
A dynamic model of annual foliage growth
and carbon uptake in trees

A. C. Fowler1, Oliver Clary2 and Tiina Roose2,*

1MACSI, University of Limerick, Limerick, Republic of Ireland
2Mathematical Institute, University of Oxford, 24–29 St Giles’, Oxford OX1 3LB, UK

The growth of trees and other plants occurs through the interactive combination of
photosynthesis and carbon (and other nutrient) assimilation. Photosynthesis enables the
production of carbohydrate that can then be used in growing foliage, whereby photosynthesis
is enabled. We construct a mathematical model of carbon uptake and storage, which allows
the prediction of the growth dynamics of trees. We find that the simplest model allows
uncontrolled foliage production through the positive feedback outlined above, but that leaf
shading provides an automatic saturation to carbon assimilation, and hence to foliage
production. The model explains the necessity for finite leaf area production at outbreak, and
it explains why foliage density reaches a constant value during a growing season, while also
non-leaf tissue also continues to grow. It also explains why trees will die when their carbon
stores are depleted below a certain threshold, because the cost of foliage growth and
maintenance exceeds the dynamic supply of carbon by photosynthesis.
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1. INTRODUCTION

In the current ongoing debate about climate change, the
role of the carbon cycle is of major importance
(Bigg 2003). The net flux of carbon (as CO2) to the

atmosphere is some 2 Gt (gigatonnes or 1012 kg), but
the contribution from fossil fuel consumption is more
than twice this, and deforestation is almost as important
as that. In fact, the fluxes between the various reservoirs
are much larger, and so an understanding of the way in
which carbon is transferred is of some importance.

The growth of plants and trees is an interesting and
important process in the discussion of climate, because of
their huge importance as a sink ofCO2 in the atmosphere:
the net removal by vegetation is some 5 Gt a year.
Therefore the quantitative and predictive understanding
of carbon uptake by plants is an issue of much current
interest. On the other hand, the consequent effect of
climate change on the dynamics of plant growth is of
equal importance for theunderstandingof cropdynamics.

The interaction of plant growth with carbon uptake
is a problem in plant physiology, which has attracted
much attention in the botanical and ecological
literature, but less so in the applied mathematical
community. An understanding of the processes of
development and growth is important both scientifi-
cally and practically, since the response of plants and
trees to nutrient deficiency and attacks by viruses and
pests has important implications for crop and forestry
management. In this paper, we develop and analyse a
mathematical model for the growth of trees, which

considers the continuous evolution of two critical
variables, the carbon store and the foliage density. Our
model finds its origins in the pioneering work of
Thornley (1976; see also Thornley & Johnson 1990),
and indeed our model closely resembles the whole plant
model developed in Thornley’s book (see his eqns (7.13)
and (7.14)). However, we go beyond Thornley’s model
in two respects. The first is that we give a derivation of
the equations of the model from first principles,
describing the processes of water and nutrient transport
within the tree; and second, we analyse the model and
show that, in its simplest form, it exhibits an unphysical
indefinite growth of foliage. We then go on to include
the effects of leaf shading and show that the resultant
augmented model allows for growth to a stable steady
state, consistent with annual foliage development in
mature trees. In a subsequent paper, we will use this
model as a constituent in studying the defoliative effects
on mountain birch forests in Lapland of outbreaks of
the autumnal moth Epirrita autumnata, and with this
in mind we will parametrize the present model with
values suitable for the growth of a mountain birch.

The outline of the paper is the following. In §2 we
describe the necessary tree physiology to develop the
model, and in §3 we develop the model from first
principles. We show that the model allows unbounded
growth, and thus in §4 we seek a modification that
prevents this happening. This is at hand in the form of
leaf shading (Thornley 1976, ch. 3), which causes the
photosynthetic rate to become saturable. We show in
§4 that the inclusion of this effect causes the
model to behave in ways consistent with observation.
Conclusions follow in §5.*Author for correspondence (roose@maths.ox.ac.uk).
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2. TREE PHYSIOLOGY

We begin by discussing the physiology of tree growth,
with specific reference where appropriate to mountain
birch. Early growth of foliage in trees is thought to
depend on carbohydrates accumulated during the
previous growing season. Carbohydrates are the direct
product of photosynthesis, and are involved in many
different processes in plants, such as respiration and
maintenance. The leaves use carbon dioxide, water and
energy from sunlight to produce carbohydrates, which
are then translocated to different parts of the tree,
which need them. A significant fraction of carbohydrate
produced from photosynthesis is used for the growth of
plant tissue (new wood in the case of trees). Another
large fraction is stored for use during times when there
is no production from photosynthesis, and a large
amount of this stored carbohydrate is then used for
initial leaf growth in early spring. There is also a
considerable amount of carbohydrate that is oxidized in
respiration, which releases the energy for tree growth
and metabolic processes.

2.1. Vascular system

Nearly all living plants have a vascular system that is
crucial for the transport of water, minerals, food and
other substances to the different parts of the plant. This
vascular system consists of two main pathways: the
xylem and the phloem. The main difference between
these is that the phloem is used to transport substances
down the plant, whereas the xylem is used to transport
substances (water and other minerals) up the plant.
The phloem is considered to be the main pathway
for carbohydrate transport, and generally very little
carbohydrate is thought to travel in the xylem.

It is thought that most of the reserve carbohydrates
are stored in parenchyma cells in the xylem of the trunk
for birch species. This was found by Olofinboba (1969)
while comparing storage carbohydrates in African and
European trees. These storage cells are thought to
constitute 10 per cent of the xylem; the rest of the
pathway is made up of dead cells, i.e. their only function
is structural, and they do not store carbohydrate.
Xylem is the main pathway for the transport of water
and nutrients up the tree; the phloem is the main
pathway for the products of photosynthesis down the
tree. Transport down the phloem is driven largely by
osmotic pressure differences; the flow of water up
the xylem is driven by a pressure gradient that is
induced by transpiration at the leaves, such that the
water pressure in the xylem is below the saturation
vapour pressure. This is known as the cohesion–tension
theory (Dixon & Joly 1895) and, although well
accepted, it is still controversial (Tyree 1997).

Xylem is made up of microscopic tubular vessels,
which are distributed across the trunk in small clusters.
Takahashi (1987) measured the diameters and distri-
butions of xylem vessels in six birch species that grow in
Siberia. For a birch species with characteristics similar
to those of mountain birch, he measured an average
vessel diameter of 47 mm, and a distribution of
approximately 100 per mm2, with an average spacing

of 23 mm. The vessels are never much longer than 4 mm,
but the transported water can easily pass from one
vessel to another by passing through small pits
before entering another xylem vessel. For simplicity,
we will suppose the vessels run continuously up the
tree trunk.

Mineral nutrients and carbohydrates are trans-
ported in the vascular system as solutes in water.
We suppose that stored carbohydrate in parenchyma
cells is released to the water in the system in a
diffusive fashion.

2.2. Photosynthesis

The production of carbohydrates occurs through
photosynthesis in the leaves of the plant. Photo-
synthesis is the mechanism that reduces atmospheric
CO2 to carbohydrates using the energy from light and
the release of oxygen from water. The basic chemical
reaction can be described by

6CO2 C12H2O/C6H12O6 C6O2 C6H2O; ð2:1Þ

and occurs at chloroplast cells within the leaves. These
lie below the epidermis of the leaves, in which there are
small openings called stomata. The stomata open and
close, depending on climatic conditions such as
temperature and wind strength. Atmospheric CO2 is
absorbed through the stomata, where it reacts as in
(2.1) with water derived through the xylem from the
roots. The excess water produced is then released by
evaporation to the atmosphere through the stomata,
this process being called transpiration, while the
products of photosynthesis, the photosynthates, are
transported away from the leaf through the phloem.

The carbohydrates thus produced are removed to
the parts of the tree where they are needed, and to the
storage cells. The amount of carbohydrate produced
depends on how much water, CO2 and light are
available, and on how much foliage is present. Many
experiments have been performed to measure how
much CO2 is absorbed in plants and then transformed
into carbohydrate, and the results can vary consider-
ably between species (James 1973; Kozlowski &
Pallardy 1997; Newell et al. 2002).

3. A MATHEMATICAL MODEL

There are three different types of carbohydrates
(monosaccharides, oligosaccharides and polysacchar-
ides) present in most plants (Barbaroux et al. 2003),
but we will lump these together in our model. One of the
variables of the model will thus be the carbon store,
denoted C, which is measured in units of weight of
carbohydrate, kilograms of carbohydrate (kgC).
A second variable is the amount of foliage, denoted F,
which is measured in units of weight of foliage,
kilograms of foliage (kgF). The final variable is the
woody biomass, denoted W, which is measured in units
of weight of woody biomass, kilograms of woody
biomass (kgW). More realistic models would include
further compartments, but we avoid such compli-
cations here for purposes of simplicity.
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We model the continuous variation of foliage, woody
biomass and carbon by three ordinary differential
equations, which take the form

dC

dt
ZPK S1KMRC;

dF

dt
Z S2KMRF;

dW

dt
ZS3KMRW:

9
>=

>;
ð3:1Þ

In these equations, P denotes the rate of production of
carbohydrate by photosynthesis; S1 denotes the rate
of consumption of carbohydrate in foliage and woody
tissue production; MRC denotes the rate of consump-
tion of carbohydrate in supporting metabolic processes;
S2 is the rate of production of foliage; MRF represents
foliage respiration; S3 is the rate of production of
woody biomass; and MRW is the rate of woody
biomass respiration.

The production of carbohydrate by photosynthesis is
assumed to be proportional to leaf surface area, and we
therefore take it to be proportional to F, thus

P Z aF : ð3:2Þ

Thornley (1976) suggested a similar relationship. The
coefficient a will depend on received photosynthetically
active radiation and water supply. A discussion of this
(assuming wet conditions) is given by Thornley &
Johnson (1990, p. 224 ff.). In the present notation,
we write

a Z
MCH2OPl

MCO2
sl

; ð3:3Þ

where sl is the leaf areal density, in units of kgF mK2,
and Pl (Thornley & Johnson’s Pn) is the specific
photosynthetic rate, in units of kgCO2 m

K2 dK1. The
molecular weightsMCH2O of organic carbon andMCO2

of
CO2 provide the relevant conversion from carbon
dioxide weight to carbohydrate weight. Pl is described
by a diffusive flux from the atmosphere, thus

Pl Z
CaKCl

rs Crb
; ð3:4Þ

where rs and rb are stomatal and boundary-layer
resistances, respectively, measured in units of d mK1,
and Ca and Cl are free air and leaf air concentrations of
CO2, in units of kg mK3. Thornley & Johnson suppose a
specific leaf respiration rate of Rd, which is the local
production rate of CO2. The leaf CO2 concentration is
then determined by equating the net production of CO2

to its removal by photosynthesis, described by a
Michaelis–Menten-like pair of equations; this leads to

apICl

KpI CCl
ZPl CRd; ð3:5Þ

where I is the leaf irradiance, and ap and Kp are
constants associated with the photosynthetic reactions.
From these, we can eliminate Cl (as the unique positive
solution of a quadratic equation), and thus obtain an
expression for a in terms of I, Ca and rsCrb. In the
following, we assume it to be constant, as is commonly
done (e.g. Magnani et al. 2000).

The metabolic rates MRC, MRF and MRW are
simply taken to be proportional to C, F and W,
respectively, thus

MRC ZmCC ; MRF ZmFF; MRW ZmWW

ð3:6Þ

and then the specific leaf respiration rate Rd is given by

Rd Z
MCO2

slmFâ

MCH2O
; ð3:7Þ

where â (kgC kgFK1) is the carbohydrate fraction of
leaf tissue. It is clear that the rates in (3.6) must go to
zero as C, F and W go to zero, respectively. Since MRF

represents a decay rate, a linear dependence seems
appropriate. Carbon use must saturate at high levels of
carbon, since the tree has a finite capacity for carbon
uptake. We ignore this here, partly because our later
concern will be with trees under attack, where it is more
likely that a linear dependence of metabolism on C
is appropriate.

The sink and source terms S1, S2 and S3 are more
complicated. If S1 is known, then we assume that

S2 Z rS1; S3 Z r 0S1; ð3:8Þ
where r and r0 are conversion factors that determine
foliage and woody biomass production in terms of
carbohydrate consumed. These are simplifying assump-
tions, since they suppose a direct connection between
foliage production and carbon release from storage.
Thornley (1976) proposes a similar connection between
the sink and source terms.

It then remains to prescribe S1, and we discuss this in
some detail. First, we find in appendix A that the water
flux q is defined implicitly by the equation

q Z
k

h
jrK

rwRT

Mv
ln

qCmpaF

mFpsat

! "# $
; ð3:9Þ

where

mZ
racp

Lgðrs CrbÞrwsl
; ð3:10Þ

and the various constants are defined in appendix A, as
well as in table 1.

This defines q implicitly in terms of F. Using values
from table 1, we find pwz133 MPa, which compares
with the typical measured leaf values of hydraulic
potential of jlzK0.7 MPa. Because we expect
jjlj/pw, it follows from (A 5) that plzpsat, which
thus defines q through (A 4) and (A 3), and then (A 1)
determines the value of jl, given jr. Specifically,
we have

qz
racpðpsatK paÞF
rwslLgðrs CrbÞ

; ð3:11Þ

note that this is independent of tree height h.
To calculate the carbon transport to the foliage, we

denote by cw the concentration of carbon in the water in
the xylem, measured as the weight of carbohydrate
equivalent per unit volume of water (kgC mK3), so that
S1Zqcw is the flux to the leaves. In appendix B, we
show that

S1 Z
qq0C

2

VsðqCq0CÞ
; ð3:12Þ
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where

q0 Z
pDd

wsrcl
2 ; ð3:13Þ

the new constants are defined in appendix B and
table 1.

Gathering together (3.2), (3.6), (3.8) and (3.12),
equation (3.1) can be written in the form

dC

dt
Z aFK

qq0C
2

VsðqCq0CÞ
KmCC ;

dF

dt
Z

rqq 0C
2

VsðqCq0CÞKmFF ;

dW

dt
Z

r 0qq0C
2

VsðqCq0CÞ
KmWW :

9
>>>>>>>>=

>>>>>>>>;

ð3:14Þ

The flux q(F ) is implicitly defined by (3.9) and, we
anticipate, by (3.11).

3.1. Non-dimensionalization

To simplify the model, we scale the variables as

CZC0c; FZF0f ; W ZW0w; qZ q̂Q; tZt 0t
*:

ð3:15Þ

We define the relative humidity

H Z
pa
psat

; ð3:16Þ

and choose

q̂ ZmF0psat: ð3:17Þ

We anticipate that q̂/q0C0, and an appropriate
balance of terms then suggests that we choose

C0 Z
mFVs

rmpsat
; W0 Z

r 0mFF0

rmW
; t0 Z

1

mF
; ð3:18Þ

with F0 being as yet undetermined. The corresponding
dimensionless equations are then

dc

dt *
ZafK

bQc2

cC3Q
Kdc;

df

dt *
Z

Qc2

cC3Q
Kf ;

dw

dt *
Z d0

Qc2

cC3Q
Kw

# $
;

9
>>>>>>>>=

>>>>>>>>;

ð3:19Þ

Table 1. Assumed typical values of the constants of the model. (Units: 1 kPaZ103 Pa; 1 dayZ8.64!104 s.)

symbol value meaning

a 0.08–0.1 kgC kgFK1 dK1 photosynthetic assimilation rate; Hoogesteger & Karlsson (1992) and
Sveinbjörnsson (2001)

Ac 3 m2 tree canopy area; Aradottir et al. (2001)
cp 103 J kgK1 KK1 specific heat of moist air; Tan et al. (1978)
d 0.6!10K4 m xylem vessel diameter; Petty (1978)
D 0.37!10K11 m2 sK1 carbohydrate diffusivity; Briggs & Robertson (1948, p. 276); Steward (1930),

tables 3 and 4
h 2 m tree height; Aradottir et al. (2001)
k l 0.6 leaf shading parameter; McMurtrie & Wolf (1983)
l 1.2!10K4 m xylem vessel spacing; Petty (1978)
L 2.45!106 J kgK1 latent heat; Tan et al. (1978)
mC 0.5!10K3 dK1 carbon metabolic rate; Kozlowski & Pallardy (1997, p. 139)
mF 0.015 dK1 foliage metabolic rate; Kozlowski & Pallardy (1997, pp. 16, 146); Thornley &

Johnson (1990, p. 265)
mW 0.5!10K3 dK1 woody biomass metabolic rate; Kozlowski & Pallardy (1997, p. 139)
Mv 18!10K3 kg molK1 molecular weight of water
pa ZHpsat , e.g. 1.4 kPa air water vapour pressure
psat 1.7 kPa saturation water vapour pressure (at 158C)
P0 5 kgC mK2 yrK1 photosynthetic rate; McMurtrie & Wolf (1983)
r 0.2 kgF kgCK1 foliage conversion factor; Barbaroux et al. (2003)
r0 0.3 kgF kgCK1 woody biomass conversion factor; Barbaroux et al. (2003)
rb !3 s cmK1 boundary-layer resistance; Tan et al. (1978) and Kozlowski & Pallardy (1997)
rs 1–50 s cmK1 stomatal resistance; Tan et al. (1978) and Kozlowski & Pallardy (1997)
R 8.3 J molK1 KK1 universal gas constant
T 288 K ambient absolute temperature
Vs 0.006 m3 carbon volume store (we use 10% of an estimated tree volume of 0.06 m3)
w 5!10K6 m xylem vessel wall thickness; Kukkola et al. (2004)
g 0.066 kPa KK1 psychrometric constant; Tan et al. (1978) and Ventura et al. (1999)
h 1.1!10K3 Pa s viscosity of water; Batchelor (1967)
ra 1.2 kg mK3 moist air density; Tan et al. (1978)
rc 300 kgC mK3 carbohydrate concentration in wood; Barbaroux et al. (2003)
rw 103 kg mK3 water density; Batchelor (1967)
s 0.1–0.2 available carbohydrate fraction; Barbaroux et al. (2003)
sl 0.05–0.08 kgF mK2 leaf areal density; Hoogesteger & Karlsson (1992); Sveinbjörnsson (2001)
jr K0.2 MPa root hydraulic potential; Tyree & Ewers (1991)
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where the dimensionless parameters are defined by

aZ
aF0

mFC0
; bZ

F0

rC0
; dZ

mC

mF
;

d0 Z
mW

mF
; 3Z

mF0psat
q0C0

:

9
>>=

>>;
ð3:20Þ

The dimensionless version of (3.9) is then

QZ f exp KdrK
daQ

c

% &
KH

# $
; ð3:21Þ

where

dr Z
jjrj
pw

; da Z
mhF0

k0C0

psat
pw

; ð3:22Þ

pw is defined in (A 5) and k0 in (B 8).
To estimate the scales and parameters, we use the

values in table 1. These values have been chosen for
mountain birch where possible, or, where not, from
trees of similar size and from similar climates.
Using these values (and particularly slZ0.08 kgF mK2,

rsCrbZ40 s cmK1, sZ0.1, aZ0.1 kgC kgFK1 dK1),
we find

mz0:2!10K2 m3 kgFK1 kPaK1 dK1;

k0z0:29!10K1 m4 kgCK1 kPaK1 dK1;

q0z0:28!102m3 kgCK1 dK1;

9
>>=

>>;
ð3:23Þ

then we find the scales

t0z66:7 d; C0z0:13 kgC; W0z18 kgW;

ð3:24Þ
if we take a nominal value ofF0Z0.4 kgF, thenwe obtain
the dimensionless parameters

az20:5; bz15:4; dz0:033; d0z0:033;

3z0:38!10K3; drz1:5!10K3; daz0:54!10K5:

)

ð3:25Þ

3.2. Phase plane analysis

A first comment concerns the woody biomass equation
for w. Because d0/1, we see that w changes little over
the course of a growing season and can be taken as
approximately constant. This of course simply rep-
resents the fact that trees grow over a much longer time
scale than a year. In any case, the equation for w
uncouples from those for c and f, unless account is taken
of the variation of stomatal conductance 1/rs, and thus
m, and thus a and b (viaC0), on tree height (and hencew)
(Ryan et al. 2000). This dependence would cause a and b
to decrease somewhat with w, but, since w itself changes
slowly, this coupling has little effect on a seasonal time
scale. We thus formally put d0Z0 and consider only the
first two equations in (3.19).

We begin by ignoring the very small terms in 3, dr
and da. We then have

Qzf ð1KHÞ ð3:26Þ
(which corresponds to (3.11)), and the equations (3.19)
take the approximate form

dc

dt
ZafKbð1KHÞfcKdc;

df

dt
Z ð1KHÞfcKf ;

ð3:27Þ

where, for convenience, we now drop the asterisk on the
dimensionless time t#.

These two ordinary differential equations are easily
studied in the (c, f ) phase plane. The solutions should
represent the evolution of carbon store and foliage
density during a growing season. We might expect that
f would increase towards a steady state, and carbon
store might do so as well or gradually increase. Carbon
stores are depleted during winter when photosynthesis
is inoperative.

There are two steady states, cZfZ0, and

cZ c* Z
1

ð1KHÞ ; f * Z
d

ð1KHÞðaKbÞ ; ð3:28Þ

which is in the positive quadrant if, as we assume, aOb
(and the relative humidity H!1). On cZ0, _cZafO0,
while the c-axis is invariant. Thus, if f and c are initially
positive, they remain so. The nullclines are given in the
positive quadrant by cZ1=ð1KHÞ and fZ0 for _f Z0,
and fZdc=ðaKbð1KHÞcÞ for _cZ0. These intersect at
(c#, f #), which is a saddle point. Trajectories lying
below the two stable separatrices that approach (c#, f #)
tend towards the origin, which is a stable node, while
those above asymptote towards the upper unstable
separatrix from (c#, f #), and both c and f grow
unboundedly. The phase portrait is shown in figure 1.

The phase plane in figure 1 has a good point as well
as a bad one. It suggests that if the tree is initially
depleted of carbon ðc(1Þ, then, if there is insufficient
initial foliage, the carbon store will be depleted and the
foliage will die: the tree will not survive. If cT1, then
the same fate can occur, but only if the initial foliage is
very small. Note that the initial foliage must be positive
for the tree to survive; this is consistent with the fact
that, at budbreak, the tree does indeed produce an
initial positive foliage density, depleting its carbon
store to do so, as indicated by the trajectories in cT1.
However, the model then predicts unbounded growth in
both carbon and foliage through an uncontrolled
positive feedback between the two. It is this unwanted
behaviour that we seek to redress in §4.

4. LEAF SHADING

One simple way in which we might suppose that foliage
growth is curtailed is through the same mechanism that
limits the growth of trees themselves. Although other
suggestions have been made, Ryan & Yoder (1997)
plausibly suggested that tree growth becomes limited in
association with the height of the tree h. The
mechanism of this hydraulic limitation hypothesis is
that, as h increases, the tension in the water column
in the xylem must increase (jl decreases in (A 1)) to
drive the same water flow, making the xylem more
prone to cavitation and thus damage. To prevent this,
leaf stomatal conductance (1/rs) is reduced, and this
decreases photosynthetic rate and thus also the carbon
available for woody (and perhaps foliage) growth. The
hypothesis has been supported by Schäfer et al. (2000),
Delzon et al. (2004) and Addington et al. (2006), for
example, although not conclusively, and others do not
agree (e.g. Becker et al. 2000). In the present model,
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hydraulic limitation does not seem a likely cause for
reducing foliage growth, since our description is
essentially appropriate for mature trees, and because
there is actually no serious dynamic effect of reducing
water flow in the model (3.19): reduced stomatal
conductance 1/rs causes reduced m in (3.10), and thus
increased C0 in (3.18). From (3.20), this reduces a and b
proportionally, so that the critical inequality aOb is
unaltered. The phase plane of figure 1 is unaltered, and
the problem of unbounded foliage growth remains. We
may note that the choice of respiratory terms in (3.14)
is actually consistent with the respiration hypothesis
(Ryan & Yoder 1997), although we should also
emphasize that the issue of tree height is not central
to our thesis.

There are two covert assumptions in the model
equation (3.1), which we might alter in seeking a
resolution to the prediction of uncontrolled foliage
growth. One was mentioned after (3.6); that is, the
carbohydrate metabolization termMC must saturate at
large C. Since in the dimensionless model this term is
small, we do not expect that its modification at a large c
will have any serious effect on the solution behaviour.

The other assumption is that the rate of photo-
synthesis is proportional to leaf area and thus foliage
density. This assumption ignores the fact that sunlight
reaching the surface of a leaf will depend on the degree
to which it lies in shade, and leaves deeper within
the canopy will receive less sunlight. This leads to the
assumption that photosynthesis is a saturable function
of foliage F, such as described by McMurtrie & Wolf
(1983) and West (1987), who supposed that P in (3.1)
was given by

P ZAcP0 1Kexp K
k lF

slAc

! "# $
; ð4:1Þ

where sl is the leaf areal density introduced before;Ac is
the tree canopy area (assumed constant); and k l is a
number, taken illustratively as 0.6 by McMurtrie &
Wolf (1983). Introduction of (4.1) into the dimension-
less model yields the corresponding dimensionless
equations (in the approximated formanalogous to (3.27))

dc

dt
Za

1KexpðKkf Þ
k

# $
Kbð1KHÞfcKdc;

df

dt
Z ð1KHÞfcKf ;

9
>>=

>>;
ð4:2Þ

where a retains its definition in (3.20) provided we define

a Z
k lP0

sl
; ð4:3Þ

and the parameter k is given by

kZ
k lF0

slAc
: ð4:4Þ

With the values in table 1, we find that aZ0.1
(as estimated independently) for the value
slZ0.08 kgF mK2.

Since, in fact, we hope that leaf shading will provide
a limiting mechanism for carbon and foliage growth, it
is natural to assume that kwO(1), and we can finally
use this to choose F0 so that kZ1, i.e.

F0 Z
slAc

kl
: ð4:5Þ

With the values in table 1, we find F0Z0.4 kgF, as
previously assumed, and therefore the values ofa, b and d
retain their previous estimated values.

Taking kZ1, the model (4.2) takes the form

_c Zað1KeKf ÞKbð1KHÞfcKdc;

_f Z ð1KHÞfcKf :

)

ð4:6Þ

This has a fixed point as before where fwd, and the
local structure of the phase plane is the same as in
figure 1. In addition, there is a further fixed point where
cZc0Z1/(1KH ), and fZf0ZO(1) is the larger root of
the equation

1KeKf Z
b

a
f C

d

að1KHÞ ; ð4:7Þ

which has such an O(1) solution for aTb.
The fact that a and b are large (and d/1) enables

us to describe the dynamics of the solution when
fZO(1). First, c rapidly approaches a quasi-steady
state given by

ð1KHÞczað1KeKf Þ
bf

: ð4:8Þ

The right-hand side of this expression is a monotoni-
cally decreasing function of f, which equals (a/b)O1
when fZ0 and tends to zero as f/N. The migration of f
along this curve is given by

_f Z
að1KeKf Þ

bf
K1

# $
f : ð4:9Þ

The right-hand side of (4.9) is a unimodal (one-
humped) function with a unique positive steady state
at fZf0 (the positive solution of (4.7)) which is globally
stable. From this we understand that the steady state
(c0, f0) is a stable node. The phase portrait for the
system is shown in figure 2. The dynamics for small f
are still described by figure 1, which is thus a close-up
of figure 2 near the unsteady saddle (not readily
discernible in figure 2).
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Figure 1. Phase portrait for (3.27) in the vicinity of the
unstable fixed point at cz1/(1KH ), fzd/((1KH )(aKb)),
using values aZ20.5, bZ15.4, dZ0.033 and HZ0.8.
The dashed lines are the nullclines.
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5. CONCLUSIONS

In this paper, we have presented a relatively simple
model, similar to others in the literature, in which we
describe the dynamics of carbon assimilation, storage
and use in mature trees, with a view to describing how
the carbon storage evolves over the growing season. We
have focused our attention on the mountain birch,
because in a succeeding paper we will describe how this
dynamic evolution is affected by the presence of the
larvae of the moth E. autumnata. Our model presents
two advances over previous work. First, the dynamics
of carbon uptake and transport within the xylem is
described physically, so that the nonlinearity of the
model is based on coherent physical principles. Second,
we study the global dynamic behaviour of the model
in a way that has not been done before. In particular, we
find that the model provides a descriptive reason for why
at budbreak leaves form with a small but finite capacity
for photosynthesis. In addition,we show that leaf shading
provides a practical mechanism by which foliage
growth is limited and the carbon storage reaches a
steady state.

Both of these features provide insight into the
mechanisms of carbon regulation during tree growth.
The stable steady state shown in figure 2 at cZ5, fz0.56
corresponds to a carbon store of 0.65 kgC and a foliage
quantity of 0.22 kgF. During the winter the carbon store
is depleted, so that in spring the initial values
(in dimensionless units) will be c!5 and f small. For
example, the separatrix in figure 2 from cZ0, fZ0.257
goes approximately through the values cZ3, fZ0.1. So if
cZ3 at the end of winter (corresponding to 0.39 kgC),
then for an initial foliage less than fZ0.1 (corresponding
to 0.04 kgF), carbon will first increase, but then
irreversibly decrease, and tree death will ensue.

In reality, we would expect the carbon store to be
less depleted. Figures 3 and 4 show the time series of
foliage and carbon quantities as a function of time
(in dimensional units) starting from dimensionless
values cZ4.8, fZ0.2, corresponding to CZ0.62 kgC

and FZ0.08 kgF. There is an initial slight dip in foliage
quantity before it rises monotonically towards its final
steady state. The carbon store initially rises as
photosynthesis is initiated and then is depleted by the
growth of foliage. Depending on the parameters that are
chosen, the final approach to the steady state can be
somewhat oscillatory, which is probably unphysical.

Figures 3 and 4 do highlight a shortcoming of this
model. Although we have attempted to use the best
estimates available for the parameters, we see that the
time scale for approach to equilibrium is much too long,
of the order of 1000 days. This is too long by a factor of
perhaps 30. The time scale is given by t0Z1/mF, where
mF is the specific respiration rate. In this simple model,
somewhat analogous to simple first-order rate laws used
in epidemiology, we are actually assuming an exponen-
tial distribution of foliage lifetime with a mean of
1/mFZ67 days; evidently this is much too long, and the
model ought to be refined, perhaps by means of specific
inclusion of foliage lifetime as well as foliage respiration.

A simpler alternative is just to shorten the time scale
by increasing mF. There is then a consequent effect on
a, b and d. If one does increasemF, then indeed the time
scale is shortened, but the dynamics becomes
increasingly oscillatory, which also seems implausible.
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Figure 2. Phase portrait for (4.6) using values aZ20.5,
bZ15.4, dZ0.033 and HZ0.8. The lowest curve on the left,
which leaves the f -axis at (0, 0.257), is almost the separatrix
to the unstable saddle at cZ5, fz0.032, which can be
approximately seen by the kink in this trajectory. The dashed
lines are the nullclines.
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Figure 3. Foliage in kgF as a function of time in days, found by
solving (4.6), using parameter values aZ20.5, bZ15.4 and
dZ0.033, and with the choice of scales F0Z0.4 kg,
C0Z0.13 kg, t0Z66.7 d and HZ0.8.
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Figure 4. Carbon store in kgC as a function of time in days,
using the same parameters as in figure 3. Note that the axis for
C starts at 0.6.
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We think that this shortcoming represents an issue
concerning the veracity of the model which needs to be
addressed. For example, specific respiration rates
decrease rapidly with foliage age (Kozlowski &
Pallardy 1997), and this would have a compensating
effect. However, we also think that the robust
qualitative conclusions of the present model provide a
useful basis on which more elaborate and realistic
models can be built.
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APPENDIX A

In this appendix, we derive an expression for the water
flux q through the xylem. This is given by

q Z
kðjrKjlÞ

h
; ðA 1Þ

where h is the tree height; jr and jl are the hydraulic
potentials in roots and leaves, respectively; and the
hydraulic conductivity k is supposed to be given by a
formula based on the assumption of Poiseuille flow
through n xylem vessels of diameter d,

k Z
pnd4

128h
; ðA 2Þ

where h is the viscosity of water (Tyree & Ewers 1991).
The flux of fluid to the leaves is essentially balanced

by evaporation from the foliage, and we suppose that
this is proportional to the quantity of foliage, thus

q Z
E

rwsl

! "
F ; ðA 3Þ

where E is the evaporation rate measured in kg mK2 dK1

(1 dZ1 dayZ8.64!104 s), and rw is the density ofwater.
Tan et al. (1978) give an expression for the evaporation
rate which can be written in the form

E Z
racpðplK paÞ
Lgðrs CrbÞ

; ðA 4Þ

where pl and pa are the water vapour pressures at the leaf
and in the atmosphere, respectively; ra is the density of
moist air; cp is the specific heat ofmoist air;L is the latent
heat of vaporization of water; and g is the so-called
psychrometric constant. The stomatal conductance 1/rs
is a decreasing function of the vapour pressure deficit
plKpa (Oren et al. 1999), so that the evaporation rateE in
(A 4) grows more slowly than linearly and may saturate
at high vapour pressure deficit. The derivation of
equation (A 4) is given in appendix C.

In order to proceed, we must relate the hydraulic
potential at the leaf, jl, to the water vapour pressure p l.
This is done in appendix D, where we find the

relationship

jl Z pw ln
pl
psat

! "
; pw Z

rwRT

Mv
; ðA 5Þ

where psat is the saturation vapour pressure; rw is the
density of water; R is the universal gas constant; T is
the absolute temperature; and Mv is the molecular
weight of water.

We eliminate jl and pl from (A 1) and (A 3) using
(A 4) and (A 5) to obtain

q Z
k

h
jrK

rwRT

Mv
ln

qCmpaF

mFpsat

! "# $
; ðA 6Þ

where

mZ
racp

Lgðrs CrbÞrwsl
: ðA 7Þ

APPENDIX B

We assume that the carbon transport to the foliage is
equal to the flux from the carbon store. If Vs is the
volume of the carbon store, then C/Vs is the effective
concentration of stored carbon. We suppose that stored
carbon enters the xylem diffusively, so that the
relationship equating the flux to the foliage with that
to the xylem (kgC sK1) is

qcw Z
nphdD

w

C

Vs
K cw

! "
; ðB 1Þ

where D is a diffusion coefficient and w is the width of
xylem vessel walls. It follows from this that the xylem
concentration of carbon is

cw Z
q#C

VsðqCq#Þ ; ðB 2Þ

where

q# Z
nphdD

w
: ðB 3Þ

Finally, we allow for the fact that the number of
xylem vessels is related to the carbon store, most simply
because the carbon is stored in parenchyma cells in the
xylem. Put another way, if rc is the density of structural
carbohydrate in the wood, then the total mass of carbon
in the trunk is approximately rchA, where A is the
trunk cross-sectional area. If the carbon reserves
available for growth are a fraction s of this, then

C Z srchA; ðB 4Þ

while an estimate for the number of xylem vessels is

n Z
A

l 2
; ðB 5Þ

where l is the xylem spacing. This leads to

n Z
C

srchl
2 : ðB 6Þ

From (A 2) and (B 3), we have

k Z k0C ; q* Z q0C ; ðB 7Þ

A dynamic model of carbon uptake in trees A. C. Fowler et al.1094

J. R. Soc. Interface (2009)

 on January 24, 2013rsif.royalsocietypublishing.orgDownloaded from 

http://www.macsi.ul.ie
http://www.macsi.ul.ie
http://rsif.royalsocietypublishing.org/


where

k0 Z
pd4

128hsrchl
2 ; q0 Z

pDd

wsrcl
2 ; ðB 8Þ

from these and (B 2), we finally derive an expression for
the carbon flux to the leaves,

S1 Z qcw Z
qq0C

2

VsðqCq0CÞ
: ðB 9Þ

APPENDIX C

The evaporative flux E of water vapour across a layer is
defined by EZDr/r, where Dr is the water vapour
density difference across the layer and r is the
resistance. For resistances across stomata and a
turbulent boundary layer in series given by rs and rb,
respectively, we can write

E Z
rlK ra
rs Crb

; ðC 1Þ

where rl is the stomatal water vapour density and ra is
that in the free atmosphere. The expression in (A 4)
then follows provided we define g to be

gZ
racpDp

LDr
; ðC 2Þ

where DpZplKpa, DrZrlKra.
We use the Clausius–Clapeyron equation and perfect

gas law for water vapour in the form

dpZ
rL dT

T
; pZ

rRT

Mv
; ðC 3Þ

whereMv is the molecular weight of water vapour; from
these, we can derive

dp

dr
Z

L

ðMvLÞ=ðRTÞK1
; ðC 4Þ

and thus the psychrometric constant g can be defined as

gZ
rac p

ðMvLÞ=ðRTÞK1
: ðC 5Þ

APPENDIX D

We wish to relate the water vapour pressure in the
stomata, pl, to the hydraulic potential in the leaf, jl. To
do this, we note that the chemical potentials of water
vapour in the stomata and of water in the leaf are equal,
say, to ml. In the vapour, we have

ml Zm0
g CRT ln

pl
p0g

! "
; ðD 1Þ

where the superscripts denote reference values, while in
the leaf

ml Zm0
l CVmjl; ðD 2Þ

where Vm is the molar specific volume of water,
VmZMv=rw; Mv being the molecular weight of water
and rw being its density.

We relate the liquid and gas reference chemical
potentials by

m0
l Km0

g ZRT ln
psat
p0g

! "
; ðD 3Þ

where psat is the saturation vapour pressure. Putting
these together, we find

jl Z
rwRT

Mv
ln

pl
psat

! "
; ðD 4Þ

as given in (A 5).
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