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The Nye model of jökulhlaups is able to explain both their periodicity and even the
detailed shape of the flood hydrograph. In this paper, we show how the model can be used
to predict the shape of the hydrographs from the subglacial lake Grı́msvötn beneath
Vatnajökull in Iceland, and we comment on three particular issues that have proved
contentious in the application of the Nye model: the role of water temperature; the shape
of the flood channel; and the value of the bed roughness coefficient.
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1. Introduction

Jökulhlaups are floods that occur in streams that flow beneath glaciers. They are
known to occur in a number of different regions, but perhaps the best known
are those that occur in Iceland and particularly those that originate below
the Vatnajökull ice cap. Of these, the floods that come from the caldera of the
volcano Grı́msvötn have provided a vivid example of the typical characteristics
of jökulhlaups.

The Grı́msvötn jökulhlaups have been thoroughly described by Björnsson
(1974, 1992), and also, in particular, in the same author’s book (Björnsson 1988),
which is a definitive and compelling study of Icelandic jökulhlaups. The floods
from Grı́msvötn occur periodically, with a variable period of between 5 and 10 yr,
as shown in figure 1. The shape of the flood hydrographs has been rather
variable, as shown in figure 2, but typically (unlike subaerial river floods) there is
a slow rising limb and a more rapid descending limb.

There are several questions of interest, which thus arise in describing the
dynamics of jökulhlaups. These are as follows: why are the floods periodic; what
determines the shape of the flood hydrograph; and what is the mechanism of flood
initiation? The seminal paper in modelling jökulhlaups is that of Nye (1976), who
used a time-dependent version of Röthlisberger’s (1972) theory of subglacial
channel drainage. Nye could neither solve his model nor answer the three questions
above, although he did describe why themodel should yield the characteristic flood
hydrograph, and was also able to explain the shape of the rising limb of the 1972
flood hydrograph using an approximate version of his theory. Later, Spring&Hutter
(1981, 1982) andClarke (1982) provided numerical results for thewhole hydrograph.
Spring & Hutter (1981), in particular, tried to fit the whole 1972 hydrograph, with
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little success. They also emphasized the importance of the temperature equation in
the model, and showed that the hydrograph shape is sensitive to the temperature of
the lake water. Fowler (1999) showed that the Nye model could indeed explain the
periodicity offloods, but he did not seek to obtain a quantitative comparison. Simply,
the floods occur periodically because the lake continually fills with geothermally
meltedwater until it overflows.Onemight expect that thiswouldoccurwhen the lake
water pressure reached the overburden ice pressure, thus breaking the seal, but, in
fact, Grı́msvötn floods typically occur when the lake level is some 60 m below the
flotation level. This had perplexedNye, but can also be explained using his theory, as
was shown by Fowler (1999). Fowler did not attempt to reproduce the shape of the
hydrograph, pleading the excuse that the Nye theory, assuming as it does a
semicircular channel, might not be able to do so.

Despite this success, Nye’s theory has been criticized. Clarke (2003) raised two
issues, and we can add a third, following Johannesson (2002a,b). Firstly,
according to Clarke, the value that Nye used for the Manning friction factor
(n0Z0.09 mK1/3 s) is higher than that would be expected for a smooth-walled
ice-roofed channel. Secondly, Clarke commended Spring & Hutter’s (1982) model,
and, in particular, their solution of the temperature equation. The temperature
equation is of course also in Nye’s model, but Nye did not attempt to solve it.
Spring & Hutter also include acceleration terms in the momentum, but these terms
are actually small, and their inclusion simply renders the problem stiffer.

A more serious possible criticism of the Nye model lies in its assumption that
the subglacial channel is semicircular. Guðmundsson et al. (2004) described the
dynamics of the enormous flood that followed the Gjálp eruption of 1996. In this
flood (when the lake level reached flotation), the outlet channel from the lake
spread downstream as a laterally growing, overpressured fracture, and the outlet
channel reached a width of some 25 km towards the snout of the glacier. Both the
propagation as an overpressured fracture and the formation of a wide channel
are not quantitatively consistent with Nye’s model, although his conceptual
description is still appropriate. A more suitable model of the 1996 flood was
provided by Flowers et al. (2004). A recent thorough review of the theory and
observations of jökulhlaups has been given by Roberts (2005).
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Figure 1. The measured elevation of the lake Grı́msvötn as a function of time. The sudden drops
occur in floods, which have a typical duration of weeks (filled circles, observed water level; open
circles, deduced from the central ice shelf ). Adapted from Björnsson (1988).
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Figure 2. (a–j ) Hydrographs of Grı́msvötn outburst floods over the last century: (a) 1922, (b) 1934,
(c) 1938, (d ) 1945, (e) 1954, ( f ) 1972, (g) 1976, (h) 1982, (i) 1983, and ( j ) 1986. The estimated
volume fluxes are in units of m3 sK1, while the marks on the horizontal axis indicate the date
(day/month); thus, for example, the 1972 flood occurs within the period 5 March–1 April. Adapted
from Björnsson (1988).
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It has recently become clear that subglacial lakes are a common feature below
ice sheets, or at least below Antarctica (Siegert 2005), and the possibility that
floods could occur from them also arises. In fact, just such a flood was reported by
Goodwin (1988) from surface observations, and, more recently, Wingham et al.
(2006) have used satellite observations to infer the occurrence of a small intra-
lake flood in the Adventure Trough below Antarctica. Just such floods were
predicted by Evatt et al. (2006), essentially using the same Nye model as before.
A particular feature of these floods is their relatively small amplitude. We will
comment on this later.

2. The Nye–Röthlisberger model

The Nye (1976) model of subglacial drainage describes flow through a semicircular
conduit from an origin at xZ0 where the lake is, to an exit portal at xZl, where x is
measured along the axis of the channel. The variables of themodel are: S, the cross-
sectional area of the channel; Q, the volume flux of water through the channel;
NZpiKpw, the effective pressure of the channel equal to the difference between
overburden ice and channel water pressures; qw, the water temperature; andm, the
interfacial melting rate. These five variables are given by the equations
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In these equations, ri is the ice density and K is a creep closure coefficient due to a
nonlinear flow law _3ZAtn, where _3 is the strain rate and t is the stress; specifically,
KZ2A/nn. The term m/rw represents the volumetric source due to side-
wall-derived melt, where rw is the water density; M is an additional source (not
included by Nye) due to tributary flow and surface meltwater supply; f is a friction
factor; g is the acceleration due to gravity; and a is the mean bedrock slope (of the
channel). The left-hand side of (2.1)4 is the material rate of change of water
temperature with time, the first term on the right-hand side is the frictional source
and the second is the supply due to the enthalpy change onmelting.We take qi to be
the melting temperature; aDB (z0.2) is a constant; hw is the viscosity of water; L is
the latent heat; cw is the specific heat of water; and k is its thermal conductivity.
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These equations represent, respectively, ice closure (the first equation is, in
fact, the kinematic surface condition for the viscous motion of the ice),
conservation of water mass, conservation of water momentum (ignoring small
acceleration terms), conservation of water energy and the empirical Dittus–
Boelter heat transfer correlation. The value of the Dittus–Boelter coefficient
depends on precisely how the Reynolds number is defined. The Dittus–Boelter
correlation was derived from experiments on flow through smooth pipes at Reynolds
numbers between 104 and 105. It is arguable whether the same formula (or at least
the samevalueof aDB) is appropriate at thehigherReynolds numbers of interest here.

The equations are to be supplemented by boundary conditions and subsidiary
relationships, as follows. We define the basic hydraulic gradient F by

rwg sin aK
vpw
vx

ZFC
vN

vx
; ð2:2Þ

where

FZ rwg sin aK
vpi
vx

ZK
v

vx
½rigsCðrwK riÞgb$; ð2:3Þ

where zZs is the ice cap surface and zZb is its base.
The friction factor f in (2.1)3 is related to the Manning roughness n0 by

f Zn 02 S

R2
H

! "2=3

; ð2:4Þ

where RH is the hydraulic radius (ZS/lp, where lp is the wetted perimeter).

For a semicircular channel ðS=R2
HÞ2=3Zð2ðpC2Þ2=pÞ2=3z6:6, so that if

n 0Z0.09 mK1/3 s, then fw0.05 mK2/3 s2. We follow Nye (1976) in using
Manning’s empirical formula, which was derived to describe open river channel
flows. As such, there is no real justification to use it to describe closed channel
flows, moreover consisting of two distinct parts: ice roof and sediment floor. In a
sense, its justification lies in the veracity of the model results, as we shall see.

(a ) Boundary conditions

The equations in (2.1) require initial conditions for S and q, two boundary
conditions for Q or N, and one for qw. The boundary condition for qw is taken to
be (at least when QO0 at the lake)

qZ qL at x Z 0: ð2:5Þ

At the outlet, it seems we should prescribe

N Z 0 at x Z l; ð2:6Þ

i.e. the water pressure becomes atmospheric (as also does the ice pressure).
At the inlet to the channel, conservation of mass requires that

dV

dt
ZmLKQð0; tÞ; ð2:7Þ

where V is the lake volume and mL represents its rate of increase, partly due to
the supply of hydrothermal fluids from below, but mostly due to melting of the
overlying ice shelf by the excess geothermal heat in the caldera. Suppose the lake
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level is at zZh and open to the atmosphere. We assume VZV(h), and, in fact,
V 0(h)ZAL is the lake surface area (which may depend on h). Now, the water
pressure at the inlet is rwg(hKb), where b is the grounding line elevation of the
bed, and this is equal to piKN. Therefore (if b and pi do not vary),

rwg
dh

dt
ZK

dN

dt
ð0; tÞ; ð2:8Þ

and thus the boundary condition at the lake inlet is

K
AL

rwg

vN

vt
ZmLKQ at x Z 0; ð2:9Þ

where xZ0 is taken to be the position of the lake margin.

(b ) Non-dimensionalization

We choose scales for the variables by writing
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where

F0 Z
rwgh0

l
; ð2:11Þ

in which h0 is the lake elevation above the outlet, and the scales are chosen as
follows in order to balance appropriate terms in the equations, in terms of the yet
to be specified Q0:
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The dimensionless equations (2.1) then become (dropping the asterisks on
the variables)
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where the parameters 3, r, U, d and g are defined, after some algebra, by
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Finally, we choose the volume flux scale Q0 by balancing terms in the lake-
refilling condition (2.9); again after some algebra, we determine
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ð2:15Þ

and the refilling condition (2.9) can be written in the dimensionless form

vN

vt
ZQKn at x Z 0; ð2:16Þ

where
nZ

mL

Q0
: ð2:17Þ

Using values of the constants as set out in tables 1 and 2, we can determine
typical values of the scales, as set forth in table 3, and the corresponding
dimensionless parameters, as shown in table 4.

(c ) A reduced model

It must be emphasized that the derived parameter values in table 4 depend
quite sensitively on the particular choices made in table 2. For example, if we
change n to the value 3.5, then Q0 drops to 0.28!104 m3 sK1, and the value of d,
in particular, drops to 0.027.

We derive a reduced version of (2.13) by assuming 3/1, d/1 and g/1. The
choice g/1 is unrealistic and made for convenience; it has the precise effect of
enabling the deduction that q/1, so that the terms in q in (2.13)4 can be
ignored. We discuss this further in §4. The other two assumptions are reasonable,
and enable a significant reduction of the model. The reduced model, as presented
by Fowler (1999), uses a redefined x-coordinate near the lake defined by

x Z dX ; ð2:18Þ
and explicitly assumes (as is appropriate for Grı́msvötn) that the dimensionless
basic hydraulic gradient F varies on the X scale; based on a fit to the observed
surface and bed profiles, we take the dimensional basic hydraulic gradient to be
of the form

Fd Z adK bd expðKcdxdÞ; ð2:19Þ
where the subscript d denotes dimensional values. The corresponding
dimensionless function is then

FZ aKb eKcX ; ð2:20Þ
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where

a Z
ad
F0

; bZ
bd
F0

and cZ cddl: ð2:21Þ

This choice of the basic hydraulic gradient was made as a simple fit to measured
data from Grı́msvötn by Fowler (1999). If, as is commonly done (e.g. Ng et al.
2007), one takes FZconst. (i.e. bZ0), then unbounded (and unrealistic)
oscillatory floods occur (Ng 1998). The main point about F is that it must be

Table 1. Values of physical constants.

symbol meaning value

rw water density 103 kg mK3

g gravity 9.81 m sK2

ri ice density 917 kg mK3

L latent heat 3.3!105 J kgK1

cw specific heat 4.2!103 J kgK1 KK1

k thermal conductivity 0.56 W mK1 KK1

hw water viscosity 2!10K3 Pa s

Table 2. Assumed values of material and geometric constants appropriate to Grı́msvötn.

symbol meaning value

h 0 lake elevation 1500 m
l channel length 50 km
n 0 Manning coefficient 0.09 mK1/3 s
fZ6.6n 02 friction coefficient 0.05 mK2/3 s2

AL lake area 15 km2

n Glen’s law exponent 3
A flow rate coefficient 6!10K24 PaKn sK1

KZ2A/nn closure rate 0.44!10K24 PaKn sK1

aDB Dittus–Boelter coefficient 0.2
Ml baseflow 100 m3 sK1

mL refilling rate 16 m3 sK1

Table 3. Derived typical physical scales.

symbol meaning value

F0 basic hydraulic gradient 290 Pa mK1

Q0 volume flux 0.58!105 m3 sK1

S0 cross section 0.45!104 m2

m0 melt rate 51.6 kg mK1 sK1

q0 temperature 3.5 K
t0 time scale 0.93 dZ0.0025 yr
N0 effective pressure 30.4 bar
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negative (i.e. a!b) at XZ0 in order that there be a lake at all; and it is a
consequence of this that requires the resolution of the model near the lake, since
we must include the terms vN/vx in (2.13) when F is negative.

We can now write the reduced model in the form

vS

vt
Z

jQ j 3

S 8=3
KSNn;

vQ

vX
Zu

and

FC
vN

vX
Z

Q jQ j
S 8=3

;

9
>>>>>>>>>=

>>>>>>>>>;

ð2:22Þ

where we define

uZ dU: ð2:23Þ
The boundary conditions that are appropriate are

vN

vt
ZQKn at X Z 0

and

vN

vX
/0 as X/N:

9
>>>>=

>>>>;

ð2:24Þ

The first of these is the refilling condition, and the second is a matching condition
to the far-field (outer) solution, which is obtained by neglecting d in (2.13). The
boundary condition NZ0 at the outlet xZ1 is lost, being relegated to a boundary
layer near the snout.

In solving (2.22), we retain the small coefficients u and n; the first because it is
only the sign of Q between floods that is important (in determining where flow
reversal takes place), and the second because the term in n is dominant in the
refilling equation between floods, when Q is much smaller. The numerical method
we use has been described by Fowler (1999). We solve equations (2.22) in the
finite domain 0!X!M, where typically we take MZ10. From the current time
step, we step forward S and N jxZ0 explicitly, and then use the condition NXZ0
at XZM to determine the divide position X0(t) in the water flux equation
QZu(XKX0). We then solve for N by quadrature from XZ0. The time stepping
is then repeated using the improved Euler method to give second-order accuracy.

Table 4. Derived typical dimensionless parameter values.

symbol value

3 0.05
d 0.2
g 5.37
r 0.92
U 0.17!10K2

n 0.28!10K3

uZdU 0.36!10K3
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3. Fitting the hydrographs

(a ) The 1972 hydrograph

We now wish to ask whether this reduced model has the ability to reproduce the
observations shown in figures 1 and 2. The basic answer to this is, surprisingly, yes.
Figure 3 shows the variation of N at the lake (essentially figure 1 inverted) and the
corresponding discharge at the outlet, as functions of time. Figure 4 shows the
detailed shape of the hydrograph, with the data from the 1972 flood hydrograph.
The agreement is astonishing, in view of the apparent arbitrary assumption of
cross-sectional shape, and also the neglect of the effects of lake temperature, which
has a significant effect on the hydrograph shape (Spring & Hutter 1981).
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(1
03  m

3  s
–1
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Figure 3. (a) N at the channel inlet and (b) the outlet discharge Q, with uZ0.36!10K3, nZ0.28!
10K3, adZ290 Pa mK1, bdZ600 Pa mK1 and cdZ0.5 kmK1 in (2.19). To convert the results to
dimensional quantities, we have used the scales Q0Z0.58!105 m3 sK1, baseflow UQ0Z100 m3 sK1,
N0Z30.4 bars, t0Z0.0025 yr, dZ0.2 and lZ50 km. These are our estimated parameter values,
except that the hydraulic gradient is less negative near the lake than it seems to be in reality. The
(dimensionless, with dl and t 0) space and time steps used were 0.005 and 0.0005, respectively.
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(b ) Parameter variations

In obtaining the fit in figure 4, we had to rescale the discharge and time scales.
This raises the issue of how the model can be used to fit the observational data.
To address this question, we consider that the choices of the scales and
parameters in tables 3 and 4 are only indicators, and that we may improve the
observational fit by judicious choice of some of the dimensional inputs to the
model. We now discuss these choices sequentially. We are able to do this because
the effects of the parameters are largely independent. First, we note that the
variables of the model, such as discharge, can be written dimensionally as

Qd ZQ0Q
%ðtd=t0;u; n;FÞ; ð3:1Þ

where the notation indicates that the dimensionless flux Q% depends only on the
parameters u and n, as well as the choice of the dimensionless basic hydraulic
gradient function F.

(i) Shape

The principal success of this model is in mimicking the hydrograph shape, at
least for the 1972 hydrograph, which was the one that Nye (1976) focused on. We
discuss other hydrographs below. The shape of the hydrograph is determined by
the dimensionless function Q%(t%), and is independent of the scales Q0 and t0. In
fact, because u and n are small, they can be neglected during the flood, so that the
hydrograph shape can only depend on the hydraulic gradient F. For fixed F,
therefore, the flood hydrographs should all have the same shape. This is borne out
in figure 5, where the hydrographs for differing values of u and n vary in shape only
through the relative sizes of peak discharge compared with baseflow.

(ii) Maximum discharge and flood duration

Given that the hydrographs have a similar shape, any particular flood
(with such a shape) can be fitted by choosing Q0 and t0 appropriately. There are
a number of quantities in the definitions of the scales that are subject to
uncertainty. These are, perhaps, the lake area AL (which is, as a matter of fact,
variable), the friction factor f, the Glen exponent n and the closure rate
coefficient K. There are other constituent parts of the model, which could be
adapted, for example the assumption of a semicircular channel, the assumption
of Manning’s law of friction and so on. To keep things simple, we take the two
adjustable quantities to be AL and f. With nZ3, we have

Q0f
A3=2

L

f 3=4
and t0f

f 3=8

Q1=4
0

f
f 9=16

A3=8
L

: ð3:2Þ

Thus, in order to obtain thevalues ofQ0Z1.57!105 m3 sK1 and t0Z0.123!10K2 yr,
i.e. multiplication by 2.7 and 0.493, respectively, we need to multiply the default
values of f and AL by factors Df and DAL, where

DA3=2
L

Df 3=4
Z 2:7 and

Df 9=16

DA3=8
L

Z 0:493; ð3:3Þ

1819Dynamics of subglacial floods

Proc. R. Soc. A (2009)

 on 7 October 2009rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


from which we obtain
DAL Z 0:67 and Df Z 0:22; ð3:4Þ

corresponding to adjusted values

AL Z 10 km; f Z 0:01 mK2=3 s2 and n 0 Z 0:04 mK1=3 s; ð3:5Þ

both of which are acceptable, and, indeed, perhaps preferable, estimates for
these quantities.
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Figure 5. Five different solutions of the reduced model (2.22) and (2.24), using aZ1, bZ2.8 and
cZ4.316. The peak discharges have been normalized to be equal to 1, and the time scale squeezed so
that the flood durations are the same, thus qfQ% and tft%. The five curves differ because the
baseflow U is the same for each, but the peak values Q%

max differ. Larger apparent baseflows thus
correspond to smaller peak discharges. The five parameter values used for (u,n) are, in increasing
order of peak discharge (decreasing apparent baseflow), (0.36!10K3, 0.29!10K4), (0.36!10K2,
0.29!10K3), (0.36!10K3, 0.29!10K3), (0.36!10K4, 0.29!10K3) and (0.36!10K3, 0.29!10K2).
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Figure 4. The flood hydrograph from the 1972 Grı́msvötn jökulhlaup (red) and the hydrograph
calculated as in figure 3 (green), except that the discharge has been multiplied by 2.7, and the time
scaled by 0.493, corresponding to choices Q0Z1.57!105 m3 sK1 and t0Z0.123!10K2 yrZ0.45 d.
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(iii) Period

The default period between floods is approximately 4 yr in figure 3, but, of
course, the adjustment of time scale by the factor 0.493 also changes the period,
to approximately 1.9 yr. Now between floods, Q at the channel inlet is very small,
and the linear trend in N, which can be seen in figure 3, suggests that the period
will be proportional to 1/n. This is an oversimplification, since flood initiation
depends on when the seal at XZX%, where QZ0, reaches the inlet, and this
depends on solving the model to determine N.

Asymptotic analysis of the inter-flood dynamics is accommodated by rescaling
the variables as

QZu4n=ð4nK1Þq; S Zu3n=ð4nK1Þs; X Zu1=ð4nK1Þx;

X% Zu1=ð4nK1Þx%; N Zu1=ð4nK1ÞP and t Z
u1=ð4nK1Þ

n
t;

9
>=

>;
ð3:6Þ

and the equations become

30st Z
j q j 3

s8=3
KsPn;

q Z xKx%

and

FCPx Z
q j q j
s8=3

;

9
>>>>>>>=

>>>>>>>;

ð3:7Þ

subject to

Pt ZKlx%K1 on xZ 0;

Px/0 as x/N;
ð3:8Þ

where

30 Z
n

uðnC1Þ=ð4nK1Þ/1 and lZ
u4n=ð4nK1Þ

n
ZOð1Þ: ð3:9Þ

We can make the quasi-static approximation that 30Z0, and then we can
eliminate s, and the inter-flood problem becomes that of determining the seal
position x% from the solution of

FC
vP

vx
Z

P8n=11 sgn q

j q j
; ð3:10Þ

subject to (3.8) and (3.7)2. Given x%, there is a unique value of PZP% there, such
that (3.8)2 is satisfied. Solving backwards in x!x% then provides PZP0 at xZ0
as a function of x%, so that (3.8)1 gives the evolution of x%. In practice, the
evolution of P0 appears to be fairly linear (figure 3), which suggests that lx% is
small, and the period should be largely independent of l. In any event, we can
adjust the period by changing n while keeping l fixed, or, approximately, keeping
u/n fixed. So to change the period from 1.9 yr to the apparent 5.7 yr in figure 1,
we can simply adjust the values of u and n to be uZ0.12!10K3 and
nZ0.09!10K3. Consulting (2.12), (2.14) and (2.17), we see that this can be
done without compromising the values of the scales or the other parameters by
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reducing baseflow Ml and refilling rate mL by a factor of 3. Indeed, one can use a
variable refilling rate as a way of generating the variable period observed in the
data. Figure 6 shows the result of doing this. The period is in fact 6.2 yr rather
than 5.7 yr, at least partly because in order to compute the solution, we have had to
lower the resolution to DxZ10K3 and DtZ10K4; in addition, the value of ‘infinity’
where we impose the condition (vN/vX )Z0 has been increased from XNZ10 to 15.

(iv) Onset below flotation

One of the features of the normal Grı́msvötn floods is that they begin when the
lake level is below flotation (i.e. the inlet effective pressure NL is positive).
Consulting figure 1, we can see, assuming a flotation level of 1505 m, that
initiation occurs when NLz6–7 bars, and flood termination occurs when
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Figure 6. Solutions of (2.22) and (2.24) using the parameter values uZ0.12!10K3 and nZ0.09!
10K3, with the other scales and parameters as for figure 3, except that Q0Z1.57!105 m3 sK1 and
t0Z0.123!10K2 yr. The dimensionless time and space steps were DtZ10K4 and DxZ10K3, and the
boundary condition at infinitywas applied atXNZ15. The period betweenfloods is 6.17 yr and the peak
discharge is 8768 m3 sK1.

A. C. Fowler1822

Proc. R. Soc. A (2009)

 on 7 October 2009rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


NLz16–18 bars (1 barZ105 Pa). This is in fairly good agreement with figure 3.
The onset of floods relies on the migration of the seal, and the principal
controlling effect on this appears to be the shape of the basic hydraulic gradient.
In particular, a preferable fit to the measured data has adZ290 Pa mK1,
bdZ1200 Pa mK1 and cdZ0.5 kmK1 in (2.19), but with these values, the seal is
strong and floods are initiated when NL!0. To obtain the results in figure 3, we
reduced bd to 600 Pa mK1. Such laxity here is motivated by the fact that, firstly,
the exponential choice in (2.19) is a rather rough fit to the measured data, and,
secondly, the data themselves are hardly likely to give an accurate representation
of the hydraulic gradient along the flow path in the vicinity of the lake. For
these reasons, we consider it reasonable to allow flexibility in the choice of
hydraulic parameters.

If the minimum effective pressure is set by the hydraulic gradient, then the
maximum is set largely by the dynamics of the flood. To see this, we might ignore
the hydraulic gradient altogether by putting FZ1, whence SZQ3/4, and N and Q
during a flood are functions of time only, and satisfy the approximate equations

_QZ
4

3
½Q5=4KQNn$

and

_N ZQ:

9
>>>=

>>>;
ð3:11Þ

Starting from a small value of Q at NZNK, Q first increases then decreases until
QZ0 at NZNC, say, and the terminal NC is determined in terms of the starting
value NK. Given a result such as that in figure 3, we could fine tune the
maximum and minimum effective pressures by changing bd (to fix NK) and then
vary the effective pressure scale N0, for example by adjusting the closure rate
coefficient K, in order to fix NC. We do not pursue this further here, however.

(c ) Different hydrographs

We have shown how parameters can be methodically chosen to fit most
of the characteristics of the jökulhlaups fromGrı́msvötn, except the shape, but that
the 1972 shape is also well fitted by the model. The question arises whether other
Grı́msvötn jökulhlaups have the same shape. Figure 7 shows six of the hydrographs
from figure 2, redrawn to have the same peak and duration. From this, we see
that the rising limbs are generally similar, but that there is amarkeddisparity in the
falling limbs, associated with the collapse of the channel.

Figure 8 compares these normalized hydrographs with a model output, and
shows that themodel doeswell. Theworst agreement is with the 1972 slowdecay and
the 1934 fast decay. But we have already seen in figure 4 that the 1972 hydrograph
canbe fittedwell, and the enormousmagnitude of the 1934 flood suggests an eruptive
origin as in 1996 (Guðmundsson et al. 2004); in this latter flood, the
channel propagated as an overpressured lateral fracture, and the assumption of
a semicircular channel is wildly inappropriate. In particular, the closure rate of
such a wide channel would be expected to be much more rapid than for a
semicircular channel.
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4. Modelling issues

(a ) Friction coefficient

In his discussion of the Nye model, Clarke (2003) drew attention to the high
value of the Manning roughness used by Nye (1976), and inferred that
the model was flawed for this reason. Espousing the Spring–Hutter version of
the model that includes the acceleration terms, Clarke preferred a lower value of
n 0, approximately 0.03. In fact, we have shown that the Nye model does not
require a high value, and that the choice n0Z0.04 mK1/3 s enables a quantitative
fit to the 1972 hydrograph. Nor are the acceleration terms important. If we add
the terms rw(utCuux), where uZQ/S, to the right-hand side of the momentum
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Figure 7. Comparison of normalized hydrographs of 1922 (red), 1934 (green), 1954 (cyan), 1972
(magenta), 1976 (yellow) and 1986 (blue). The rising limbs are similar, but the descending limbs
are very rapid (1934), rapid (1922 and 1986) or more gentle (1954, 1972 and 1976).
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Figure 8. The same six normalized hydrographs as in figure 7, together with a normalized model
output. The model does well, but the 1972 hydrograph has a notably slower decay and the 1934 one
is notably faster.
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equation (2.1)3, then the corresponding dimensionless terms on the right-hand
side of (2.13)3 are Fr 2(3utCuux), where we scale uwu0ZQ0/S0, and Fr is an
effective Froude number defined by

Fr2 Z
u2
0

gh0
: ð4:1Þ

Note that this is based on the depth of ice, not the depth of the channel. From
table 3, we take u0z13 m sK1, whence we find Fr 2z0.01.

(b ) Temperature variation

A serious criticism of the quantitative application of the Nye model is
the neglect of the water temperature equation, in the sense that we assume that
qZ0. Recent work (Ng et al. 2007) has shown that lake temperature of a
marginal glacial lake can have a quantitative effect on flood characteristics.
From (2.13), the energy equation can be approximated as

Q
vq

vx
Z

jQ j 2Q
S8=3

K
q jQ j 0:8

gS 0:4 : ð4:2Þ

Evidently, the issue of temperature should only be of potential interest during a
flood, and for the values of q0Z3.5 K and gZ5.37, we would expect a significant
effect. Clarke (2003) rightly highlighted the importance of temperature, as was
also done by Spring & Hutter (1981) and Björnsson (1992), and yet measurements
indicate that the exit temperature of the water remains close to the freezing point.
To reconcile this with the theory, Clarke suggested that other heat transfer
mechanismsmightbeappropriate, for example involving iceparticleswithin theflow.

If we take the observation that qz0 at the outlet at face value, then it is only
consistent with (4.2) if g/1, and the advection term is only negligible over the
inlet region if g/d. The value of g relies on the use of the Dittus–Boelter heat
transfer relationship, which was determined by measurements of heat transfer in
fluids at Reynolds numbers of O(104–105). However, the Reynolds number
appropriate here is ððrwu0

ffiffiffiffiffi
S0

p
Þ=hwÞw109, and it seems entirely feasible that the

Dittus–Boelter relationship is inappropriate at such Reynolds numbers.
Until the necessity for the inclusion of heat transfer in the model can be

demonstrated by the measurement of positive exit temperatures, it seems at least
arguable that we can take g to be sufficiently small that the heat advection term
is indeed negligible. Additionally, it is worth pointing out that solving (4.2)
between floods is a hazardous adventure, since Q reverses sign in the domain, and
the direction of integration must reverse at the seal; in particular, no boundary
condition can be applied between floods.

(c ) Cross-sectional shape

The assumption of semicircular cross section is perhaps the most blatant
simplification that has no justification. The surprising thing is then that, despite
this, the Nye model can do such a good job of simulating the flood hydrograph.
The reason presumably is that the channel is indeed approximately semicircular,
and in the Nye-type jökulhlaup, this seems reasonable, since the channel is
inflated by frictional heating, which applies uniformly around the perimeter. It is
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equally clearly inappropriate for post-eruption floods such as that in 1996, when
the overpressured lake water causes the channel to open as a propagating
elastodynamic fracture, and the resultant channel is much wider. The consequent
closure rate scales with the width not the depth, and this suggests an explanation
for the rapid shutdown seen following such floods.

(d ) Sub-Antarctic floods

Recent observations by Wingham et al. (2006), Bell et al. (2007) and Fricker
et al. (2007) have shown that subglacial lakes are not only common beneath
Antarctica, but that they undergo rapid deflation, with typical surface elevation
changes of the order of metres over times of the order of years. Such deflations
(and inflations elsewhere) are interpreted as occurring through drainage of the
lakes in subglacial floods, and the question arises whether such long duration
floods of such small magnitude can be explained with the Nye model. The answer
to this is positive. It can be shown that a year-long flood lowering the ice surface
(and thus lake level) by metres can be simulated in the Nye model by increasing
the ice closure rate by four orders of magnitude. The inference would be that the
closure is due to subglacial till, and thus that such floods are excavated through
high-pressure subglacial canals (Walder & Fowler 1994), rather than through
Röthlisberger channels.

5. Conclusions

Nye’s (1976) model of jökulhlaups has provided a theme around which several
variations have been woven, and some of these variations have raised issues
concerning Nye’s model. In this paper, we have shown that Nye’s model is able to
provide an exceptionally good quantitative and qualitative explanation for the
jökulhlaups that originate in the lake Grı́msvötn below Vatnajökull in Iceland.
Nye’s model can explain the periodicity, the peak discharge and the duration of
the floods, and it provides an excellent fit to the shape of the flood hydrograph.

There are two issues that are unresolved in this study. The first is that
different Grı́msvötn jökulhlaups have hydrographs that differ largely in the
rapidity of the falling limb. It seems likely that this difference is a genuine
one (as opposed to simply being due to poor estimated fluxes), and this suggests
one way in which the model fails to represent the data. One possibility, suggested
by the abrupt collapse following a post-eruptive flood, is that channel shape may
play a role, since it is known that, following the 1996 eruption, the subsequent
flood propagated through a very wide channel (Johannesson 2002a,b). However, it
is very difficult to model the evolution of wide-channelled floods in an objective way.

The other issue is the role of temperature. Largely for pragmatic reasons, we
have neglected heat advection in the energy equation (4.2). It seems simple
enough to include it, but this is not true between floods, when Q reverses sign at
the seal position XZX%, and the consequently degenerate equation must then be
solved in both directions away from the seal, where the degeneracy forces qZ0.
While this is not insurmountable, the observation that exit temperatures are
close to the freezing point suggests that, in reality, the value of g should be much
smaller than our estimate in table 4, and this may be the case if the heat transfer
at Reynolds numbers in excess of 108 is much more efficient than suggested by
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the Dittus–Boelter relationship. Alternatively, as suggested by Clarke (2003),
other buffering mechanisms may keep the temperature near the freezing point.
This point is worthy of further investigation.

Other objections, such as the arbitrary assumption of a semicircular channel,
are a posteriori justified by the agreement of the theory with observations, except
for post-eruptive type floods, where the initial channel growth is promoted by
fracture propagation at the bed rather than melting. Clarke’s (2003) comment on
the high value of n 0 used by Nye might be argued against on the basis of the
extrapolation of the Manning roughness to enormous values of the Reynolds
number, but, in fact, we have shown that a best fit to the 1972 hydrograph
actually involves a lower value of n0Z0.04 mK1/3 s in any case.

It remains to be seen to what extent the Nye model can be applied in a
quantitative way to other jökulhlaups.

I acknowledge the support of the Mathematics Applications Consortium for Science and
Industry (www.macsi.ul.ie) funded by the Science Foundation Ireland mathematics initiative
grant 06/MI/005.
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Röthlisberger, H. 1972 Water pressure in intra- and subglacial channels. J. Glaciol. 11, 177–203.
Siegert, M. J. 2005 Lakes beneath the ice sheet: the occurrence, analysis, and future exploration of

Lake Vostok and other Antarctic subglacial lakes. Annu. Rev. Earth Planet. Sci. 33, 215–245.
(doi:10.1146/annurev.earth.33.092203.122725)

Spring, U. & Hutter, K. 1981 Numerical studies of jökulhlaups. Cold Reg. Sci. Technol. 4, 227–244.
(doi:10.1016/0165-232X(81)90006-9)

Spring, U. & Hutter, K. 1982 Conduit flow of a fluid through its solid phase and its application to
intraglacial channel flow. Int. J. Eng. Sci. 40, 327–363. (doi:10.1016/0020-7225(82)90029-5)

Walder, J. S. & Fowler, A. 1994 Channelised subglacial drainage over a deformable bed. J. Glaciol.
40, 3–15.

Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. 2006 Rapid discharge connects
Antarctic subglacial lakes. Nature 440, 1033–1037. (doi:10.1038/nature04660)

A. C. Fowler1828

Proc. R. Soc. A (2009)

 on 7 October 2009rspa.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1029/2007GL031426
http://dx.doi.org/doi:10.1029/2003RG000147
http://dx.doi.org/doi:10.1146/annurev.earth.33.092203.122725
http://dx.doi.org/doi:10.1016/0165-232X(81)90006-9
http://dx.doi.org/doi:10.1016/0020-7225(82)90029-5
http://dx.doi.org/doi:10.1038/nature04660
http://rspa.royalsocietypublishing.org/

	Dynamics of subglacial floods
	Introduction
	The Nye-Röthlisberger model
	Boundary conditions
	Non-dimensionalization
	A reduced model

	Fitting the hydrographs
	The 1972 hydrograph
	Parameter variations
	Different hydrographs

	Modelling issues
	Friction coefficient
	Temperature variation
	Cross-sectional shape
	Sub-Antarctic floods

	Conclusions
	I acknowledge the support of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie) funded by the Science Foundation Ireland mathematics initiative grant 06/MI/005.
	References


