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We describe a simple model of a bubbly two-phase flow which is able to explain why waves
propagate downward when a pint of Guinness is poured, and also how the waves are generated. Our
theory involves a physically based regularization of the basic equations of the two-phase flow, using
interphasic pressure difference and virtual mass terms, together with bulk or eddy viscosity terms.
We show that waves can occur through an instability analogous to that which forms roll waves in
inclined fluid flows, and we provide a description of the form of these waves, and compare them to
observations. Our theory provides a platform for the description of waves in more general bubbly
two-phase flows, and the way in which the flow breaks down to form slug flow. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2929369�

I. INTRODUCTION

Two-phase flows of a gas-liquid mixture have many im-
portant applications in industry, for example, in heat ex-
changers, reactor cooling systems, and oil extraction. The
particular case of gas-liquid flows in a vertical pipe is char-
acterized by a number of different flow regimes. Two of the
principal flow regimes are those of bubbly flow, in which
small gas bubbles are dispersed throughout a continuous liq-
uid phase, and slug flow, where slugs of liquid are separated
by large gas bubbles whose width approaches the diameter of
the pipe.

It is well established that a bubbly flow in a vertical pipe
may undergo a transition to the slug flow regime and this
transition is characterized by wave formation in the bubbly
flow.1–3 The classical explanation for these waves lies in the
kinematic wave theory developed in Refs. 4–6, based �in
terms of a two-phase flow theory� on a suitable drift flux
model. The same types of waves occur in the flow of sus-
pensions, sedimentation, and in traffic flows �see, for ex-
ample, Refs. 7–10� and can be explained in similar ways.
What is less clear is why such waves should form in the first
place. A natural idea is that the uniform state with constant
void fraction �the volume fraction of bubbles� should be un-
stable to void fraction disturbances. In fact, the breakdown of
bubbly flow to slug flow as the void fraction increases is
thought to result from instability of the uniform flow, leading
to voidage waves or concentration waves in the bubbly flow,
and such an instability is thought to herald the regime tran-
sition to slug or churn flow as well as the analogous transi-
tion to bubbly flow in fluidized beds.11 Thus, an understand-
ing of the bubble-to-slug regime transition requires
knowledge of voidage waves and their onset.

An issue of some concern relating to two-phase flow
models is the occurrence of complex characteristics resulting
in an improperly posed initial-boundary-value problem.12,13

Considerable attention has been paid in resolving this issue,

whereby the inclusion of more physically realistic terms can
render the equations well-posed for finite values of the void
fraction. In the context of bubbly two-phase flows, it is sug-
gested in Ref. 14 that the breakdown of bubbly flow and the
subsequent transition to slug flow was associated with a coa-
lescence of the characteristic speeds �and their subsequently
becoming complex� at a critical value of the void fraction.
While such an occurrence undoubtedly heralds instability, it
does so in an ill-posed way since the resulting instability
occurs at all wave numbers.15 It is suggested in Ref. 16 that
the inclusion of higher derivative terms could remedy this
and such a model is considered in Ref. 12. Thus, it appears
that the issue of instability is inextricably linked to the vexed
question of the proper formulation of the two-phase flow
equations. In turn, this is associated with the proper prescrip-
tion of boundary conditions for the flow, a topic which is
fundamental but which has been largely ignored.

Laboratory experiments of these gas-liquid flows are
mostly restricted to simple air/water systems, in which the
waves can be remotely sensed but they are not easily seen.1,3

Industrially important flows, such as that of oil/gas flow in a
borehole of an oil well, can also only be sensed remotely. It
is therefore particularly attractive to find an experimental re-
alization of the two-phase flow waves in which the waves are
easily seen, and such a realization occurs in the simple case
of gas-liquid flow in a poured glass of Guinness. For this
reason, in the remainder of this paper, we focus on this par-
ticularly common flow.

When a pint of Guinness or other comparable beer is
poured and allowed to settle, waves can be seen in the re-
sulting bubbly liquid, propagating downward despite the fact
that the bubbles are buoyant. It is now known �see Ref. 17�
that the waves are embedded in a convective circulatory flow
which descends near the wall and rises at the center. A pint of
Guinness can be considered a mixture of a viscous �black�
liquid and �buoyant� nitrogen bubbles. During the settling
process, the “head” of the pint is gradually formed via the
accumulation of the bubbles at the upper surface of the blacka�Electronic mail: stephen.obrien@ul.ie.

PHYSICS OF FLUIDS 20, 067101 �2008�

1070-6631/2008/20�6�/067101/15/$23.00 © 2008 American Institute of Physics20, 067101-1

Downloaded 23 Jun 2008 to 193.1.100.110. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.2929369
http://dx.doi.org/10.1063/1.2929369


liquid and it is the contrast between the creamy bubble foam
at the top and the black liquid beneath which gives the pint
of Guinness its characteristic black/white appearance. Here,
we are concerned with the early stages of the settling process
when the glass is full of an approximately uniform light
brown mixture of liquid and bubbles. The experienced ob-
server of this phenomenon will note the occurrence of a pe-
riodic train of waves, manifested as a series of irregular hori-
zontal dark lines appearing to flow downward in the brown
mixture. In this paper, we will develop a theory for these
waves and we will show that in a mathematical sense, they
are analogous to, and represent a generalization of the roll
waves in a fluid film, which can commonly be seen follow-
ing heavy rainfall in the water films flowing down an in-
clined laneway �Fig. 1�.

Our purpose in this paper, therefore, is to examine the
onset and propagation of waves in bubbly flow, in the con-
text of a properly constituted two-phase flow model. We in-
troduce our basic model for two-phase flows in Sec. II. �The
derivation of the model is contained in Appendix A.� In Sec.
III, we analyze a simplified model and show that the basic
steady flow is linearly unstable and the instability always
occurs before the onset of complex characteristics, which we
suppose signals a transition to slug flow. As such, wave for-
mation in the bubbly flow can be viewed as a precursor to a
regime transition. We then further analyze the simplified �hy-
perbolic� model for the development of periodic wave trains
and we compare the results to the numerical solutions �Sec.
IV� of the full evolution equations including a smoothing
eddy viscosity term. A discussion follows in Sec. V and the
conclusions are in Sec. VI.

II. THE MATHEMATICAL MODEL

We consider the specific example of wave generation in
a bubbly flow and we focus on the specific form of waves
seen in the initial pouring of a glass of the Guinness. We use
a continuum model with the relevant continuum variable �
being the void fraction, i.e., the ratio of gas volume to the
total volume of the gas/liquid mixture �so �=0 corresponds
to pure liquid�.

We propose a model based on the use of averaged equa-
tions. As exhaustively described by Refs. 19–21 and many
other authors, there are a variety of different conceptual

methodologies by which one can average. Generally, these
lead to similar forms of the averaged equations, depending
on one’s assumptions about the small scale flow. A popular
choice is the ensemble average, in which one averages the
equations over many different realizations. Alternatively, one
may time average, where the small scale fluctuation time
scale is much smaller than the macroscopic �convective�
time scale; or one may space average, where one assumes
that the microscopic space scale �here, the bubble diameter�
is much less than the macroscopic length scale. We do not
dwell on the averaging procedure but note that the spatial
averaging procedure is implicitly assumed in the discussion
below.

We leave the details of the derivation of the equations
appropriate for waves in Guinness to Appendix A, where we
rehearse the basic ill-posedness of the one-dimensional two-
phase flow equations and discuss the setting of correctly
posed boundary value problems, and the consequent inter-
pretation of flow regime diagrams in terms of such problems.
We further suggest a physically based constitutive law for
the interphasic pressures, which is closely related to a model
introduced in Ref. 22 in the context of fluidized beds and
used in Ref. 23 to study void fraction waves in bubbly flow
�see also Ref. 24�. A related model is considered in Ref. 25.
We show that this constitutive law acts as a bulk viscosity
and produces a diffusive term in the liquid momentum equa-
tion.

The full model with boundary conditions is discussed in
Appendix A and is given by

�t + ��v�x = 0, �2.1a�

− �t + ��1 − ��u�x = 0, �2.1b�

�l�1 − ���ut + uux� = − �1 − ��
�pl

�x
+ Fgi − Flw + �pl − pg�

��

�x

+ ��lCVM�vt + vvx − �ut + uux��

− �1 − ���lg +
�

�x
���1 − ��ux� , �2.1c�

�g��vt + vvx� = − �
�pg

�x
− Fgi − ��gg

− ��lCVM�vt + vvx − �ut + uux�� , �2.1d�

where we choose the constitutive law for interfacial pressure
difference as

pg − pl = − H�l�v − u�2. �2.2�

A detailed discussion of appropriate choices for the coeffi-
cients is given in Ref. 26. The variables are the void fraction
�, the averaged gas and liquid velocities v and u, and the gas
and liquid pressures pg and pl; x denotes the along axis dis-
tance, and Fgi and Flw are the frictional resistance exerted on
the gas by the liquid �at the gas-liquid interface� and the wall
friction exerted on the liquid, respectively. We note that the
last four terms in Eq. �2.1c� represent the interphasic pres-
sure, a virtual mass term, gravity, and an eddy viscosity regu-
larizing term, respectively, the last two terms in Eq. �2.1d�

FIG. 1. �Color online� Waves in the Guinness and roll waves on a roadway
in Craggaunowen, County Clare, Ireland. In the Guinness, the waves propa-
gate downward and are superimposed on a circulatory motion whose origin
appears to be due to buoyancy induced convection itself due to a lateral
variation in void fraction. Photograph courtesy of Michael Manga ��Waves
of bubbles in basaltic magmas and lavas,� J. Geophys. Res. 101, 457 �1996�
�Ref. 18��.
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represent gravity and virtual mass effects, respectively. We
follow Refs. 23, 26, and 27 by including virtual mass effects
as well as the interfacial pressure difference �pli and the
eddy/bulk viscosity. For the purposes of simplicity and di-
dacticism, we make simple choices,

CVM = 1
2 , H = 1

4 , �2.3�

which are appropriate for isolated spherical bubbles. For the
phenomenon under consideration, that of the propagation of
waves in an essentially quiescent medium, we set Flw=0 and
choose

Fgi =
�D����v − u�

a2 , �2.4�

corresponding to the laminar drag past bubbles of radius a,
where � is the liquid dynamic �laminar� viscosity. �In gen-
eral, the eddy or bulk viscosity � will be larger than this.�
For the Stokes drag as �→0, we would have D�3�, while
at large �, where Darcy’s law might be more appropriate, the
choice of D=180�2 / �1−�� corresponds to the Carman–
Kozeny law.28 For more violent flows, a better choice would
have Fgi� �v−u�2.

A. Nondimensionalization and simplification

If the liquid viscosity is �, we define the dimensionless
bulk viscosity

�* =
�

�
, �2.5�

in general, this will depend on �. For example, one possibil-
ity is

�* �
4

3�
, �2.6�

neglecting gas viscosity, as demonstrated in Eq. �A19� of
Appendix A 3. Suitable velocity, length, and time scales are
given by

u0 =
a2g

�l
, l =

u0
2

g
=

a4g

�l
2 , t0 =

l

u0
=

a2

�l
, �2.7�

where a is bubble radius and �l=� /�l is the liquid kinematic
viscosity. We nondimensionalize the equations by scaling

x � l, u, v � u0, pl, pg � �lu0
2, t � t0. �2.8�

The dimensionless forms of the mass conservation equations
have the same form and the dimensionless momentum equa-
tions take the form

�1 − ���ut + uux� = − �1 − ��
�pl

�x
+ �pl − pg�

��

�x

+ �CVM�vt + vvx − �ut + uux��

− �1 − � − D�v − u��

+ �
�

�x
��*�1 − ��ux� ,

�2.9�

	��vt + vvx� = − �
�pg

�x
− �	� + D�v − u��

− �CVM�vt + vvx − �ut + uux�� ,

where

� =
a2

l2 =
�l

4

g2a6 , 	 =
�g

�l
. �2.10�

With typical estimates for Guinness of a�0.06 mm, �l

�2
10−6 m2 s−1, g�10 m s−2, we have l�0.03 mm, �
�2, and the diffusion term is not so small. Worse, the length
scale is smaller than the bubble radius. In this paper, we will
consider a continuum model which formally requires l�a,
and thus, ��1, but recognize that this may not be true in
practice; to some extent, the problem is a cosmetic one, in-
sofar as �for example� the large values of the coefficients gi

in the dimensionless model below suggest a larger length
scale. The observations that motivate our study �wavelength
some hundred times greater than bubble radius� support this
viewpoint. With �l�103 kg m−3, �g�1 kg m−3, the param-
eter 	�10−3 is also small.

Adding the two mass conservation equations, we have

�v + �1 − ��u = j , �2.11�

where the total volume flux j is constant. This allows us to
write v=v�� ,u�. We set 	=0, thus neglecting the gas accel-
eration terms. Eliminating the pressure derivative terms in
the momentum equations, we can write the model as two
equations for � and u,

− �t + ��1 − ��u�x = 0,

�2.12�
g1ut + �g1j + g2�u − j��ux − g3�u − j�2�x

= − R +
�

�1 − ��
��*�1 − ��ux�x,

where

R = 1 +
D����u − j�
�2�1 − ��

, �2.13�

and
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g1 = 1 +
CVM

��1 − ��
,

g2 = 1 +
2H

�2 +
CVM�3� − 2�

�2�1 − ��
, �2.14�

g3 = − �CVM − H�2 − ��
�3�1 − �� � .

The functions g1���, g2���, and g3��� are portrayed in Fig. 2.
For the relevant values of �
0.3, we see that g1�0, g2


0, and g3
0.
It is convenient to define

x = − �, u = − w, A = 1 − � �2.15�

and we switch attention to the liquid fraction A �A=1 corre-
sponds to pure liquid�. Note that g1, g2, and g3 all become
singular as A→0. Note also that the coordinate � points
downward and that w�0 corresponds to liquid downflow.
The dimensionless equations are then

At + �Aw�� = 0,

�2.16�
g1wt + �g2�w + j� − g1j�w� + g3�w + j�2A�

= R�A,w + j� +
�

A

�

��
	�*A

�w

��

 ,

where

R�A,w� = 1 −
w

W�A�
, �2.17�

and we have written �with D�A�=3�1−A��

W�A� =
�1 − A�2A

3�1 − A�
. �2.18�

It is not difficult to show that under the transformation

w + j = w0, � + jt = X , �2.19�

the equations for A�X , t� and w0�X , t� are precisely those
above with the net volume flux j=0. This is not surprising,
indicating the Galilean invariance of the system. Conse-

quently, a solution A�X , t�, w0�X , t� when j=0 yields solu-
tions for nonzero j, in which

w��,t� = w0�� + jt,t� − j . �2.20�

In particular, traveling wave solutions of speed c0 when j
=0 correspond to traveling waves when j�0 of speed

c = c0 − j . �2.21�

Because of this, it suffices to analyze the equations with j
=0 and these take the form

At + �Aw�� = 0, �2.22a�

g1wt + g2ww� + g3w2A� = R�A,w� +
�

A

�

��
	�*A

�w

��

 .

�2.22b�

In particular, we wish to investigate the stability of the base
steady flow A=A*, w=w* representing essentially a steady
state of constant velocity and volume fraction.

III. THE REDUCED MODEL „�=0…

In this section, we analyze Eq. �2.22� in the case when
�=0.

A. Linear stability

If �=0, the characteristics d� /d�=� of Eq. �2.22� satisfy

� =
w

2g1
��g1 + g2� � ��g1 − g2�2 + 4g1g3A�1/2� , �3.1�

and are real and distinct if the discriminant is positive. The
basic case where CVM=H=0 corresponds to g1=g2=1, g3

=0, and the characteristic speeds are equal. As we discuss in
Appendix A, the model with the Cauchy data is ill posed.
When CVM= 1

2 and H= 1
4 , then

g1 − g2 =
1

2�1 − A�2 , 4g1g3A = −
�A − A2 + 1

2�
�1 − A�3A

, �3.2�

and the characteristics are real and distinct if A�0.735 ��
�0.265�, as shown by Ref. 14. With g1�g2 and g3
0, the
criterion for real characteristics can be written symbolically
as

g1 − g2 � 2�g1
g3
A�1/2. �3.3�

�If g3�0, the characteristics are always real.�
Equation �2.22� �neglecting the � term� is comparable to

the St. Venant equations which describe river flow,28 and this
analogy has been pointed out previously, if not in such a
specific way.24 The eddy viscosity term was discussed in the
context of roll waves in Ref. 29. In that case, g1=g2=F2,
where F is the Froude number, R=1−w2 /A for Chézy’s law,
and the crucial term g3w2=1. The system is always hyper-
bolic since g3�0 and the waves propagate in both directions
if F
1, and are exponentially decreasing in time. If 1
F

2, then stable waves exist but both propagate in the same
�downstream, toward �=�, i.e., downward� direction. Fi-
nally, if F�2, then one of the downstream waves grows
unstably and roll waves are formed. These waves are dis-
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2

4

6

0 0.2 0.4 0.6 0.8 1

g

g

g

1

2

3

α
FIG. 2. The coefficients g1, g2, and g3 as functions of � for CVM= 1

2 , and
H= 1

4 .
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cussed in Ref. 30 and have been analyzed in Ref. 31: they
consist of a periodic sequence of shock waves. A more recent
study is that of Ref. 32.

For the bubbly flow equation �2.22�, we can reasonably
take R as a concave in A, with R tending to −� as A→1 or
A→0 �see Fig. 3�. An equilibrium exists at the uniform state
�A* ,w*� when R�A* ,w*�=0, and this determines w* in terms
of A*. Let us assume that the drag law is D�3�; this is valid
for �→0 but we can in fact use it as a reasonable approxi-
mation for most values of �. Then, W�A� in Eq. �2.18� is
concave, W�0�=W�1�=0 and

W�A� �
A�1 − A�

3
. �3.4�

Now, since W�A� is quadratic in A, there are in fact two
equilibria, one with RA�0 and A*


1
2 and the other with

RA
0 and A*�
1
2 �assuming the liquid velocity is positive,

corresponding to downflow�. For the particular choices

CVM= 1
2 and H= 1

4 , we require A�0.735 for real characteris-
tics, and thus we focus on the equilibrium point with RA


0. We also have Rw
0 and g3
0. A straightforward linear
instability analysis then shows that the uniform state is un-
stable if

g1 − g2 

g1A*
RA


Rw
w*

+

g3

Rw
w*


RA

, �3.5�

or equivalently,

g1 − g2 − 2�g1
g3
A*�1/2


 �	g1A*
RA


Rw
w*


1/2

− 	 
g3

Rw
w*


RA
 
1/2�2

, �3.6�

which shows, in comparison with Eq. �3.3� that the uniform
state always becomes unstable before the characteristics be-
come complex �i.e., we can ignore the latter in the context of
the stability analysis�. With CVM=2H= 1

2 the uniform state
�with RA
0� is unstable for all values of A�0, if we assume
Eq. �3.4� to be valid.

Linear theory seeks solutions of the form A−A*

�exp�ik�+�t�. Writing this in the equivalent form A−A*

�eik��−cLt�+�Rt demonstrates that the associated wave speed
satisfies cL=−�I /k. At the point of instability, corresponding
to equality in Eq. �3.5� the unstable wave speed is

cL = w* −
A*
RA



Rw

. �3.7�

Since w*=W�A*�, we have

cL = W�A*� − A*
W��A*�
 , �3.8�

and thus Eq. �3.4� implies

cL �
A*

3
�2 − 3A*� , �3.9�

and the waves move in the negative � direction, i.e., upward,
providing A�

2
3 . The upward motion of the waves is the

result of analyzing Eq. �2.22� with j=0, however, the actual
wave speed will satisfy Eq. �2.21� �with c0=cL�, as discussed
following Eq. �2.19�.

B. Finite amplitude waves

If the uniform state �A=A* ,w=w*� of our fundamental
equation set �2.22� is unstable to the formation of growing
travelling waves, the question arises as to how such distur-
bances evolve.23,33 In the spirit of kinematic wave theory, we
attempt to find approximate travelling wave solutions of Eq.
�2.22� with �=0. Later, we compare our results to the nu-
merical solutions of the full equations �Sec. IV� for ��1.
The normal precepts of nonlinear stability theory suggest the
existence of finite amplitude periodic traveling waves but
smooth solutions of this type cannot exist, for the following
reason. If we seek solutions of the form

A = A�z�, w = w�z�, z = � − c� , �3.10�

where c is to be determined, then there is a first integral

− cA + Aw = K , �3.11�

and consequent substitution into Eq. �2.22b� yields a first
order equation for A �or w�. Such an equation cannot have
periodic solutions.

The resolution of this quandary lies in the fact that the
equations �with �=0� are hyperbolic. In general, we expect
that isolated disturbances will evolve into propagating waves
with a shock at one end and an expansion fan at the other
�compare the discussion in Ref. 20, p. 284�. Periodic distur-
bances may be expected to form periodic waves with a shock
at one end, analogously to the formation of periodic shock
waves in rivers.31,34

We therefore suppose that the solution for A takes the
form of a function defined in 0
z
L, repeated periodically
with period L �the wavelength�, with A=A0 at z=0 and A
=AL at z=L. With Eq. �3.11�, the equation for A can be
written as

J�A�A� = B�A� , �3.12�

-4

-2

0

2

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R(A,0.1)
R(A,0.05)
R(A,0.02)

R

A

FIG. 3. Typical examples of R�A ,w� for R given by Eq. �2.17�, with D
=3�, �=1−A.
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where

J�A� = ��g1 − g2�cA − g2K�K − 
g3
A�K + Ac�2,

�3.13�

B�A� = A2�A −
K + Ac

W�A� � .

The parameters c, K, L, A0, and AL are unknown. The inte-
gration of Eq. �3.12� from 0 to L determines L in terms of
the other unknowns, thus,

L = �
A0

AL J�A�dA

B�A�
. �3.14�

We now consider how the other unknown constants are to be
found. In this, we follow Ref. 31 with one modification as-
sociated with the momentum balance.

1. Finite amplitude wave solutions

In Appendix B, we carry out a shock layer analysis in
which we derive a momentum jump condition across the
layer at z=0, L for the case �=0 resulting in an expression
for the shock speed

c =

	w2�A�1 +
H

�1 − A�2� −
1

2
CVM� A2

�1 − A�2 − 1��

A0

AL

+ �
A0

AL AwJ�A�dA

W�A�B�A�

�w	 CVM

1 − A
+ A
�

A0

AL
. �3.15�

Following the well established procedures from gas dynam-
ics, we further examine the shock structure in Appendix B by
performing a local analysis of Eq. �2.22� in the vicinity of a
moving shock in the limit as �→0 and this leads to Eqs.
�B14� and �B15�:

�
A0

AL J�A�
A2 dA = 0, �3.16�

Ā�W�Ā� − c� = K, J�Ā� = 0, �3.17�

where J�A� is defined in Eq. �3.13�, W�A�=A�1−A� /3 and Ā
is a particular value of A between A0 and AL defined by Eq.
�3.17�.

Interestingly, we find that the momentum jump and
shock speed conditions are independent and, in fact, we have
found numerically that the only way in which Eq. �3.15� can
be solved is with the trivial solution in which A0=AL. We
conclude that the momentum jump conditions are not valid
in general for two-phase flow though, at this point, it is not
clear why this is the case. Allied with our comments in Ap-
pendix B concerning the advisability of proposing momen-
tum jump conditions for averaged equations, we dispense
with Eq. �3.15� altogether, and the remaining equations will
therefore provide a one-parameter family of traveling wave
solutions, just as was found in Ref. 31.

Finally, we note that the prescription �B7� of the bubble
volume flux q in Appendix B yields

�
A0

AL �K + cA�J�A�dA

B�A�
= qL . �3.18�

2. Numerical shock solutions

The mathematical problem for the shock solutions thus
reduces to the determination of six constants: L is the wave-
length or period of the wave, c is the shock speed, K is an
auxiliary integration constant, A0 and AL are the values of the
liquid fraction at each end of the wave �z=0,z=L�, and an

extra auxiliary constant Ā which is a particular value of the
liquid fraction �between A0 and AL� defined by Eq. �3.17�.
The system of equations �3.14�, �3.16�, and �3.18� provides
between them five equations for the six unknowns �we seek a
one parameter family of solutions�.

Our strategy to solve these equations is the following.

Suppose we know Ā. Then from Eq. �3.17�, K is a linear
function of c and since J is quadratic in K and c, we can use

Eq. �3.17� to find c and K as functions of Ā.
Next, J�A� is a rational function of A so the integral in

Eq. �3.16� can be computed explicitly as a function

F�AL ,A0 ; Ā�. In a similar way, Eq. �3.18� can be written �us-

ing Eq. �3.14�� in the form G�AL ,A0 ; Ā�=q, on defining the
appropriate function G. Note that in Eqs. �3.18� and �3.14�
since both J and B vanish at A= Ā, it is wise to remove the

factor A− Ā from J and B in the integrals. Given Ā and the
prescribed value of q, we solve the two algebraic equations

F=G−q=0, thus determining A0 and AL in terms of Ā. In
this way, we obtain the one parameter family of travelling
waves.

In practice, it is convenient to replace the prescription of
q by the prescription of AL. Then, the solution of F=0 yields

A0�AL , Ā�, when L and q can be computed directly.
Figure 4 shows a direct numerical computation of the

periodic traveling waves which result from solving Eq.
�2.22� with �=0.05 and �*=1. These waves arise through an

067101-6 Robinson et al. Phys. Fluids 20, 067101 �2008�

Downloaded 23 Jun 2008 to 193.1.100.110. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



instability of a uniform state A=A*, taken here to be A*

=0.92. The waves travel backward at a speed c=−0.26.
The results of numerical computations such as in Fig. 4

can be compared to the theoretical predictions from the trav-
eling wave analysis. A difficulty in this exercise is that the
traveling wave analysis only yields a one parameter family
of solutions and it is unclear a priori which member of this
family should be used. The waves which arise from a uni-
form state A=A* typically have AL�A* so that this provides
the appropriate value of AL. It is also found that the com-
puted waves are long waves, as indicated in Fig. 5. This
figure plots the variation of the predicted wavelength L as a

function of Ā, for three different values of AL. Also shown
are the values of the wavelength of the waves which result
from direct computation at the corresponding values of A*

=AL. It can be seen that as Ā increases, L increases without

bound as Ā approaches an asymptotic value, which we de-

note as Ā�. This asymptote occurs because the function B�A�
has a second zero at a value larger than Ā, and the asymptotic

value Ā� occurs when this zero merges with Ā.
The advantage of the existence of this asymptote is that,

providing we assume that long waves are preferentially se-
lected, we can use L as the parameter describing the waves,

but the consequent value of Ā is then given by Ā�, and is
determined directly by AL, as illustrated in Fig. 5. In particu-
lar, the quantities c and A0 are then predicted uniquely by AL

and these values can be compared to the results of direct

computations. Figure 6 shows the variation of Ā� with AL

determined from the traveling wave analysis. It is a smoothly

increasing function, with an apparent limit of Ā�=1 at
AL=1.

Figures 7 and 8 provide the consequent comparison of
the predicted A0 and c, respectively, with the directly com-
puted values. It can be seen that the agreement is good, well
within the O��� error we might expect. The error also ap-

pears to dwindle as Ā� �and thus also AL� approaches one. In
addition, the numerical results approach the predictions more
and more closely as � is decreased.

IV. THE NUMERICAL ALGORITHM FOR FINITE �

Numerical solutions of the full model �2.22� with ��1
were obtained by using a finite difference method with a
uniform grid. We first solved Eq. �2.22a� explicitly for A by
using a forward difference for the time derivative and a back-

52 54 56 58

0.92

0.94

0.96

0.98

1A

ξ

FIG. 4. Periodic waves produced in a direct numerical computation of Eq.
�2.22� using values �=0.05, �*=1, which arise from the instability of a
uniform state with A=A*=0.92 and w*=0.0245.
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FIG. 5. L�AL , Ā� computed from the reduced hyperbolic model �3.14� for
three different values of AL. The diamonds and stars correspond to values of
L obtained numerically from the full equation �2.22� with �=0.05 and 0.03,
respectively, for the same value of AL, taken to be the uniform state.
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FIG. 6. Ā� determined as a function of AL. Ā� is the limiting value of Ā as
L→�, as given in Eq. �3.14�, computed by using the shock solutions of the
reduced hyperbolic model with �=0.
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FIG. 7. The diamonds and stars represent values of A0 obtained via numeri-
cal solution of the full model �2.22� �with �=0.05 and 0.03, respectively,
and �*=1� at the three values of AL in Fig. 5, but plotted against the values

Ā�, which are shown in Fig. 6, and computed from the shock wave analysis
of the reduced model with �=0. The crosses are the values of A0 predicted
directly from the shock wave analysis. Thus, the diamonds and stars repre-
sent the “data” or the “exact answer,” the crosses are the prediction or the
approximate answer.
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ward difference for the spatial derivative. We then solved Eq.
�2.22b� implicitly for w. As before, we used a forward dif-
ference for the time derivative and since this equation with
��0 is parabolic, we used central differences for the first
spatial derivatives. To obtain an approximation to the second
order diffusive term, we used a forward difference for the
inner derivative followed by a backward difference for the
outer one.

Our approach in modeling the evolution of a small per-
turbation to the uniform state �A* ,w*� consisted of applying
a small perturbation to the initial condition and allowing it to
develop in time. At the inlet boundary both A and w were
held constant and w�=0 was applied at the outlet. Initial
conditions were taken as

A��,0� = A* + 	�e−kc
2�� − �0�2

− e−kc
2�0

2
�, w��,0� = w*, �4.1�

where kc is the most unstable wave number and 	�1. Step
sizes of ��=5�t=0.005 and ��=5�t=0.0025 were used
when �=0.05 and �=0.03, respectively. The assumption of a
zero total volume flux, i.e., j=0, results in waves traveling in
the negative � direction, i.e., upward. However, a value of j
sufficiently large in absolute value results in downward trav-
eling waves �see Eq. �2.21��.

We note that the linear theory of Sec. III A was success-
ful in predicting when roll waves would develop in the full
nonlinear model �any numerical simulations shown here oc-
curred in the linearly unstable region of parameter space�.
We also note that the dimensional time for the periodic
waves to evolve from the initial condition was typically of
the order of one second. In practice, the waves seem to occur
almost instantaneously.

V. DISCUSSION

We have examined high speed digital video images of
settling Guinness to obtain estimates of such quantities as
bubble size and void fraction. Figure 9 shows a typical image
of this type. From these images, we are able to calculate
bubble size and void fraction, and also wave speed and
wavelength. All of these quantities vary somewhat depend-
ing on the position in the glass, and also with time since
pouring.

Bubble sizes from one frame are shown in Fig. 10. They
are approximately normally distributed, with a mean diam-
eter of 122 �m �a=61 �m�; another image produced a nor-
mal distribution with smaller mean radius, 47 �m. The den-
sity of Guinness is determined from its specific gravity,
which is the ratio of its density to that of water. The SG is
taken as 1.007, from information provided by Roche at Dia-
geo �manufacturers of Guinness�. The density of water varies
a little with temperature, decreasing from 103 kg m−3 at
5 °C to 0.9982
103 kg m−3 at 20 °C so we take �l

�103 kg m−3. The viscosity is not apparently publicly avail-
able and we have measured it. We find that at a temperature
of about 5 °C, the viscosity is ��2
10−3 Pa s.

Although the waves are easily seen in video �or in the
flesh�, they are difficult to isolate on still images. Figure 11
shows one such image where the wave crests are indicated.
In this image, the wave spacings are 5.3, 5.9, 6.4, 6.7, 6.7,
and 7.0 mm from top to bottom. Identification of wave spac-
ings is also awkward because the waves are themselves sub-

0.7 0.75 0.8 0.85 0.9 0.95 1
−0.3

−0.2

−0.1

0

A

c

FIG. 8. Computations of the wave-speed c using the full model �2.22� with
��1. The “exact” values of c �diamonds �=0.05, stars �=0.03� are shown

as a function of Ā� compared to the solution of the approximate reduced

model ��=0� obtained from solving Eq. �B15� to find c�Ā�, with Ā= Ā�. FIG. 9. A typical still frame from which flow characteristics are assessed.

µ

FIG. 10. Histogram of bubble sizes in diameters, from an image about
two-thirds up the glass. The mean diameter is 122 �m and there is quite a
wide distribution.
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ject to a lateral instability which causes them to be corru-
gated �see Fig. 1�.

The wave profiles are quite distinct. The waves consist
of 4–5 mm length regions of bubbles, separated by plugs of
bubble-free pure fluid, some 1.4–1.8 mm in length. These
correspond to parts of the wave where A=1, and are not
described in the present theory. Figure 12 shows a histogram
of measured wave speeds, with mean 20.9 mm s−1. Wave
speed was measured in two ways. First, local zoomed video
clips were examined and wave speed was measured from the
differing plug positions in separate frames. These clips were
taken from video shot at 750 frames /s.

A second method was to look at a whole glass shot,
measuring distance traveled versus frame number, shot at

125 frames /s. This latter method gave a single result of
21.8 mm s−1, which is in good agreement with the zoomed
result.

The average void fraction of bubbles was measured from
still video frames, such as that shown in Fig. 9. With short
depth of focus, one can estimate an areal bubble fraction, and
with a measured mean bubble radius, and the assumption of
uniform bubble packing, it is straightforward to estimate the
bubble volume fraction �. Obviously, this changes with lo-
cation and time, tending to zero at late times and deep posi-
tion. From four different images, low on the glass and early
in the settling, we measured �=0.237, 0.233, 0.242, and
0.266. At a higher location, about a centimeter below the
accumulating head, we found �=0.315.

The form of the waves computed in Fig. 4 can be com-
pared to some extent with these observations. The computed
wave consists of two parts, a flat region at low A �high ��
and a thin spike where A is large. The relative lengths of the
two regions are the same as in the observations �about a
third�, except that in the experiment, the values are more
extreme: A=1 in the spike �bubble-free liquid� and A
�0.75 in between. Our model is not able to approach or
attain such high amplitude waves, at least with the paramet-
ric choices we have made, but it is qualitatively similar.

To compute the length and velocity scales, we use me-
dian bubble radius a=6.1
10−5 m, density �l=103 kg m−3,
viscosity �l=2
10−3 Pa s, and acceleration due to gravity
g=9.81 m s−2. From Eq. �2.7�, we then compute

l = 0.034 mm, u0 = 18.25 mm s−1. �5.1�

These values need to be compared to observed wavelengths
and wave speeds.

The observed wavelength is LD�6 mm and this corre-
sponds to a dimensionless wavelength

L =
LD

u0
� 180. �5.2�

This is much larger than the numerically computed values
L�2.4–2.8, although the result is consistent with a tendency
toward long wavelength selection. We have no explanation
for why such long wavelengths might be selected, but we
merely note that the observations are not inconsistent with
the theory.

The theory does much better with the wave speed,
which, as we have said, provides a genuine test of the trav-
eling wave theory, given long waves. If the background di-
mensional flux defined �compare Eq. �2.11�� by

jD = �vD + �1 − ��uD �5.3�

is negative �i.e., the mixture is going downward, as we infer�,
then the dimensional wave speed downward will be

cD = u0c0 + 
jD
 , �5.4�

where c0 is the theoretical wave speed at zero net flux, shown
in Fig. 8. It is difficult to estimate jD since we cannot esti-
mate liquid velocity. If it is comparable to the velocity me-
chanically induced by pouring, then, we expect 
jD 

�10–25 mm s−1, while for values of c0�−0.2 �see Fig. 8�
and with u0=18 mm s−1, observed wave speeds of

FIG. 11. �Color online� The horizontal dashes mark visually defined wave
crests in the Guinness.

FIG. 12. Histogram of wave speeds. The mean is 20.9 mm s−1 and the
distribution is skewed toward higher wave speeds.
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21 mm s−1 are obtained for 
jD 
 �24.6 mm s−1. This result is
encouraging. As the pint settles, we might then expect 
jD
 to
decrease, causing the waves to slow down, as observed.

VI. CONCLUSIONS

We have presented a two-phase flow theory for bubbly
flow, with the intention of explaining why waves form in
such flows, and in particular why they form in poured pints
of Guinness, and also why they go downward. The theory is
able to explain wave formation via instability of a uniform
flow and the results seem reasonably consistent with obser-
vations. In particular, the wave speed is well explained. The
wavelength of the observed waves is much longer than one
would predict but this observation of itself does not invali-
date the theory. It merely raises the question of how the
wavelength of the waves is selected since the theory is only
able to provide a one parameter family of traveling wave
solutions �with the wavelength being the parameter of the
family�. In fact, a similar conundrum besets the phenomenon
of roll waves in inclined channel flows, and it is a matter of
common observation that the waves observed on an inclined
pavement during heavy rain, for example, have wavelengths
much longer than their depth. This suggests that the issue of
wavelength selection is not an immediate fault of the present
model.

The model is, however, not at all perfect. While the
choice of the added virtual mass and interfacial pressure
terms seems reasonable, there are other possibilities, and the
choice of the coefficients CVM and H is at least uncertain. A
particularly desirable improvement would be to have a
model which produced waves in which slugs of high void
fraction ���0.25� alternated with plugs of pure liquid. The
high void fraction is near the value where the bubbly two-
phase flow equations are expected to break down, and this
suggests that the waves of clear liquid are a manifestation of
regime transition. We have not been able to find similar be-
havior, although in truth it would be difficult to compute
even if it were there.

Are there any other mechanisms which might produce
the waves? One possibility is a hindering effect due to the
bubble size distribution. Large bubbles tend to rise more rap-
idly than small bubbles, and so in a distribution one can
expect a separation effect, and the formation of waves simi-
lar to those which occur in the traffic along a two lane road,
and familiar to all commuters on such roads, where rapidly
moving cars accumulate in queues behind isolated, more
slowly moving trucks. Whether such a mechanism is viable
in three-dimensional flow is unclear �it is fairly infrequent
even on three lane motorways� and it is even less clear how
one might model the process. Another possibility is that the
waves are a manifestation of a Tollmien–Schlichting insta-
bility in the shear flow of the liquid in the glass. An assess-
ment of this possibility may be made through an estimate of
the Reynolds number of the flow. With a velocity of
0.02 m s−1 and a glass radius of 0.04 m, we find a Reynolds
number of about 800. This is well below the value at which
transition to turbulence sets in for a pipe flow and, in addi-
tion, we note that such transitions are generally seen in

forced, not naturally convective, flows. Furthermore, regular
waves are only seen if they are excited, for example, by a
vibrating ribbon. We consider such an instability an unlikely
cause for the waves.

ACKNOWLEDGMENTS

The authors wish to acknowledge the Enterprise Ireland
Grant No. SC/2001/188, and the support of the Mathematics
Applications Consortium for Science and Industry
�www.macsi.ul.ie� funded by the Science Foundation Ireland
mathematics initiative Grant No. 06/MI/005.

APPENDIX A: DERIVATION OF THE MODEL

In this appendix, we justify the basic model �2.1�, dis-
cuss the boundary conditions appropriate for the problem,
and introduce a regularizing bulk or eddy viscosity. The most
basic set of equations describing one-dimensional adiabatic
two-phase flow in a pipe is the following:

�t + ��v�x = 0, �A1a�

− �t + ��1 − ��u�x = 0, �A1b�

�l�1 − ���ut + uux� = − �1 − ��
�pl

�x
+ Fgi − Flw, �A1c�

�g��vt + vvx� = − �
�pg

�x
− Fgi. �A1d�

The variables are the void fraction �, the averaged gas and
liquid velocities v and u, and the gas and liquid pressures pg

and pl; x denotes the long axis distance, and Fgi and Flw are
the frictional resistance exerted on the gas by the liquid �at
the gas-liquid interface� and the wall friction exerted on the
liquid �it is assumed that the flow is fully turbulent�, respec-
tively. It is usual to constitute these two terms algebraically
in terms of u and v and they represent the integrated effects
of the Reynolds �shear� stresses in each phase.

The derivation of phase-averaged equations has been
discussed by many authors, for example, Refs. 19–21 and 35.
A constitutive relation between pg and pl is necessary in Eq.
�A1� and we simply assume that

pg = pl = p . �A2�

While the model �A1� makes several unwarranted as-
sumptions �for example, that the average �u2� is equal to the
square of the average, �u�2�, it appears at first sight to be
physically plausible. It is thus disconcerting to find that its
characteristic speeds dx /dt=� are given by �, � �corre-
sponding to two infinite sound speeds, as we assume �l and
�g are constant�, and the two values

� =
u � isv
1 � is

, �A3�

where
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s = ��g�1 − ��
�l�

�1/2

. �A4�

If u�v, the characteristics are complex and the model is ill
posed, requiring that the data be prescribed in the future.
High wave number perturbations to a uniform state are of the
form eik�x−�t�, with growth rate k Im � which is unbounded as
k→�.

This indicates that there is something fundamentally
wrong with the simple model �A1�. Computationally, it is
apparently sometimes less so since often �g��l, so that the
characteristics are only “mildly” complex �Im �=O�s��1�,
and this, together with the suppression of high wave numbers
on a finite grid and numerical diffusion, may remove the
problem in practice.

It is also easy to fix. For example, the effect of averaging
nonlinear terms is often represented by the use of a profile
coefficient. Specifically, the acceleration of the liquid might
be written as ut+Dluux, where the choice of Dl�1 represents
the effect of a nonuniform cross sectional profile. An ex-
ample is in annular flow, where the film flow has a profile
coefficient �when laminar� of Dl=4 /3. On the other hand, the
two �finite� characteristics are given, see Ref. 28, as the so-
lutions of

�� − u�2 = − s2�� − v�2 + �Dl − 1��u2 + 2u�� − u�� , �A5�

and when s is small, these are both real if

Dl � 1 + �s�u − v�/u�2, �A6�

which is easily satisfied if �g��l.
There are other possibilities: a more general derivation

of the momentum equation of �for example� the liquid leads
to �here, assuming the profile coefficient Dl=1�

�l�1 − ���ut + uux� = − �1 − ��
�pl

�x
+ �pli

��1 − ��
�x

+ CVM��l��vt + vvx� − �ut + uux��

+ Fgi − Flw, �A7�

where CVM is the virtual mass coefficient, of order one, and
�pli= pli− pl represents the average difference between the
liquid interfacial pressure and the liquid pressure. It is pos-
sible to include other terms in this equation as well. A suit-
able choice of the interfacial pressure change is

�pli = − H�l�v − u�2, �A8�

where H= 1
4 �see Ref. 36�, and both this and the use of a

nonzero virtual mass coefficient can easily lead to real-
valued characteristics. Recent work in this direction is that of
Refs. 37 and 38. Although it is thus easy to rescue the hy-
perbolicity of the model, the unease due to the demonstration
of ill-posedness of Ref. 15 remains �as discussed in Sec. I�.
The view we take is that the instability of the model always
precedes the onset of ill posedness �resulting from the pres-
ence of complex characteristics�, which we suppose leads to
a regime transition. In this paper, we suggest that this is the
case for bubbly two-phase flow.

For the remainder of this section, we consider for alge-
braic simplicity the regularizing effects of a liquid profile

coefficient Dl�1. Our final model will be in a form more
suitable for the description of bubbly flow, including virtual
mass effects. However, the general points we make below do
not rely on the details of how the model is regularized.

1. Boundary conditions

It is convenient to think in terms of the basic model
�A1�, if some adjustments �such as Dl�1 or CVM�0� are
made to ensure hyperbolicity. Experiments such as those to
determine regime diagrams are done in very long pipes
��10 m length�. The diagrams are determined in terms of
two parameters, which can be taken to be the liquid and gas
mass fluxes, Gl and Gg, and these are determined by the
experimentalist: �s�he can control two inlet taps. In addition,
it is reasonable to assume that the outlet pressures of each
phase are equal to each other and to a prescribed exit pres-
sure of the outlet tank. Apparently, these are the only physi-
cally appropriate conditions to prescribe.

However, this is not a sufficient number of conditions for
the basic two-phase flow model �A1� or any of its hyperbolic
variants. Suppose that pl= pg= p but �say� Dl�1 so that Eq.
�A1� is hyperbolic. Total mass conservation yields

�v + �1 − ��u =
Gl

�l
+

Gg

�g
, �A9�

thus, v=v�� ,u�, while elimination of �p /�x gives

�l�ut + Dluux� − �g�vt + vvx� =
Fgi

��1 − ��
−

Flw

1 − �
, �A10�

and together with Eq. �A1b�, we have a pair of hyperbolic
equations for � and u, with one boundary condition, that
�u=Gl /�l on x=0. The prescribed outlet pressure then deter-
mines p if �, u �and thus, v� are known. However, the solu-
tion of Eqs. �A10� and �A1b� also requires � to be prescribed
at x=0.

2. Entry length

If �, Gl, and Gg are all prescribed at the inlet, this
appears to suggest that regime diagrams should also depend
on 
�0=�
x=0; but experimentally, this appears not to be the
case. To understand this, suppose that the acceleration terms
in Eq. �A1� are negligible. Then,

−
�p

�x
=

Fgi

�
=

Flw − Fgi

1 − �
, �A11�

thus

Fgi = �Flw, �A12�

and this defines an algebraic relation between �, u, and v.
One usually defines

Flw =
4

d
fw�l
u
u, Fgi =

4

d
fi�g
v − �u
�v − �u� , �A13�

where d is the pipe diameter and � is a factor which takes
account of the regime: �=2 is appropriate in annular flow,
for example. The friction factors fw and f i depend on � and
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also on u �respectively, v� via the Reynolds number of each
phase. Mass conservation of each phase yields

�1 − ��u = Gl/�l, �v = Gg/�g, �A14�

so that Eqs. �A12� and �A14� determine �, u, and v; evi-
dently, the value of � is not necessarily that at the inlet.

In a tube of length l, the liquid and gas acceleration are
of order �lu

2 / l and �gv2 / l, respectively, whereas the wall
friction is given in Eq. �A13�. The ratio of the acceleration to
the friction terms is thus �for the liquid�,

	w =
��lu

2/l�
�4fw�lu

2/d�
=

d

4fwl
, �A15�

and the equivalent ratio for the gas terms is

	i =
��gv

2/l�
�4f i�gv

2/d�
=

d

4f il
. �A16�

The typical pipe dimensions might be d=2 cm, l=10 m,
while a typical value of f i and fw is 0.005.39 In this case,
	i,w�0.1 and for longer pipes, these parameters are smaller.
The relatively small values of 	i,w indicate that in such long
pipes, the acceleration terms can indeed be neglected, and
this confirms that the flow regime can be expected to depend
only on the inlet mass fluxes.

3. Bulk and eddy viscosity

The basic simple model �A1� has complex characteris-
tics if u�v �but even if u=v, the characteristics are repeated,
and the system is still ill-posed�. We must, thus, choose to
rescue the reality of the characteristics by such �realistic�
quantities as profile coefficients, interphase pressure jumps,
and virtual mass coefficients. However, these simply post-
pone the ill-posedness of the system; for example, Ref. 14
postpones the complexity of the characteristics until a critical
value of � of about 0.25 �in bubbly flow�.

Despite the specter of ill posedness, it has often been
suggested that complexity of characteristics is a manifesta-
tion of a physical instability, as in the transition from bubbly
to slug flow.14 In Sec. III, it was demonstrated that the non-
linear evolution of such instabilities leads to shock formation
of the underlying hyperbolic system. Such shocks must be
smoothed by higher order diffusive terms and we now dis-
cuss the origin of these.

We expect that three-dimensional two-phase equations
involving some kind of �eddy� viscosity would be well
posed, and the problem in the one-dimensional models arises
in some way through the replacement of the second deriva-
tive viscous terms by algebraic friction terms. These terms
are based coherently on the successful use of Prandtl’s mix-
ing length theory and seem to be entirely reasonable. How-
ever, if we are willing to adopt an eddy viscosity model for
the shear stress, then, we must logically allow for normal
stresses to be similarly constituted. This then suggests the
inclusion of an eddy viscous term in the liquid momentum
equation, as was included by Refs. 20 and 29. The form we
suppose for such a term on the right hand side of Eq. �A1c�
is

��l

�x
, �l = ��1 − ��

�u

�x
, �A17�

where � is an appropriate eddy viscosity.
For a more or less laminar flow, we might expect such

eddy effects to be small but another term of similar type
arises as a “bulk” viscosity �see Ref. 40�, which occurs be-
cause of the time dependent contraction of bubbles. The av-
erage induced strain rate of the bubbles is proportional to the
difference between average liquid pressure pl and average
interfacial pressure, which we take to be the gas pressure,
thus

pg − pl = �	 ��

�t
+ ui

��

�x

 , �A18�

where for a dilute collection of bubbles,

� =
4�

3�
, �A19�

with � being the liquid viscosity; ui is the average interfacial
velocity, which we take to be v �because that is the actual
average interfacial velocity�. By using the conservation of
mass equations, we find that Eq. �A18� can be written in the
form

pg − pl = ��1 − ��ux, �A20�

if we neglect gradients in �. The consequence of a term like
this in addition to the average interphasic pressure difference
term is also to introduce an effectively viscous term into the
equations.

Thus, both the existence of continuous phase fluid turbu-
lence and also the dynamical interfacial effects of interphasic
pressure differences in a bubbly flow will lead to an effective
bulk or eddy viscous term, whose magnitude can be substan-
tially larger than that due to molecular viscosity. It can also
be mentioned that the Faxen force contributes a similar term.
We use a regularizing term of this type when solving the
model numerically.

4. Stability and ill-posedness

We consider the inclusion of the bulk or eddy viscosity
term in the basic model �A1� �still with pg= p but including a
profile coefficient for the liquid�

�t + ��v�x = 0, �A21a�

− �t + ��1 − ��u�x = 0, �A21b�

�g�vt + vvx� = −
�p

�x
−

Fgi

�
, �A21c�

�l�ut + Dluux� = −
�p

�x
+

1

1 − �

�

�x
���1 − ��

�u

�x
�

+
Fgi − Flw

1 − �
, �A21d�

and elimination of p yields
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�l�ut + Dluux� − �g�vt + vvx�

=
1

1 − �
���1 − ��ux�x +

Fgi

��1 − ��
−

Flw

1 − �
. �A22�

As before, conservation of mass gives v=v�� ,u� so that �
and u are governed by Eqs. �A21b� and �A22�, and we pre-
scribe both � and u at the inlet. The prescription of pg= pl

= pex at the outlet determines p there, and also forces ux=0, if
we assume Eq. �A20�. Thus, the apparently diffusive equa-
tion for u has naturally prescribed boundary values at inlet
and outlet, while the hyperbolic equation for � has an initial
condition. This model is well-posed �in a sense we will ex-
plain�. However, the ill-posedness of the diffusionless model
is manifested through an instability.

To see this, let us examine the approximation where the
gas acceleration terms are neglected, and we write �cf. Eq.
�A10��

− �t + ��1 − ��u�x = 0,

�A23�
ut + Dluux = �uxx + R��,u� ,

where

R��,u� =
1

�l
� Fgi

��1 − ��
−

Flw

1 − �
� , �A24�

Dl�1, we suppose �=� /�l is constant, and have for simplic-
ity ignored the terms in � in the bulk viscous term. If �* ,u*

is a steady solution, then small perturbations proportional to
exp�ikx+�t� satisfy Eq. �A23� provided �̂=�+ iku* satisfies

�̂2 + �ikdu* + �k2 + 
Ru
��̂ − ik�1 − �*�R� = 0, �A25�

i.e.,

� = − iku*	1 +
1

2
d
 −

1

2
��k2 + 
Ru
�


�1 � �	1 +
ikdu*


Ru
 + �k2
2

+
4ik�1 − �*�R�

�
Ru
 + �k2�2 �1/2� ,

�A26�

where we write d=Dl−1 and assume realistically that Ru


0. If we define the square root in Eq. �A26� as p+ iq, p
�0, then

p2 − q2 = 1 − 	 kdu*


Ru
 + �k2
2

,

�A27�

pq =
kdu*


Ru
 + �k2
+

2k�1 − �*�R�

�
Ru
 + �k2�2
.

Writing

M =
kdu*


Ru
 + �k2
, N =

2k�1 − �*�R�

�
Ru
 + �k2�2
, �A28�

we have pq=M +N, p2− �M +N�2 / p2=1−M2, and since the
criterion for instability is that p�1, we see that instability

occurs if and only if 1−M2�1− �M +N�2, i.e., �assuming
R�
0�

�1 − �*�
R�


Ru
 + �k2 � du*. �A29�

The relationship between instability and characteristics
is this. The characteristics dx /dt=� �of the equations when
�=0� are given by the values −� / ik in the high wave number
limit k→�, or equivalently if R�0. If we examine Eq.
�A29�, we see that the basic state is always unstable �for R
�0� if d=0, i.e., Dl=1. However, we know that the model is
ill-posed if d=0 and �=0. If ��0, the basic state may still
be unstable, but if we write

a = � +
idu*

k
+


Ru

k2 , b = �1 − �*�
R�
 , �A30�

then we have, as k→�,

�̂ � −
ib

ka
+

b2

k4a3 + . . . , �A31�

and expanding a−1 for large k, we find

Re �̂ � −
bdu*

�2k2 	+
b2

�3k4 . . . 
 , �A32�

where the second term is the leading term if d=0. Thus, even
though all modes are unstable if d=0, their growth rate tends
to zero; and if d�0, high wave number modes are damped.

Hence, we suggest that while eddy �or bulk� viscosity
regularizes the model in the sense that high wave number
growth rates become very small, it is still necessary to in-
clude terms such as the profile coefficients, or the virtual
mass terms, in order to damp these high frequency modes.
We also see that as Dl is reduced toward unity, instability
always occurs before the ill-posed limit is reached.

APPENDIX B: SHOCK CONDITIONS

In this appendix, we discuss jump conditions across the
shock and the analysis of the shock structure.

1. Momentum jump condition

Across the shock at z=0 �or z=L�, we would naturally
propose jump conditions associated with the conservation of
mass and momentum. There are two mass conservation
equations but only one mass jump condition �say for the
liquid�, because the total flux integral �2.11� then automati-
cally ensures that mass of gas is conserved. If a shock is
located at the dimensional position x=xs, then the mass jump
condition can be written in the �dimensional� form

ẋs =
��1 − ��u�−

+

�1 − ��−
+ . �B1�

We can also write a jump condition representing the con-
servation of total momentum. We add the two momentum
equations in Eq. �2.1� �ignoring the bulk diffusive term� and
apply the usual box integral condition to obtain the jump
condition
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ẋs =
��l�1 − ��u2 + �g�v2 + �1 − ��pl + �pg�−

+

��l�1 − ��u + �g�v�−
+ . �B2�

It is important to realize that a single jump condition for
momentum is the maximum we can hope to obtain. Momen-
tum of each phase is not conserved across a shock, most
simply because the derivative terms in the virtual mass co-
efficients allow momentum jumps, although these terms rep-
resent interfacial forces at the microscopic scale. In particu-
lar, the pseudomomentum equation �2.22b� appears not to be
a conservation law, and it is inadmissible to try to derive a
jump condition from it. This explicitly contradicts the discus-
sion in Ref. 20 �p. 288�. However, although the pseudomo-
mentum equation does not support a conservation jump con-
dition, it does support a shock structure �for ��1�, and this
leads to a different jump type condition which must be sat-
isfied.

Consider a conservation law of the form

�t + qx = ��J��,�x��x, �B3�

where �J /��x�0, J�� ,0�=0, and q=q���. When �=0,
shocks may form whose speed is given by

c =
�q�−

+

���−
+ , �B4�

and this result may be derived either by first principles inte-

gral conservation of � or by analyzing the shock structure
when ��1.

We may take the view that the shock structure derivation
is the more fundamental and certainly, it must be appropriate
in describing the solutions of the actual partial differential
equations. For the moment, we consider both possibilities
but note that while the momentum jump condition �B2�
seems reasonable, the whole issue of deriving jump condi-
tions in averaged equations, where local interfacial jumps are
constituted, is very problematical. Averaged equations may
formally be derived by a multiple scale technique associated
with homogenization, in which the small parameter �say, �m�
is associated with the granularity of the medium, while the
shock conditions arise from the diffusion parameter �here, ��
approaching zero. Issues of ordering of the double
asymptotic limit �m→0, �→0 are complex and as yet unre-
solved.

In dimensionless terms, the shock conditions can be
written in the form

ẋs =
��1 − ��u�−

+

�1 − ��−
+ =

��1 − ��u2 + 	�v2 + �1 − ��pl + �pg�−
+

��1 − ��u + 	�v�−
+ .

�B5�

An apparently suitable jump condition at z=L follows
from Eq. �B5�, the second of which after some algebra can
be written in the form �note that ẋs=−c�

c =

	w2�A�1 +
H

�1 − A�2� −
1

2
CVM� A2

�1 − A�2 − 1��

A0

AL

+ �
A0

AL AwJ�A�dA

W�A�B�A�

�w	 CVM

1 − A
+ A
�

A0

AL
, �B6�

where w= �K+cA� /A. �The first jump condition c
= �Aw�0

L / �A�0
L is automatically satisfied by Eq. �3.11��. We

note that when written in this form, Eq. �B6� involves the
interfacial force coefficients. This inevitably raises doubts
concerning the appropriateness of this jump condition.

In addition, we must prescribe the total bubble volume
flux. In Guinness, this is not well defined since it depends on
the circulatory flow in the glass, but if we imagine flow in a
pipe where the inlet volume fluxes of both phases are pre-
scribed as well as the volume fraction, then the average
bubble volume flux in the waves must equal that at the inlet.
If this is �dimensionally� u0q �thus dimensionlessly q�, then
�using Eq. �3.12�� we have

�
A0

AL �K + cA�J�A�dA

B�A�
= qL . �B7�

As a practical alternative, we shall find that it may be appro-
priate to prescribe AL instead.

2. Shock structure

Equations �3.14�, �B6�, and �B7� appear to provide three
relations for the five unknowns L, c, K, A0, and AL. Two
further relations follow from an analysis of the shock struc-
ture. Having introduced the � term in Eq. �2.22� to regularize
the model, and then subsequently neglected it on the basis
that it is small, we now finally see the necessity for such a
term. The formation of a shock is physically justified pro-
vided a shock structure exists in the limit that � tends to zero.
Near a shock position �=ct, we set

� = ct + �� �B8�

in Eq. �2.22�, and at leading order with �*=1, we find that A
satisfies

J�A�A� = − KA2	A�

A

�

, �B9�

with
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A → A0 as � → �, A → AL as � → − � . �B10�

If

I�A� = �
AL

A J�A�dA

A2 , �B11�

then the first integral of Eq. �B9� is

I�A� = −
KA�

A
, �B12�

with solution

� = K�
A

Ā dA

AI�A�
, �B13�

where Ā is an arbitrary value between A0 and AL �we pre-
scribe it precisely below�. In order that this describes a sat-
isfactory shock structure, we require I�AL�= I�A0�=0, and the
second of these implies

�
A0

AL J�A�
A2 dA = 0, �B14�

and I�0 for A between A0 and AL. This provides a fourth
relationship among the unknowns.

The satisfaction of Eq. �B14� requires that there should

be a value �which we can now define to be Ā� such that

J�Ā�=0; and then consideration of Eq. �3.12� requires that

Ā�W�Ā� − c� = K, J�Ā� = 0, �B15�

and this provides the final relationship we require.
In order that � increases between AL and A0, consider-

ation of Eqs. �3.12�, �B11�, and �B12� suggests that in order
to have a rising wave and descending shock, i.e., A0
AL,
then KJ�AL�
0 and J�AL�B�AL��0. Equivalently, for a de-
scending wave and ascending shock with A0�AL, then
KJ�AL�
0 and J�AL�B�AL�
0. Only solutions satisfying
these constraints are admissible as possible voidage wave
solutions. These conditions can be concatenated into the pair
of relations

KJ�AL� 
 0, J�AL�B�AL��A0 − AL� 
 0. �B16�
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