

′)] dt′
]
,(2.31)

whereas for t < a,

p0 = p00(a− t) exp

[
−
∫ t

0

[γ0(t
′) + V0(t

′)] dt′
]
.(2.32)

Putting a = τ , we find

dN0

dt
= −(R0 + V0)N0 + 2R0(t− τ)N0(t− τ) exp

[
−
∫ t

t−τ

[γ0(t
′) + V0(t

′)] dt′
]
, t > τ,

(2.33)
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which prescribes the control system for N0, analogously to that of Mackey [11]. For
t < τ , the equation for N0 involves the initial condition for p0, and we can equivalently
simply prescribe initial data for N0 there.

Finally, we complete the definition of Q in (2.19) by solving (2.1) using the initial
data on m = 0:

m = 0, a = α > 0, t = s > 0, V (0)p = V0(s)p0(s, α).(2.34)

We find

p(t, ξ, a) =
V0(t− ξ)p0(t− ξ, a− ξ)

v(ξ)
exp

[
−
∫ ξ

0

γ dξ

]
, ξ < a, ξ < t,(2.35)

from which it follows that

Q = 2η′(ξ)V0(t− η)p0[t− η, τ − η] exp

[
−
∫ η

0

γ dξ

]
, t > η, η < τ.(2.36)

Along with (2.20) and (2.22), this completes the definition of Q for t > 0, η > 0 (and
thus ξ > 0). In summary,

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2η′(ξ)R[t− τ, η − τ ]M [t− τ, η − τ ] exp

[
−
∫ η

η−τ

γ dξ

]
, t > τ, η > τ,

2η′(ξ)pI [η − t, τ − t]v(η − t) exp

[
−
∫ η

η−t

γ dξ

]
, t < τ, η > t,

2η′(ξ)V0(t− η)p0[t− η, τ − η] exp

[
−
∫ η

0

γ dξ

]
, t > η, η < τ.

(2.37)

The two equations (2.33) and (2.19) are coupled through (2.28), which provides
the requisite boundary condition for M at ξ = 0:

M = V0N0 at ξ = 0.(2.38)

We see that by an appropriate consideration of the primitive stem cells, we derive a
coherent model which does not require V (0) = 0.

Many authors (for example, see Rey and Mackey [16] and Dyson, Villella-Bresson,
and Webb [5]) study the differential equation (2.12) for N , under the assumption that
V does tend to zero as m → 0, for example,

V = rm.(2.39)

The reasoning behind this is that, if primitive stem cells mature at a finite rate, then
such cells will be immediately lost to m > 0, which makes no physiological sense,
because the cell population then inexorably disappears. Only by choosing V (0) = 0
can we allow primitive stem cells to endure. In the present version of the model, it is
also possible to allow V (0) = 0; for example, (2.39) would then imply

M → 0 as ξ → −∞.(2.40)

The sensitivity of the solution to this condition has led to the idea that the system
may have unstable and even chaotic solutions (e.g., Crabb, Mackey, and Rey [3]),
because of the degeneracy of the equation at m = 0. Our considerations here suggest
that the requirement that V (0) = 0 is inaccurate, because it does not properly address
the biological question of how the primitive stem cells should be described.
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3. Dimensionless model. How we solve the model depends on the complexity
of our assumptions about γ, R, η, and R0. In the remainder of this paper we will
assume g(m) = m (thus η = ξ) and that γ and γ0 are constant. The equation for the
maturing cells, (2.19), is

∂M

∂t
+

∂M

∂ξ
= −RM + Q,(3.1)

and is a hyperbolic delay partial differential equation. Figure 4 shows the regions
where the different definitions of Q apply. In regions II and segment (a) of region III,
that is, for t < τ and all η = ξ > 0, Q depends on the initial data, either pI (in II)
or p00 (in III(a)). Thus we may equivalently simply choose instead to prescribe M in
0 < t < τ , and this we do. In fact, since ξ is finite, the part of the solution which
depends on this initial data will wash out of the system in a finite time. It is therefore
apparently of little concern.

We therefore confine ourselves to consideration of the definition of Q in regions I
and III(b); with the assumptions we have made, we find that for t > τ ,

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e−γτR[t− τ, ξ − τ ]M [t− τ, ξ − τ ], ξ > τ,

2e−γ0(τ−ξ)e−γξ exp

[
−
∫ t−ξ

t−τ

V0(t
′) dt′

]
V0(t− ξ)R0(t− τ)N0(t− τ), ξ < τ.

(3.2)

We thus have to solve (3.1) with (3.2) in t > τ , with the boundary condition (2.38)
on ξ = 0, and prescription of an initial function for M in 0 < t < τ .

A principal issue of focus is how the recruitment rates R and R0 and the committal
rate V0 depend on M , N0, and ξ. There is very little to constrain our choice. In what
follows, we assume R0 = R0(N0) (stem cell proliferation is controlled by stem cell
density). We follow Mackey and Rudnicki [13] in supposing that R depends on the
total differentiating cell population M̄ , where

M̄(t) =

∫ ξF

0

M dξ,(3.3)

with ξF being the time of final maturation,

ξF =

∫ mF

0

dρ

V (ρ)
,(3.4)

and m = mF at full maturity. We suppose that the rate of committal V0 should
depend on the peripheral blood cell count, B, and thus V0 = V0(B). A simple model
for B is

dB

dt
= M |ξF − γBB,(3.5)

where γB is the specific decay rate of the peripheral blood cells, and the source term
M |ξF is the delivery rate to the blood from the maturation phase cells. Peripheral
control models of similar type have been studied by Bernard, Bélair, and Mackey [1].
Assumptions of this type are liable to be important in the evolution of diseases such
as cyclical neutropenia, which is thought to be due to an instability in the peripheral
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t
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t = τ

η = τ

II

ba

I

η (= ξ)
Fig. 4. Regions of different definitions of Q in (2.37). Regions I, II, and III correspond to

the first, second, and third definitions of Q and their locations of validity in the (t, η) plane. The
vertical dotted line in region III (where Q is defined in terms of p0) separates the region (a), where
(2.32) applies (to the left), from (b), where (2.31) applies (to the right).

control of stem cell committal. In addition, it is likely that other controls affect rate
of apoptosis, maturation rate, cell cycle time, and so on.

The equation for N0 (2.33) now takes the form

Ṅ0 = −[V0 + R0(N0)]N0 + 2e−γ0τR0(N0τ )N0τ exp

[
−
∫ t

t−τ

V0[B(t′)] dt′
]
,(3.6)

where N0τ = N0(t− τ). This is precisely the model of Mackey [11] if V0 is constant,
and it has been studied by Fowler and Mackey [8] in the limit

V0τ � 1,(3.7)

when it is shown that relaxation oscillations will occur for a further parameter μ0 =
[2e−(γ0+V0)τ − 1]/V0τ within a certain O(1) range. (Note that in the notation of
Fowler and Mackey’s model, γ = γ0 +V0, δ = V0.) When such oscillations occur, they
will propagate through the maturing cells; however, we show in this paper that the
resultant amplitude of oscillations of mature blood cells is small unless amplification
also occurs during maturation.

We can write (3.2) in abbreviated form as

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e−γτR(M̄τ )Mτ,τ , ξ > τ,

2e−γ0(τ−ξ)e−γξ exp

[
−
∫ t−ξ

t−τ

V0[B(t′)] dt′

]
V0[B(t− ξ)]R0(N0τ )N0τ , ξ < τ,

(3.8)
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where M̄τ = M̄(t− τ), and Mτ,τ = M(t− τ, ξ − τ).
We nondimensionalize the model by following the analysis of Fowler and Mackey

[8], which motivates a choice of scales for the variables as follows:

t, ξ ∼ τ, M ∼ M∗, N0 = N∗
0S, Q ∼ M∗

τ
,

R0 = R∗
0h0, R = R∗h, V0 = V ∗

0 v0, B ∼ M∗

γB
,(3.9)

where R∗
0, R∗, V ∗

0 , N∗
0 , M∗ are determined by the control functions (so that they

are O(1) functions of O(1) variables). For example, Mackey [11] chooses for R0 the
Hill function

R0 =
R∗

0

1 + (N0/θ)
n .(3.10)

In this case, we would choose N∗
0 = θ, and h0 is the Hill function

h0(S) =
1

1 + Sn .(3.11)

The dimensionless stem cell equation is

Ṡ = b0

[
(1 + λ0)h0(S1)S1 exp

(
ε0

{
1 −

∫ t

t−1

v0[B(t′)] dt′
})

− h0S

]
− ε0v0S,

(3.12)

where

ε0 = V ∗
0 τ, λ0 = 2e−(γ0+V ∗

0 )τ − 1, b0 = R∗
0τ.(3.13)

The dimensionless form of (3.8) is

∂M

∂t
+

∂M

∂ξ
= −bh(M̄)M + Q,(3.14)

where

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b(1 + λ) h(M̄1)M1,1 , ξ > 1,

νb0(1 + λ0) e−αξ exp

[
ε0

{
1 −

∫ t−ξ

t−1

v0[B(t′)] dt′

}]
v0[B(t− ξ)]h0(S1)S1,ξ < 1,

(3.15)

in which

ν =
N∗

0V
∗
0

M∗ , b = R∗τ, λ = 2e−γτ − 1, α = (γ − γ0)τ.(3.16)

This is analogous to the scaling used by Fowler and Mackey [8]. The boundary
condition for M is

M = νv0S at ξ = 0,(3.17)
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and if

M = Mf at ξ = ξf ,(3.18)

then

δḂ = Mf −B,(3.19)

where

δ =
1

γBτ
, ξf =

ξF
τ
.(3.20)

This completes the statement of the dimensionless form of the model.

Parameter values. Equation (3.12) is exactly that studied by Fowler and Mackey
[8] (if v0 ≡ 1). However, their model can also be interpreted as a lumped, or com-
partmentalized, version of (3.14) for the maturing cells. One way of enabling this is
if we make the special assumption that the maturation rate V → 0 as both m → 0
and m → mF , as also assumed by Mackey and Rudnicki [13]. In this case the range
of ξ is (−∞,∞), and we have M → 0 at both limits. Then integration of (3.14) over
ξ again leads to an equation of the form of (3.12). In the present paper we assume
V is finite at m = mF , i.e., the mature blood cells are delivered to the bloodstream
at a finite rate, and this is then the essential difference between the models with and
without maturation.

In estimating the parameters, we follow Fowler and Mackey [8] in choosing τ ∼ 2
d, and we suppose that proliferative control is effected at typical rates R∗ ∼ R∗

0 ∼ 2
d−1. We suppose that apoptosis rates are of order γ ∼ γ0 ∼ 0.2 d−1 and that
committal rates are of order V ∗

0 ∼ 0.05 d−1, and from these we find

b ∼ b0 ∼ 4, λ ∼ λ0 ∼ 0.3, ε0 ∼ 0.1.(3.21)

The parameter α is not independent of the others, as

α = ε0 + ln

(
1 + λ0

1 + λ

)
,(3.22)

and plausibly α ≈ ε0.
The remaining parameters are δ, ν, and ξf . For δ, we assume a half-life (γ−1

B ) of 7
hours, appropriate for neutrophils (but, for example, certainly not for erythrocytes);
then

δ ∼ 0.15.(3.23)

We can get some sense of the size of the remaining parameters ν and ξf by
considering the nature of stem cells. These are difficult to isolate; indeed it is not
yet clear whether genuine stem cells have ever really been isolated. The reason for
this is that there are few of them, and maturing cells will typically undergo about
(or at least) 20 divisions before emerging as mature blood cells. A typical numerical
estimate for the total number of blast cells is 1012 per kg body weight, while for stem
cells, a corresponding estimate is 106 (see Bernard, Bélair, and Mackey [1], Mackey
[12]). If this is the case, then it successively implies that the parameter ν in (3.16)
is very small (≈ 10−6), and therefore also that the maturation time is long. Typical
estimates of ξF ≈ 10–20 days are consistent with values of ξf ≈ 5–10, and in fact the
small parameter ξ−1

f then plays the role corresponding to that of the small parameter
ε in Fowler and Mackey’s [8] analysis.
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Steady state. To elaborate this discussion, we now describe the steady state.
For simplicity, we ignore the distinct definition of Q in ξ < 1 and extend the definition
in ξ > 1 back to ξ = 0. The steady solution of (3.14) and (3.15) is, with v0 = S = 1,

M = νesξ,(3.24)

where s is the unique positive solution of the pair

s = bh(M̄)
[
(1 + λ)e−s − 1

]
,

M̄ =
ν

s

(
esξf − 1

)
.(3.25)

(Uniqueness follows from the fact that M̄ is monotonically increasing with s, hence
h(M̄) is monotonically decreasing with s, and hence bh(M̄) [(1 + λ)e−s − 1] is mono-
tonically decreasing with s, while evidently s is increasing.) We can see that s <
ln(1 + λ), and s will be close to this value if b is large. Note also that by choosing λ0

and ε0 to have certain specific values which depend on λ, b, ν, and ξf , this solution
consistently extends back to ξ = 0, even allowing for the distinct definition of Q in
ξ < 1.

Numerical solutions do confirm the exponential variation of M with ξ. In general,
it is found that M decreases for 0 < ξ < 1, before subsequently increasing.

4. Periodic solutions. We are interested in finding whether periodic solutions
can occur. There are three different controllers in the model, and thus three different
ways in which oscillations can occur: These are described below. We utilize a reference
set of parameters based on the estimates in Fowler and Mackey [8], and these are given
in Table 1. They are those suggested by independent estimate, except that we take
ν = 10−2 rather than 10−6. This is partly for numerical expediency, as smaller values
of ν require larger ξf and thus longer computation times, and also because the value
of ν is not well constrained.

Table 1

The reference parameter values, based on estimates in Fowler and Mackey [8].

Symbol Typical value
n 3
ε0 0.1
λ0 0.3
b0 4
ν 10−2

b 4
λ 0.3
ξf 5
δ 0.2
v∗ 1
v′ 1

We choose the Hill function controller (3.11) for both h and h0; thus

h(M̄) =
1

1 + M̄n , h0(S) =
1

1 + Sn ,(4.1)

and we take the peripheral controller v0 to have the form

v0 = [v∗ − v′B]+,(4.2)
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with default values of the amplitude and slope parameters to be v∗ = v′ = 1. The
choice of a threshold in (4.2) is motivated by the observation that neutrophil popula-
tions can dwindle to zero in cyclical neutropenia, which would appear to require zero
production for sufficiently high blood cell counts.

With this choice of the controller functions and using the default parameters, the
steady state is stable. Instabilities arising from parameter variations are described
below.

Numerical method. We have to solve the two ordinary differential equations
(3.12) and (3.19), and the partial differential equation (3.14). The solution is compli-
cated by the presence of the integral in (3.12). We define

U = S exp

[
ε0

∫ t

v0[B(t′)] dt′
]
,(4.3)

and then S and U satisfy the pair of equations

Ṡ = S

[
U̇

U
− ε0v0

]
,

U̇ = b0 [(1 + λ)eαh0(S1)U1 − h0(S)U ] .(4.4)

On the assumption that S remains bounded, U grows exponentially as U ∼ exp(v0t),
where v0 is the mean of v0. This is likely to cause difficulty in numerical solutions, and
this can be reduced by using the algebraically growing function W = lnU , whence

Ṡ = S
[
Ẇ − ε0v0

]
,

Ẇ = b0
[
(1 + λ)h0(S1)e

α+W1−W − h0(S)
]
.(4.5)

In our numerical solutions, we solve (4.5) using the second order accurate improved
Euler method, and we similarly solve (3.14) along the characteristics ξ − t = η, on
which the function Q takes the form

Q =

⎧⎨
⎩

b(1 + λ)h(M̄1)M1 , ξ > 1,

b0(1 + λ)eα(1−ξ)M0(η)h0(S1) exp [W1 −W (η)] , ξ < 1,
(4.6)

where M0(η) = M(η, 0) and M1 = M1,1, i.e., M delayed by one along the character-
istic.

Accurate solutions are obtained with a time step Δt = Δξ = 0.05, and these are
checked against values Δt = Δξ = 0.02 (which are used to give the figures).

Stem cell oscillations. Oscillations in the primitive stem cell population will
occur for a finite range of the parameter λ0/ε0, as described by Fowler and Mackey
[8], when v0 = 1. For the default values of b0 = 4, n = 3, the approximate range
of instability is 0.5ε0 <∼ λ0 <∼ 1.5ε0, and this is modified in an obvious way when the
peripheral controller alters the value of v0. Figure 5 shows the oscillations which
occur in the stem cell population when λ0 is reduced to 0.05. It is an interesting
fact that these oscillations are hardly manifested in the blood cell population. The
apparent reason for this is that the small value of ν means that oscillations in M0, and
therefore also in Mf , are small because small perturbations propagate stably down
the maturation axis. The blood cell population is therefore stable, and B ≈ Mf .



2042 I. DROBNJAK, A. C. FOWLER, AND M. C. MACKEY

0

0.5

1

1.5

2

2.5

3

400 410 420 430 440 450

S
B

S,B

t
Fig. 5. Default parameter values, except that λ0 = 0.05. Stem cell oscillations are induced,

without any significant effect on blood cells.

Proliferation-controlled oscillations. We use the term proliferation-controlled
oscillations to refer to oscillations induced by destabilization of the proliferative feed-
back control function h(M̄). If we compare the stem cell model (3.12) (with v0 = 1)

Ṡ = b0 [(1 + λ0)h0(S1)S1 − h0(S)S] − ε0S(4.7)

with the blast cell model (along the characteristics)

Ṁ = b
[
(1 + λ)h(M̄1)M1,1 − h(M̄)M

]
,(4.8)

it is not difficult to sense that modification of the parameters b or λ may cause the
blast maturation to proceed unstably.

This is what we find if λ is increased to 0.6, and the consequent oscillations are
shown in Figure 6. The steady exponential proliferation of blast cells is unstable,
which causes oscillations to occur in the maturation profile, and these oscillations
propagate along the characteristics, as shown in Figure 7.

The oscillations have period equal to the cell cycling time, equal to one in our
scaled model. A partial understanding of these oscillations is afforded by the obser-
vation that if h is constant and M is periodic with period 2π/ω, then (4.8) admits a
solution

M =
∑
p,q

cpqe
σqξ+ipω(t−ξ),(4.9)

provided that σq satisfies

σ = −A−Ge−σ,(4.10)

where

A = bh, G = −bh(1 + λ).(4.11)
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Fig. 6. Proliferatively controlled oscillations due to increased proliferation. Default parameter
values are used, except that λ = 0.6.
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Fig. 7. Two snapshots of the maturation profile for the numerical solution in Figure 6. An

exponentially growing travelling wave propagates down the maturation axis.

Since λ > 0, we have G + A < 0, and it is straightforward to show that there is
always a single positive root, which can be labelled with q = 0. The others are
complex (conjugates), and are labelled with increasing frequency as q = ±1,±2, etc.
Consideration of these complex roots then shows that for small |G|, Reσq < 0, so that
the effect of the oscillations dies away as the cells mature; this is what happens in
Figure 5. However, for larger |G|, Reσq > 0, and the oscillations grow in amplitude as
the cells mature. This causes M̄ to fluctuate, and thus also h, presumably entraining
the period of the oscillations to that of the delay. This description is consistent with
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Fig. 8. The same graph as in Figure 7, except that a logarithmic scale is used. The exponential

increase with ξ is clearly seen.

what is seen in Figure 7 (see also Figure 8). An approximate criterion for growth of
periodic perturbations with ξ is when G < −[A2 + π2]1/2, i.e.,

λ >∼

[
1 +

( π

bh

)2
]1/2

− 1.(4.12)

Differentiation-controlled oscillations. The final kind of oscillation that we
see is induced by the peripheral control of stem cell committal through the function
v0(B). These are essentially delay induced oscillations, where now the delay involved
is the maturation time. Because we suppose maturation time is large, these are long
period oscillations. They can be caused by increasing the sensitivity of the peripheral
controller, as shown in Figure 9.

To understand the origin of these oscillations, let us suppose that ξf � 1, or
ξF � τ , meaning that the maturation time is significantly longer than the cell cycle
time, or equivalently, that there are a large number of generations in the cell lineage.
Let us define

ε =
1

ξm
,(4.13)

and the slow time and maturation scales

T = εt, X = εξ.(4.14)

We also define μ via

λ = εμ,(4.15)

and suppose that μ = O(1). Essentially we are revisiting the relaxation oscillation
analysis of Fowler and Mackey [8]. The partial differential equation for M takes the
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Fig. 9. Differentiation-controlled oscillations due to enhancement of the peripheral controller

function. Default parameters are used, except that v∗ = v′ = 2.

form

∂M

∂T
+

∂M

∂X
=

b [hε,εMε,ε − hM ]

ε
+ μbhε,εMε,ε,(4.16)

and expanding in a Taylor series, we have

∂[(1 + bh)M ]

∂T
+

∂[(1 + bh)M ]

∂X
≈ μbhM,(4.17)

with the boundary condition (taking S = 1)

M = νv0(B) at X = 0.(4.18)

If we suppose h is constant (it is not, but it is not the dependence of h on M̄
which causes the oscillations), then the solution of this is

M = νv0[B(T −X)] exp

[
μbhX

1 + bh

]
,(4.19)

and the cell efflux at X = 1 (ξ = ξf ) is

M(1) = νav0[B(T − 1)],(4.20)

where the amplification factor a is

a = exp

[
μbh

1 + bh

]
.(4.21)

Therefore the blood cell conservation law (3.19) becomes the delay recruitment model

εδ
dB

dT
= νav0(B1) −B.(4.22)
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This is a standard delay recruitment equation with a unique steady state. Oscillations
will occur as a consequence of instability if there are solutions σ of (4.10), i.e.,

σ = −A−Ge−σ,(4.23)

with positive real part. The values of A and G are

A =
1

εδ
, G =

νa|v′0|
εδ

.(4.24)

Equation (4.23) is well understood; see, for example, Mackey [11] or Murray
[15, pp. 23–26]. It is a transcendental equation with an infinite number of complex
roots which accumulate at the essential singularity at σ = −∞. It follows that the
set of Reσ is bounded above. Consequently, there is an instability criterion which
determines when all the roots σ have negative real part, and this is indicated in Figure
10. The three curves in the figure are given by G = −A, G = exp[−(1 +A)], and the
Hopf bifurcation curve G = G0(A), which is given parametrically by

A = − Ω

tan Ω
, G0 =

Ω

sin Ω
,(4.25)

where Ω ∈ [0, π]. Since G and A are positive, oscillatory instability occurs precisely
if G > G0(A). Since G0 ∼ A as A → ∞, the instability criterion for large A is simply
G >∼ A, i.e.,

ν|v′0| exp

[
μbh

1 + bh

]
> 1.(4.26)

Instability is promoted by increasing |v′0|, for example, as indicated in Figure 9.

5. Conclusions. In this paper we have studied the onset of oscillations in a
model of blood cell production which includes a description of cell cycling and prolif-
eration, and also of differentiation and maturation. The model formulation extends
the work of previous authors by correcting an apparent inconsistency in the descrip-
tion of the primitive stem cell population, and also by including the simultaneous
control of stem cell proliferation, stem cell committal, and blast cell proliferation. All
three controls can cause oscillations for appropriate values of control parameters.

Previous results concerning stem cell oscillations are reproduced (see Figure 5),
but these oscillations are harder to obtain when the parameter ν is small, and in ad-
dition they hardly affect the mature blood cell population without additional desta-
bilization of the blast cell proliferation. The reason for this is that an O(1) oscillation
in the stem cell population causes only an O(ν) oscillation in the blast cell committal
rate, and this amplitude propagates through the differentiating cells. Thus one con-
sequence of stem cell paucity is that any instability in the stem cell population itself
is hardly manifested in the blood cell production. From the point of view of survival
and control, this is, of course, a positive result.

Instability in the proliferation of blast cells due to enhancement of the proliferative
controller h(M̄) causes oscillations which propagate down the maturation axis and
are amplified as they progress. The result of this is shown in Figures 6, 7, and 8.
The oscillations have a period equal to the cell cycling time. The mechanism for these
oscillations appears to be a destabilization of the maturing cell amplification, together
with a type of resonance which ties the period to the delay.
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Fig. 10. Stability map for (4.23). The plus and minus signs indicate the sign of real values of
the growth rate σ, when these exist. A Hopf bifurcation occurs as G increases through G0(A), and
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Fig. 11. The effect of switching on all three instability mechanisms. Default parameters are

used, except that v∗ = v′ = 2, λ0 = 0.05, and λ = 0.6.

The final kind of oscillation is induced by enhanced peripheral control, as seen in
Figure 9. Stem cell paucity implies that ν � 1 and, consequently, that ξf � 1, and
thus that the oscillation period (controlled by the delay ξf ) is long. This allows an
approximate reduction of the partial differential delay equation to a simple first order
differential delay equation, which is simply analyzed. In particular, if a threshold
form of peripheral controller is used, blood cell counts can decrease to zero, as can be
the case in cyclical neutropenia.

Finally, and as shown in Figure 11, a combination of all three destabilizing mech-
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anisms can lead to oscillations which operate on both the slow, peripherally controlled
time scale and the fast, proliferatively controlled one. We consider this observation
to be a possible explanation of the apparent fact in Figure 2 that both reticulocytes
and platelets appear to oscillate on a fast as well as a slow time scale. Further study
of this behavior requires the extension of this model to accommodate multiple cell
lineages.
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