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Abstract In this paper, we present a model that explains the prepatterning of lymphatic
vessel morphology in collagen gels. This model is derived using the theory of two phase
rubber material due to Flory and coworkers and it consists of two coupled fourth order
partial differential equations describing the evolution of the collagen volume fraction, and
the evolution of the proton concentration in a collagen implant; as described in exper-
iments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability
analysis, we find that above a critical level of proton concentration, spatial patterns form
due to small perturbations in the initially uniform steady state. Using a long wavelength
reduction, we can reduce the two coupled partial differential equations to one fourth order
equation that is very similar to the Cahn–Hilliard equation; however, it has more com-
plex nonlinearities and degeneracies. We present the results of numerical simulations and
discuss the biological implications of our model.

Keywords Biomedical modeling · Mathematical biology · Mathematical modeling

1. Introduction

Even though the existence of lymphatic vessels has been known since the seventeenth
century, until very recently, not very much was known about their functioning and devel-
opment. This was due to a failure to understand their importance in the proper functioning
of tissues. However, in last the 10 years, lymphatics have come to the forefront of bio-
medical research, largely due to findings highlighting their importance to cancer growth
and metastasis (Stacker et al., 2002). Thus, there are now a large number of experimental
studies on the molecular and micromechanical factors that control lymphatic function and
development.
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The fundamental role of lymphatics is to collect excess interstitial fluids, tissue waste
products, and plasma proteins from tissue and return them to the blood. Tissues require
fluid and nutrients and these are supplied to them by blood vessels. After the fluid has per-
formed its function, it is reabsorbed either by the lymphatics or by post capillary venules;
the dominant contribution in most cases being due to the lymphatics. Thus, when the lym-
phatic system is unable to function, the interstitial pressure becomes heightened and the
tissues become swollen. In addition, since reabsorption drives the flow of fluids through
tissues, failure of the lymphatic system usually results in much slower, mainly diffusive,
movement of nutrients into tissues, and the accumulation of waste products. In order to
perform its important task, the lymphatic system has evolved into an elaborate, highly
branched, highly valved, drainage network. In addition to its primary task, the lymphatic
system also plays an important part in the immune system. In particular, lymphocytes,
which reside and multiply in the lymphatic system, clean lymph fluid of bacteria and
other contaminants. Thus, diseases of the lymphatic system often result in compromised
immune competence.

Many medical conditions have now been linked to a malfunctioning of the lymphatic
system, for example lymphedema, Melkersson–Rosenthal–Meischer syndrome, Kaposi
sarcoma, and lymphatic filariasis. Lymphatic filariasis is a parasitic disease that is thought
to be globally the second leading cause of permanent and long-term disability (Jussila and
Alitalo, 2002). In recent years, the lack of lymphatic function in solid tumors has been
identified as one cause for hindered delivery of chemotherapeutic drugs to solid tumors
(Jain, 2001). Tumor metastasis is also thought to involve lymphatics as one, if not the
primary, pathway (Cassella and Skobe, 2002; Skobe et al., 2001; Stacker et al., 2002).

In this paper, we will derive a model that sheds some light on the aspects that control
lymphatic vessel development, i.e., lymphangiogenesis. In particular, we concentrate our
efforts on trying to explain the experimental findings of Boardman and Swartz (2003).
Boardman and Swartz found that the development of the lymphatic network within a
collagen implant in a mouse tail is preceded by the development of a fluid flow network
within it. Thus, it appears that collagen prepatterning plays a role in guiding the lymphatic
development. In particular, it precedes the migration of the lymphatic endothelial cells.

Although there are several authors who have noted the existence of preferential fluid
flow channels and networks in the tissue and calculated their transport properties (Landis
and Pappenheimer, 1963; Levick, 1987; Watson et al., 1980; Watson and Grodins, 1978)
to our knowledge there are no detailed mathematical models describing the development
of this network in biogels or living tissues. Cogan and Keener (2005) develop a model
for the development of a single channel between two constraining boundaries. However,
we will show that more complex structures, which are reminiscent of a mature primary
lymphatic network, could come about in a collagen gel.

In their landmark experiments, Boardman and Swartz (2003) cut away a small thin
circular layer of skin around the tail of a mouse where the lymphatics reside leaving the
vascular structure of the mouse tail intact. They then filled this area with 3% collagen
and saw that before the lymphatic endothelial cells migrated into this collagen implant
spontaneous fluid flow network had formed within the implant. Although the experiments
need to be refined, using higher spatial and temporal resolution, we hypothesize that these
channels were formed due to the intricate interplay between the collagen gel and the
solutes (in particular protons) that infiltrated the gel after it was transplanted around the
mouse tail. Collagen is a fibrous protein that makes up most of the connective tissue
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Fig. 1 Figure showing the visualization of lympatic network in the mouse tail. Green color shows the
location of lymphatic channels. White bar corresponds to 1 mm. Figure generously provided by Melody
Swartz and Joseph Rutkowski from École Polytechnique Fédérale de Lausanne. (Colour figure online.)

of animals (Vogel, 2003). It consists of long thin fibres that are bound together to give
strength to the tissue. In between the fibres, one finds an interstitial fluid. Crucially, it
has been found that collagen gels, and hence also biological tissues, can swell and be
broken down by acidic pH (Nussbaum, 1986; Nussbaum and Grodzinsky, 1981). We will
model the interaction between the elastic/rubber like properties of collagen and protons
with the aim of explaining how this can lead to development of a fluid flow network with
a morphology that is similar to the one found in experiments of Boardman and Swartz
(2003) (see also Fig. 1).

In Section 2, we will derive a model for the collagen gel and proton interaction based
on the theory by Flory for long chain polymeric mixtures by considering the free energy
of the mixture. This results in two coupled fourth order equations for the collagen volume
fraction and the proton concentration. In Section 3, we will present the linear stability
analysis of the model and show that for proton concentration above a certain level, a
spatially uniform steady state is unstable to small random perturbations, and thus spatial
patterns will develop. In Section 4, we use the results of the linear stability analysis to
guide us on reducing the order of the system by conducting a long wavelength reduction
of the coupled equations that results in a single reduced equation for the collagen volume
fraction. The equation that we derive is similar to the Cahn–Hilliard equation, however, it
has more complicated nonlinearities and degeneracies. We solve this equation numerically
using finite element simulations that have been confirmed using a spectral method. Finally,
in Section 5, we discuss our results and outline the future avenues of research.

2. Model development

We consider the collagen implant to consist of two phases, the fibre phase φ, and the fluid
phase 1 − φ. Conservation equations for these two phases can be written as

φt + ∇ · (φvp) = 0, and − φt + ∇ · [(1 − φ)vf

] = 0, (1)

where vp is the fibre velocity, vf is the fluid velocity, and φt is shorthand for ∂φ/∂t .
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Similarly to Milner (1993), Tanaka (1997), we define the volume averaged velocity to
be

v = φvp + (1 − φ)vf . (2)

Therefore, it follows from the conservation equations (1) that

∇ · v = 0. (3)

We assume that the solute, i.e., protons, matrix metalloproteases, etc., is present in the
fluid phase of the implant, and that this solute can be carried by the convective movement
of fluid and it can also diffuse in the fluid phase. Thus, we take the equation for the solute
concentration c to be given by

ct + ∇ · [c(1 − φ)vf

] = ∇ · [D(φ)∇c
]
, (4)

where ct = ∂c/∂t and D(φ) = D0e
−aφb

is the effective diffusion of solute in the fluid
phase (Clague and Phillips, 1997). In this equation, we are assuming that there are no
source or sink terms for solute within the sample. We believe this to be a reasonable
assumption in the case of protons, for example, which are usually abundant in the fluid
phase and any depletion of them due to their interaction with collagen can be considered
negligible. Also, since the collagen implant is acellular, it is reasonable to assume that
there are no source terms for c present inside the implant.

We now need to derive expressions that describe the fibre and fluid velocities, vp and
vf , respectively. We follow the approach first outlined by Flory (1953) for rubber elas-
ticity by assuming that collagen behaves, as a first approximation, similarly to long chain
rubber molecules. For this approach, we need to describe the interaction between the col-
lagen fibres and the fluid. After Boudaoud and Caieb (2003), Flory (1953) and others,
we consider the free energy of the gel to be a sum of three terms: the fluid-collagen in-
teraction energy (Finteraction), the fibre network elastic energy (Felastic), and the correlation
energy (Fcorrelation). Thus, the total energy of the collagen gel is given by

F = Finteraction + Felastic + Fcorrelation. (5)

We will now discuss each of these three terms briefly.
Following Boissonade (2003), Flory (1953), Wolgemuth et al. (2004), the interaction

term is given by

Finteraction =
∫

Ω

finteraction dV, (6)

where fintraction is the free energy density of the interaction that determines the number
and stability of different possible phases. It is usually derived in statistical mechanics by
considering, for example, the configurations that different Gaussian chains can take in a
given solvent (Doi and Edwards, 1986; Doi, 1983). Here, we take it to be given by the
Flory–Huggins expression (Flory, 1953)

finteraction = kBT

ν

{
(1 − φ) ln(1 − φ) + χφ(1 − φ)

}
, (7)
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where kBT is the thermal energy, χ is the Flory fiber-solvent interaction parameter, and
ν is the volume of the monomer (Flory, 1953; Wolgemuth et al., 2004). The first term
expresses the entropic contribution to the free energy and the second term expresses the
enthalpic contribution.

Similarly, Flory (1953) derived an expression for an elastic energy that would be
present in a network of cross-linked long chain molecules, i.e., Felastic = ∫

Ω
felastic dV ,

where

felastic = kBT

ν

1

2Nx

(
φ0 − φ − 1

3
φ ln

φ0

φ

)
, (8)

where Nx is the number of monomers between the cross-links, and φ0 is the equilib-
rium/initial polymer volume fraction.

We take the correlation energy to be given by classical Orstein–Zernike form for free
energy (Boudaoud and Caieb, 2003; Wolgemuth et al., 2004), i.e.,

Fcorrelation =
∫

Ω

k

2
(∇φ)2 dV, (9)

where k is proportional to correlation length.
Crucially, in this paper, we will hypothesize that the distance between the cross-links

Nx , and, therefore, the elastic energy of the gel is a function of chemicals in the fluid
phase, i.e., we assume that the chemicals in the fluid phase can break down the cross-links
and lead to swelling in the absence of other forces; an observation that is supported by
the experiments of Nussbaum (1986), Nussbaum and Grodzinsky (1981) on the swelling
of collagen gel due to changes in solute (for example, proton) concentration. Motivated
by this, we take the average distance between the cross-links to be a function of solute
concentration

Nx = Nx0e
α

c−c0
c∞−c , (10)

where Nx0 is the average equilibrium distance between the cross-links at the reference
state c0, and c∞ is the concentration of solute in the fluid phase when the cross-links
have completely disappeared, i.e., when Nx → ∞. This is, of course, a phenomenological
function and the choice of it was determined by the qualitative behavior observed in the
cited experiments. In the absence of any detailed experimental evidence, we are not going
to worry about the exact functional form of Nx . Instead, we will be interested only in the
early stages of patterning and, therefore, in the linear stability analysis shown later only,
the value of dNx/dc, evaluated at the reference state, influences the onset of fluid network
development.

Several authors have also included a counterion pressure term, that is, in particular, de-
pendent on the pH and other chemicals found in the solvent, in the free energy derivation
presented above (Dobrynin and Rubinstein, 2005; Yashin and Balazs, 2006). However,
we will not include this term in this paper for the following reasons. First, because the
experiments of Boardman and Swartz (2003) are conducted in vivo in the tail tissue of
the mouse we do not know what is the dominant chemical that triggers the onset of the
lymphatic prepatterning. It could be any combination of the matrix metalloproteases and
protons breaking down the cross-links between the fibres and the proton interaction with
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the fibres themselves. Therefore, we are including the simplest “illustrative” term that
shows a potential mechanism of lymphatic network development in this manuscript. Sec-
ondly, the inclusion of the counterion pressure term (and indeed any other energy term
that has been described in polymer gels) in the free energy does not actually change the
mathematical detail of the analysis presented. Only the derivative of the free energy with
respect to φ and c at the steady state influences the linear stability and long wave analy-
sis of the model presented below. Fundamentally, any mechanism that can contribute to
gel swelling can also contribute to the patterning. However, we believe that the breaking
down of the cross-links between the collagen fibers is the dominant mechanism. Finally,
we feel that the inclusion of too many complicated free energy terms at this stage of the
modeling of the lymphatic network development will lead to a false sense of security
about the model. As pointed out above, there are several experimental issues that need
to be addressed before the definitive model can be derived. In addition to this, we have
not been able to find an experimental study that rigorously parameterizes all these free
energy terms for collagen gels. Thus, for the purposes of transparency and simplicity,
we will only consider the Flory–Huggins free energy terms as described above. We hope
that this paper will encourage the experimental community to perform experiments on 2D
collagen layers with varying either the matrix metallo protease concentrations or proton
concentration.

Thus, we take the overall free energy of the two phase collagen mixture to be given by

F =
∫

Ω

[
f (φ, c) + k

2
(∇φ)2

]
dV, (11)

where

f = kBT

ν

{
(1 − φ) ln(1 − φ) + χφ(1 − φ) + 1

2Nx

(
φ0 − φ − 1

3
φ ln

φ0

φ

)}
. (12)

In order to derive the equations describing the movement of collagen, we will use the
variational principle that is used as standard in the polymer literature (Doi and Edwards,
1986; Doi, 1983; Tomari and Doi, 1995). It relies on minimizing the rate of energy dissi-
pation, sometimes also called the Rayleighian. Development and more in depth discussion
on this method can be found in Doi and Edwards (1986), Doi (1983). A good brief histor-
ical overview of this method is given in Hillert and Agren (2006) where it is also pointed
out that unlike minimization of the Hamiltonian, which is a physical principle, minimizing
the Rayleighian is more of a mathematical trick than a physical law.

Hence, after Doi and Onuki (1992), Hall et al. (2007), Milner (1993), Tanaka (1997),
we need to minimize the following functional with respect to vf and vp

R = Ft +
∫

Ω

{
1

2
ξ(vp − vf )2 − p∇ · v − vp · Fp − vf · Ff

}
dV, (13)

where ξ is the drag coefficient between the fibres and the fluid. Thus, the term
1
2ξ(vp − vf )2 represents the energy dissipation due to viscous forces in the two phase
mixture. Fi are the forces acting on each of the components, and we have also intro-
duced the pressure p to guarantee the incompressibility condition ∇ · v. The variable p

is effectively a “Lagrange multiplier” that ensures the incompressibility of the fibre-fluid
mixture. Ft is the rate of change of free energy with time.
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The rate of change of free energy is derived by differentiating equation (11) with re-
spect to time, i.e., we get

Ft =
∫

Ω

[(
∂f

∂φ
− k∇2φ

)
φt + ∂f

∂c
ct

]
dV + k

∫

∂Ω

φt

∂φ

∂n
dS. (14)

From now on, we will define the natural boundary condition (Courant and Hilbert, 2004)
originating from the correlation energy term to be

∂φ

∂n
= 0 on ∂Ω, (15)

where ∂
∂n

is the derivative normal to the domain boundary ∂Ω , so that the second integral
in (14) is zero.

From Eqs. (1) and (4), we can write φt = −∇ · (φvp) and ct = −∇ · (c(1 − φ)vf ) +
∇ · (D(φ)∇c) and substituting this into Eq. (14), we get

Ft = −
∫

Ω

{(
∂f

∂φ
− k∇2φ

)
∇ · (φvp)

+ ∂f

∂c

[∇ · (c(1 − φ)vf

) − ∇ · (D(φ)∇c
)]

}
dV

=
∫

Ω

{
φ∇

(
∂f

∂φ
− k∇2φ

)
· vp + c(1 − φ)∇ ∂f

∂c
· vf + ∂f

∂c
∇ · (D(φ)∇c

)}
dV

+
∫

∂Ω

[(
∂f

∂φ
− k∇2φ

)
φvp + ∂f

∂c
c(1 − φ)vf

]
· dS. (16)

Assuming that there is no flux of fluid or collagen through the boundary (we will as-
sume this throughout this paper), i.e., vf and vp are zero on ∂Ω , we finally arrive at the
following equation for the rate of change of free energy

Ft =
{
φ∇

(
∂f

∂φ
− k∇2φ

)
· vp + c(1 − φ)∇ ∂f

∂c
· vf + ∂f

∂c
∇ · (D(φ)∇c

)
}

dV . (17)

Thus, by minimizing Eq. (13) with Eq. (17) with respect to vp and vf , we get the
following equations for vp − vf and ∇p

−ξ(vp − vf ) − φ∇
(

∂f

∂φ
− k∇2φ

)
+ φ∇p + Fp = 0, (18)

ξ(vp − vf ) − c(1 − φ)∇ ∂f

∂c
+ (1 − φ)∇p + Ff = 0. (19)

From now on, we will assume that the forces Fi are zero, which essentially implies that
we are assuming that the shear movement of the gel is small and all bulk movements are
described by Flory mixing and elastic free energy terms in (11) and (12). We believe this
to be realistic because there is no fluid or collagen flow across the implant and, therefore,
the shear effects are likely to be small.
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Equations (1), (18), and (19) need either one more equation to tie them together since
the Eqs. (18) and (19) are linearly dependent on the fluid and collagen velocity difference
vp − vf . Alternatively, we would need to include higher order dissipative terms in Fp

and Ff . There are several ways of doing this. We will use the approach taken by Bois-
sonade (2003), Wolgemuth et al. (2002) and introduce the so-called “bootstrap” equation
that assumes that the phase averaged velocity is zero, i.e., we take everywhere

v = φvp + (1 − φ)vf = 0. (20)

The “bootstrap expression” given by Eq. (20) is clearly valid when there is no flux of
collagen or fluid through the boundaries. In this paper, we will limit ourselves to this case
only, but in future publications, we will address the case when there are sources/sinks at
the boundary.

Thus, combining Eqs. (18)–(20), we get

ξvp = −φ(1 − φ)2
[
(fφφ − cfφc)∇φ + (fφc − cfcc)∇c − k∇∇2φ

]
, (21)

ξvf = φ2(1 − φ)
[
(fφφ − cfφc)∇φ + (fφc − cfcc)∇c − k∇∇2φ

]
, (22)

where fφφ = ∂2f

∂φ2 , fφc = ∂2f

∂φ∂c
, fcc = ∂2f

∂c2 .
The representative set of parameter values is shown in Table 1.
Substituting Eqs. (21) and (22) into conservation Eqs. (1) and (4), we get two cou-

pled equations for φ and c. After having nondimensionalized these by scaling x ∼
L = 2 × 10−3 m (representative size of the sample in Boardman and Swartz, 2003),
vp,vf ∼ [v] = kbT /(νξL) = 10−8 ms−1, c ∼ c∞ and t ∼ L/[v] we get the following
dimensionless equations for φ and c

φt = ∇ · {φ2(1 − φ)2
[
(fφφ − cfφc)∇φ − κ∇ · (∇2φ

) + (fφc − cfcc)∇c
]}

, (23)

ct = ∇ · {−cφ2(1 − φ)2
[
(fφφ − cfφc)∇φ − κ∇ · (∇2φ

) + (fφc − cfcc)∇c
]}

+ (1/Pe)∇ · {D(φ)∇c
}
, (24)

where κ = νk

kBT L2 , Pe = D0
L[v] , Nx = Nx0e

α c−c0
1−c , D(φ) = e−a(φb−φb

0 ), and c0 → c0/c∞, and

f = (1 − φ) ln(1 − φ) + χφ(1 − φ) + 1

2Nx

(
φ0 − φ − 1

3
φ ln

φ0

φ

)
. (25)

From now on, we will use the following dimensionless parameter values (see also
Table 1): φ0 = 0.03, χ = 0.5, c0 = 0.1, Pe = 0.05, Nx0 = 10, κ = 0.1, and α = 250.

We will solve the Eqs. (23) and (24) for two cases. First, we solve it in one dimension
with periodic boundary conditions. Secondly, in two dimensions in the rectangle, we will
use periodic boundary conditions in the y direction to reflect the fact that the sample
is circular around the mouse tail. In the other, x direction, we use a zero flux of collagen
boundary condition in addition to the natural boundary condition ∂φ

∂n
= 0, which originated

from the correlation energy term in Eqs. (14) and (15). As boundary conditions for c in
the x direction, we use permeability boundary conditions at the inlet and outlet to reflect
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Table 1 Summary of dimensional parameters used as input to the model along with their source/reference

Parameter Value Units Description Reference

kBT/ν 4.1 × 103 Pa thermal energy per
volume of monomer

Wolgemuth et al. (2004)

ξ 2 × 1014 N s m−4 drag coefficient between
fibres and fluid

Wolgemuth et al. (2004)

χ 0.5 Flory interaction
parameter

Wolgemuth et al. (2004)

D0 10−10 to 10−8 m2 s−1 Diffusivity of molecules
and protons

Perry and Green (1997),
Agmon (1995), Tuckerman
et al. (2006)

k 1.6 × 10−3 N Correlation energy
parameters

Wolgemuth et al. (2004)a

φ0 0.03 Initial collagen volume
fraction

Boardman and Swartz (2003)

c∞ 108 M Value of solute
concentration when all the

Chosen

cross-links have broken

aChosen so that the correlation occurs over lengthscale of mm

the fact that the pH (c0) and permeability of the surrounding tissue/media can be very
different from the pH of the collagen implant, i.e., we choose

−n · 1

Pe
D(φ)∇c = β(c0 − c) at x = 0 and x = L, (26)

n · ∇φ = 0, and n · vp = 0, x = 0 and x = L. (27)

3. Linear stability analysis

The aim of this section is to investigate if the uniform steady state, given by φ0 and c0,
is linearly stable to small spatially varying perturbations. Thus, we begin by looking for
a solution to linearized equations (23) and (24) around the uniform steady state φ0 and c0

in the form ∝ eσt+ik·x. This gives us the dispersion relation

σ 2 + σk2φ2
0(1 − φ0)

2

[
fφφ − 2c0fφc + 1

Peφ2
0(1 − φ0)2

+ κk2

]

+ k4 φ2
0(1 − φ0)

2

Pe

(
fφφ − c0fφc + κk2

) = 0, (28)

where fφφ = ∂2f

∂φ2 |(φ0,c0) and fφc = ∂2f

∂φ∂c
|(φ0,c0), and f is given by Eq. (25).

The steady state is stable if both coefficients in the above polynomial are positive and
this gives us the following conditions of stability

fφφ − c0fφc + κk2 > 0, and
1

Peφ2
0(1 − φ0)2

− c0fφc > 0. (29)
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Fig. 2 (a): Dispersion relation for α varying from 0 to 4,000 with step interval of 400 between the graphs
shown. (b): Neutral stability curve; αc = 458.350. (c): Fastest growing modes in the case of infinite domain
(solid line) and in the case of finite domain x = [0,1] (dashed line).

The shape of the dispersion relation is shown on Fig. 2a for different values of the
parameter α for fixed c0 = 0.1 and on Fig. 3a for different values of c0 with fixed α = 250.

From (29), we see that a spatial pattern forming instability can occur for wave numbers
0 < k < kc = (1/κ)(c0fφc − fφφ) provided that c0fφc − fφφ > 0 and that the second of
the stability conditions (29) is always satisfied. In this case, k = 0 and k = kc are neutrally
stable. The fastest growing mode as a function of α for a fixed c0 = 0.1 is shown on
Fig. 2c and as a function of c0 for a fixed value of α = 250 is shown on Fig. 3c. The
neutral stability curve is given2 by

N(k; c0, α) = (
d11 + κk2

)
k4 = 0, (30)

where

d11 = fφφ − c0fφc = 1

1 − φ0
− 2χ + 1

2φ0Nx0
− α

c0

2Nx0(1 − c0)
. (31)

The neutral stability curves for two different cases of bifurcation parameter (α and c0) are
shown on Figs. 2b and 3b.

2We will consider two bifurcation parameters for our analysis, α and c0.
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Fig. 3 (a): Dispersion relation for c varying from 0 to 0.9 with step interval of 0.1 between the graphs
shown. (b): Neutral stability curve; ccrit = 0.0657506. (c): Fastest growing modes in the case of infinite
domain (solid line) and in the case of finite domain x = [0,1] (dashed line).

Fig. 4 Numerical solutions for different αs at t = 100 obtained using Comsol Multiphysics finite element
package.

Numerical solutions of the full nonlinear model given by (23) and (24) at different
values of α for fixed c0 are shown on Fig. 4. The solutions for fixed α and varying c0 as
a bifurcation parameter, for values that correspond to period one, two and three solutions,
are virtually indistinguishable from these and we do not show them here.

We can see by comparing the numerical solutions shown on Fig. 4 with the analytic
predictions of the fastest growing mode, shown on Fig. 2c that they agree very well.
Therefore, we can conclude that the analytic estimate for the fastest growing mode that
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Fig. 5 Maximum value of σ as a function of the bifurcation parameter c0. Corresponding values for
maximum k are shown on Fig. 3c.

Fig. 6 Results of numerical simulation for three different cases of bifurcation parameter c0 = 0.5,0.8,

and 0.925, corresponding to period 1, 2, and 3, respectively, according to linear stability analysis. Results
are shown at dimensionless time t = 2 which corresponds to dimensional time of about 6 days.

we found using linear stability theory is indeed consistent with numerics. On Fig. 5, we
show the dimensional values for the maximum growth rate as a function of the bifurcation
variable c0. In the experiments of Boardman and Swartz (2003), the patterns are seen to
be starting to be observed after about 10 days, which seems to agree with our estimates for
the maximum growth rate of order 0.1–0.01 day−1 for range c0 = 0.6–0.8. But, of course,
we need to stress here that because these experiments are conducted in vivo, there are
other factors, such as lymphatic endothelial cells and epidermal cells migrating into the
implant, in play and the direct comparison with the experiments is not possible. Instead,
we can only say that our predicted timescales for patterning are not contradicted by the
experimental findings.

On Fig. 6, we show the two dimensional simulations for three different values of bifur-
cation parameter c0 that according to linear stability analysis correspond to periods 1,2,

and 3 patterns. As one can see the linear stability analysis is consistent with the numerical
simulations about the fastest growing point. We would also like to point out that period 3
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simulations are already starting to show geometric organization of pattern into a hexago-
nal looking pattern (top left-hand side panel for case c0 = 0.925). We will present a more
detailed nonlinear analysis for hexagonal lattice solutions that takes into account higher
order terms in expansion, together with more detailed two dimensional simulations in a
separate publication.

4. Long wavelength reduction

We notice that at the bifurcation point c = ccrit , there is a double zero of a dispersion
relation at zero wave number. Therefore, a small amount above the bifurcation point the
modes that start growing are the ones with long wavelength. This suggests that we might
be able to find simplified equations using the long wavelength reduction (Kozyreff and
Tlidi, 2004). We do this by scaling space and time suitably and then expanding the state
variables as series in the small parameter. We will discuss the choice of the small parame-
ter, scalings, and expansion in detail now.

The natural small parameter to use in our current problem is κ = 0.1, i.e., the parame-
ter that quantifies over which length scale we might expect sharp variations in collagen
volume fraction. Thus, we take ε = κ = 0.1. The scalings suitable for time and space can
be deduced by considering the neutral stability curve near the bifurcation point, i.e.,

dN

dk
= 6εk3

(
2d11

3ε
+ k2

)
, (32)

which suggest that if the bifurcation parameter is above the bifurcation point by the value
that makes d11 ∼ ε2, then to balance the terms in the brackets we need k ∼ √

ε. With this
choice of scaling, the dispersion relation suggests that σ ∼ ε3 for all terms to balance.

These scalings derived from linear stability analysis for σ and k translate into scalings
of time T = ε3t and space X = √

εx. This transforms our equations to

ε2φT = ∇ · {φ2(1 − φ)2
[
ε2d∗

11∇φ + d12∇c − ε2∇∇2φ
]}

, (33)

ε2cT = ∇ ·
{
−cφ2(1 − φ)2

[
ε2d∗

11∇φ + d12∇c − ε2∇∇2φ
] + 1

Pe
D∇c

}
, (34)

where d11 = ε2d∗
11 (from now on we will drop ∗).

The linear stability of Eq. (23) suggest the scalings to φ and c. Since the time derivative
term and derivatives of φ with the scalings presented above are O(ε3) and the derivatives
in c are O(ε), we expect that the perturbations in φ ∼ 1 and c ∼ ε2. Thus, we expand φ

and c in the following asymptotic series

φ(X, T ) = φ00(X, T ) + εφ1(X, T ) + · · · , (35)

c(X, T ) = c00 + ε2c2(X, T ) + · · · . (36)

We are seeking for a solution to the Eqs. (33) and (34) in two dimensions on the
rectangle with periodic boundary conditions in y direction and zero flux of polymer across
the boundaries in x direction. The boundary condition on c in the x direction reflects the
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fact that protons can permeate through from the edges of the sample and that this rate
is proportional to the permeability β . Thus, the boundary conditions in the x direction
become

φx = 0, d12cx − ε2
(∇2φ

)
x
= 0,

1

Pe
D cx = β(c0 − c), (37)

after long wavelength scaling.
Using the expansions (35) and (36), we find that at O(1) c00 = c0 = constant every-

where.
At order O(ε2), Eq. (34) gives

0 = ∇ · {−c0φ
2
00(1 − φ00)

2
[
d11∇φ00 − ∇∇2φ00

]}

+ ∇ ·
{[

1

Pe
D(φ00) − c0φ

2
00(1 − φ00)

2d12

]
∇c2

}
. (38)

Solving this equation gives us

−c0φ
2
00(1 − φ00)

2
[
d11∇φ00 − ∇∇2φ00

]

+
[

1

Pe
D(φ00) − c0φ

2
00(1 − φ00)

2d12

]
∇c2 = ∇ × F, (39)

where F is an arbitrary vector field that will be determined using the boundary conditions.
When the permeability of the boundary to proton ions is much smaller than the diffusion
of protons within the sample, i.e., βPe ∼ O(ε), then the boundary condition for c at O(ε2)

becomes c2,x = 0 at the boundary. Hence, the component normal to the boundary at x = 0
and x = 1 of the left-hand side of (39) is zero and this means that in two dimensions x and
y components of ∇ ×F are both zero and, therefore, we can write for our two dimensional
problem that

∇c2 = c0φ
2
00(1 − φ00)

2

1
Pe D(φ00) − c0φ

2
00(1 − φ00)2d12

[
d11∇φ00 − ∇∇2φ00

]
. (40)

Thus, the O(ε2) equation for φ00 is now given by (after dropping subindexes 00)

φT = ∇ · {g(φ)
[
d11∇φ − ∇∇2φ

)}
, (41)

where

g(φ) = φ2(1 − φ)2 D(φ)/Pe

D(φ)/Pe − c0φ2(1 − φ)2d12
, (42)

d11 = fφφ − c0fφc, d12 = fφc − c0fcc, (43)

are all evaluated at φ. This equation is well behaved and regular only if g does not have
any singularities. This highlights the fact that we need D(φ)/Pe − c0φ

2(1 − φ)2d12 > 0,
i.e., the proton concentration is always moving from higher to lower and not vice versa. In
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Fig. 7 Profiles of fφ − c0fc in Eq. (45) for different values of c0.

other words, we will not allow protons to accumulate due to collagen movement. Having
said that, when Pe 	 1, as in our case, we can simplify the expression for g(φ). We obtain

g(φ) ≈ φ2(1 − φ)2, (44)

provided Pec0φ
2(1 − φ)2d12 	 1.

Thus, the long wavelength reduction results in a nonlinear Cahn–Hilliard equation
with boundary conditions φx = 0 and (∇2φ)x = 0 at the boundaries in the x direction and
periodic in the y direction.

We could rewrite the Eqs. (41) in an alternative form

φT = ∇ · {g(φ)∇[
fφ − c0fc − ∇2φ

]}
. (45)

Translating the equation back into the unscaled coordinates used in previous section,
we get the equation

φt = ∇ · {g(φ)∇(
h(φ) − ε∇2φ

)}
, (46)

where g(φ) is given by Eq. (42), and h(φ) is given by

h(φ) = −1 + (1 − 2φ)χ − log(1 − φ) − 1

6Nx0

(
2 + log

φ0

φ

)

+ αc0

2Nx0(1 − c0)

(
φ0 − φ − 1

3
φ log

φ0

φ

)
. (47)

Profiles of h(φ) are shown on Fig. 7.
The numerical solution computed using the reduced Eq. (41) is shown on Fig. 8
As we can see the pattern emerges over the dimensionless timescale of order t ∼ 15

which translates into dimensional timescale of order 30 days. This finding is consis-
tent with the experimental observations of Boardman and Swartz (2003). On the domain
shown on Fig. 8, the linear stability analysis predicted that the fastest solution should be
period 6 solution and this is indeed consistent with the numerical results.
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Fig. 8 Solutions of Eq. (41) for parameter values c0 = 0.9, α = 240, χ = 0.5, Nx,0 = 10, and φ0 = 0.03
at different time points. Initial condition was taken to be a small random perturbation around the steady
state φ0.

5. Discussion

In this paper, we have presented a model that for the first time, quantitatively describes
the factors that influence the first stage of lymphatic network formation within biogels.
We show that due to the fact that solutes, such as protons, can break down the cross-
links between collagen fibres, therefore, decreasing the elastic constraining forces on the
collagen gel (i.e., Flory elastic energy), an initially homogeneous collagen gel is unstable
to small spatial perturbations if the solute concentration is higher than a critical level
determined by the linear stability analysis presented in Section 3.

We have also found that while the linear stability analysis predicts the wave number
that will grow fastest, it also predicts that the zero wave number is always neutrally sta-
ble and that the bifurcation from stable to unstable regime occurs there. This means that
slightly above the bifurcation point the fastest growing mode has a long wavelength. This
inspired us to use long wavelength reduction reminiscent of that used as standard in fluid
dynamics and optics, and it enabled us to simplify coupled fourth order partial differential
equations and derive a single equation for a collagen gel volume fraction that is very sim-
ilar to the Cahn–Hilliard equation. We found using numerical simulations that the system
appears to be moving toward a hexagonal looking pattern, which is very similar to the real
lymphatic network that develops in experiments of Boardman and Swartz (2003). We will
present a nonlinear analysis of the stability and evolution of the hexagonal patterns in a
subsequent publication.

Of course, in the end, lymphatics are not just patterns in the collagen gel, but are
formed by lymphatic endothelial cells in cellular media. Our theory, therefore, helps to
explain the different cascade of events that would lead to it. We believe that collagen
arranges into a prepattern and then lymphatic endothelial cells migrate into the gel to make
lymphatic vessels. This is realistic assuming that lymphatic endothelial cells have similar
behavior to vascular endothelial cells, i.e., that they migrate fastest at a finite, nonzero
collagen volume fraction (Zaman et al., 2005). There are no measurements similar to Wolf
et al. (2003), Zaman et al. (2005, 2006) that show that this would be true for lymphatic
endothelial cells. However, it is intuitively clear that if it is true for endothelial cells and
cancer cells then this could also be true for lymphatic endothelial cells. Thus, following
the prepatterning of the collagen gel, the lymphatic endothelial cells have to invade the
gel in the fastest possible way to form the hexagonal looking lymphatic structures without
needing any extra complex cell signaling to tell them anything about the morphology.



Network Development in Biological Gels: Role in Lymphatic Vessel

Acknowledgements

TR would like to acknowledge the support of the Royal Society by its award of the Univer-
sity Research Fellowship and for the help received from Drs. David Smith, Marvin Jones,
and Gregory Kozyreff when preparing this manuscript. ACF acknowledges the support
of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie)
funded by the Science Foundation Ireland mathematics initiative grant 06/MI/005.

References

Agmon, N., 1995. The grotthouse mechanism. Chem. Phys. Lett. 244, 456–462.
Boardman, K.C., Swartz, M.A., 2003. Intersititial flow as a guide for lymphatics. Circ. Res. 92, 801–808.
Boissonade, J., 2003. Simple chemomechanical process for self-generation of rhythms and forms. Phys.

Rev. Lett. 90, 1–4.
Boudaoud, A., Caieb, S., 2003. Mechanical phase diagram of shrinking cylindrical gels. Phys. Rev. E 68,

021801–1–6.
Cassella, M., Skobe, M., 2002. Lymphatic vessel activation in cancer. Ann. N.Y. Acad. Sci. 979, 120–130.
Clague, D.S., Phillips, R.J., 1997. A numerical calculation of the hydraulic permeability of three-

dimensional disordered fibrous media. Phys. Fluids 9, 1562–1572.
Cogan, N.G., Keener, J.P., 2005. Channel formation in gels. SIAM J. Appl. Math. 65, 1839–1854.
Courant, R., Hilbert, D., 2004. Methods of Mathematical Physics, vol. 1. Wiley-VCH Verlag GmbH and

CO. KGaA.
Dobrynin, A.V., Rubinstein, M., 2005. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym.

Sci. 30, 1049–1118.
Doi, F., Edwards, S.F., 1986. The Theory of Polymer Dynamics. Oxford University Press, Oxford.
Doi, M., 1983. Variational principle for the Kirkwood theory for the dynamics of polymer solutions and

suspensions. J. Chem. Phys. 79, 5080–5087.
Doi, M., Onuki, A., 1992. Dynamic coupling between stress and composition in polymer solutions and

blends. J. Phys. II France 2, 1631–1656.
Flory, J.P., 1953. Principles of Polymer Chemistry. Cornell University Press, Ithaca.
Hall, D.M., Lookman, T., Fredrickson, G.H., Banerjee, S., 2007. Numerical method for hydrodynamic

transport of inhomogeneous polymer melts. J. Comput. Phys 224, 681–698.
Hillert, M., Agren, J., 2006. Extremum principles for irrevercable processes. Acta Mater. 54, 2063–2066.
Jain, R.K., 2001. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46,

149–168.
Jussila, L., Alitalo, K., 2002. Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700.
Kozyreff, G., Tlidi, M., 2004. Optical patterns with different wavelengths. Phys. Rev. E 69, 066202–1–11.
Landis, E.M., Pappenheimer, J.R., 1963. Exchange of Substances through the Capillary Walls, Handbook

of Physiology: Circulation II, pp. 961–1034.
Levick, J.R., 1987. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72, 409–438.
Milner, S.T., 1993. Dynamical theory of concentration fluctuations in polymer solutions under shear. Phys.

Rev. E 48, 3674–3691.
Nussbaum, J.H., 1986. Electric Field Control of Mechanical and Electrochemical Properties of Polyelec-

trolyte Gel Membranes, PhD thesis, Massachusetts Institute of Technology.
Nussbaum, J.H., Grodzinsky, A.J., 1981. Proton diffusion reaction in a protein polyelectrolyte membrane

and the kinetics of electromechanical forces. J. Membr. Sci. 8, 193–219.
Perry, R.H., Green, D.W., 1997. Perry’s Chemical Engineers’ Handbook, 7th ed. McGraw-Hill, New York.
Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claf-

fey, K., Detmar, M., 2001. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer
metastasis. Nat. Med. 7, 192–198.

Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., Alitalo, K., 2002. Lymphangiogenesis and cancer
metastasis. Nat. Rev. Cancer 2, 573–583.

Tanaka, H., 1997. Viscoelastic model of phase separation. Phys. Rev. E 56, 4451–4462.
Tomari, T., Doi, M., 1995. Hysteresis and incubation in the dynamics of volume transition of spherical

gels. Macromolecules 28, 8334–8343.

http://www.macsi.ul.ie


Roose and Fowler

Tuckerman, M.E., Chandra, A., Marx, D., 2006. Structure and dynamics of OH−(aq). Acc. Chem. Res.
39, 151–158.

Vogel, S., 2003. Comparative Biomechanics, Life’s Physical World. Princeton University Press, Princeton.
Watson, P.D., Bell, D.R., Renkin, E.M., 1980. Early kinetics of large molecule transport between plasma

and lymph in dogs. Am. J. Physiol. 239, H525–H531.
Watson, P.D., Grodins, F.S., 1978. An analysis of the effects of the interstitial matrix on plasma-lymph

transport. Microvasc. Res. 16, 19–41.
Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Broker,

E.-B., Friedl, P., 2003. Compensation mechanism in tumour cell migration: mesenchymal-amoeboid
transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277.

Wolgemuth, C., Hoiczyk, E., Kaiser, D., Oster, G., 2002. How myxobacteria glide. Curr. Biol. 12, 369–
377.

Wolgemuth, C.W., Mogilner, A., Oster, G., 2004. The hydration dynamics of polyelectrolyte gels with
applications to cell motility and drug delivery. Eur. Biophys. J. 33, 146–158.

Yashin, V.V., Balazs, A.C., 2006. Pattern formation and shape changes in self-oscillating polymer gels.
Science 314, 798–801.

Zaman, M.H., Kamm, R.D., Patsudaira, P., Lauffenburger, D.A., 2005. Computational model for cell mi-
gration in three-dimensional matrices. Biophys. J. 89, 1389–1397.

Zaman, M.H., Trapani, L.M., Siemeski, A., MacKellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffen-
burger, D.A., Matsudaira, P., 2006. Migration of tumor cells in 3d matrices is governed by matrix
stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103, 10889–10894.


	Network Development in Biological Gels: Role in Lymphatic Vessel Developmentasd
	Abstract
	Introduction
	Model development
	Linear stability analysis
	Long wavelength reduction
	Discussion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


