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Instability modelling of drumlin formation
incorporating lee-side cavity growth
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Republic of Ireland

It is proposed that the formation of the subglacial bedforms known as drumlins occurs
through an instability associated with the flow of ice over a wet deformable till. We
pose a mathematical model that describes this instability, and we solve a simplified
version of the model numerically in order to establish the form of finite-amplitude
two-dimensional waveforms. A feature of the solutions is that cavities frequently
form downstream of the bedforms; we allow the model to cater for this possibility
and we provide an efficient numerical method to solve the resulting free boundary
problem.
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1. Introduction

Drumlins are small ovoid hills that form ubiquitously under ice sheets and
glaciers. They litter the landscape of North America, Great Britain, Northern
Europe and other formerly glaciated areas. It is only recently, with the advent of
high-quality digital elevation models (DEMs), that the extent of their coverage
has become apparent, and such terrains cover an estimated 70, 50, 40 and 15 per
cent of the areas of Canada, Ireland, Scandinavia and Great Britain, respectively
(Clark et al. 2009). Figure 1 shows a view of the drumlins of Clew Bay near
Westport in Ireland, whereas figure 2 shows a DEM of the drumlins of County
Clare, Ireland.

Although drumlins have been described for well over 100 years (Kinahan &
Close 1872), the cause of their formation has escaped quantitative explanation
for much of that time. In a landmark paper, Hindmarsh (1998) proposed a
mathematical model to explain such bedforms. In his theory, ice flows over a
layer of wet, deformable till, and the resultant shear flow in the ice and the till
causes an instability to occur at the interface, much in the way that air flow over
water causes water waves or (a better analogy) water (or air) flow over sand causes
fluvial (or aeolian) dunes to be formed. Fowler (2000) addressed essentially the
same theory, but solved the linear stability problem associated with perturbations
of the uniform flat state analytically. He found, as did Hindmarsh, that instability
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Figure 1. A view from Westport Harbour of some of the drumlins of Clew Bay, Westport, Ireland.
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Figure 2. A DEM with solar shading (from the northwest) visualizing a flow pattern of drumlins
(flow towards the southwest) that change from long lineations to short, stubby drumlins, with a
strong jump in shape at a topographic and geological boundary. Data are from the Landmap
DEM and are of County Clare, western Ireland. Image is ca 50km across. Adapted from
Greenwood (2008).

occurred commonly for realistic kinds of assumptions concerning the rheology of
till. More recently, the theory has been extended by Schoof (2007 a,b), who in the
latter paper addresses the difficult issue of cavitation.

This promising beginning to a comprehensive theory of subglacial bedforms
has run into two obstacles. Although the theory appears to predict waveforms
of the correct wavelength, there are a number of reasons to doubt its veracity;
we discuss these in more detail below. There are three apparent problems in the
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theory: only two-dimensional instabilities are predicted; the theory seems unable
to explain evidence of internal stratification; and inappropriate amplitudes are
apparently predicted because cavities are formed at low elevation, and these may
limit further drumlin growth (Schoof 2007b).

The other obstacle arises because of the use by both Hindmarsh and Fowler
(and also Schoof) of a Boulton—Hindmarsh rheology for till, that is to say, one
with a power law relating strain rate & to stress t, in the form

. Attt
8:—[), (].1)
De

where p, is the effective pressure, equal to the difference between overburden
pressure and pore water pressure, and A, a and b are positive material constants.
The apparent observations of Geoffrey Boulton at Breidamerkurjokull in 1977,
reported by Boulton & Hindmarsh (1987), which motivated the choice of this
rheology, were seemingly discredited by later laboratory experiments of Kamb
(1991). Working with samples of till from West Antarctica, Kamb showed that
till behaved approximately plastically, with deformation occurring essentially
without limit at a particular yield stress. The disagreement between these two
points of view has led to controversy (Tulaczyk et al. 2000; Iverson & Iverson
2001; Fowler 2003) and has, to some extent, obscured the development of the
drumlin instability theory. This is unfortunate because the theory does not at all
rely on details of the till rheology, but assumes only that there is basal ice motion
(sliding), that till deforms, is thus transported and that the rate of ice slip and
till transport depends on both basal stress T and on the effective pressure at the
ice~till interface N. This point was made clear by Schoof (2007a). In the present
paper, we do not presume a till rheology, but just the two assumptions mentioned
earlier.

Drumlins represent one variant of the subglacial bedforms induced (we
suppose) by basal sliding. They are three-dimensional, with their long axes aligned
with the direction of ice flow. Two other forms are noteworthy. The first is ribbed
moraine, which takes the form of approximate two-dimensional parallel ridges
aligned transverse to the direction of ice flow (Dunlop & Clark 2006; Lindén
et al. 2008). The second is that of mega-scale glacial lineations (MSGLs) that are
extremely long sinuous ridges aligned parallel to the ice flow, which are thought
to have underlain former ice streams (Clark 1993). The different bedforms are
plausible different members of a continuum (Sugden & John 1976), in which
the aspect ratio of the bedform may be caused by the effect of a controlling
parameter, the most likely candidate for which is the ice velocity. This leads us
to a hypothetical picture of the way in which these bedforms develop sequentially
as the ice velocity increases.

At very low velocities, a level ice-till interface may be stable. As the ice
velocity increases, instability sets in first as transverse two-dimensional rolls,
much as thermal convection in a fluid initially emerges as two-dimensional rolls.
We surmise that the resultant finite-amplitude waveforms, which represent ribbed
moraine, are themselves unstable to a transverse secondary instability, just as in
thermal convection. We suppose then that the resulting waveforms become first
drumlins, and then as the ice velocity increases further, the drumlins become
elongated, and finally at ice stream speeds, they form MSGLs.
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Figure 3. System geometry.

This sequence of events is entirely hypothetical, but plausible, and the papers
of Hindmarsh (1998) and Fowler (2000) are evidence for the initial steps of
the hypothesis. In his paper, Schoof (2007a) is less optimistic. He considers the
two-dimensionality of the instability unsupportive of the instability hypothesis.
Arguably, this may be misplaced pessimism, since while the linear instability
may be suggestive of finite-amplitude bedform shape, it does not necessarily
constrain it precisely. Schoof’s other criticisms are based on the observation
in his numerical solutions that cavities typically begin to form in the lee
of bedforms when they have a small amplitude that is comparable with the
thickness of the deforming till layer. To extend his results, Schoof (2007b)
considered the ice flow problem when cavities are present. He found a family
of travelling wave solutions, whose amplitudes scale with the deforming layer
thickness, which is quite small. However, the dimensionless amplitude in his
fig. 4.1 is about 17, which indicates that these travelling waves can indeed obtain
reasonable amplitudes. The stability, and hence realizability, of these travelling
wave solutions remains unresolved. Schoof’s final criticism that drumlins can
consist of stratified sands and gravels is one that we will not address specifically
in this paper.

Our principal purpose here is to address the issue of including cavitation in
the model, but with the aim of finding fully time-dependent solutions.

2. Mathematical model

The mathematical model we propose describes the two-dimensional flow of ice,
considered as a constant viscosity fluid, over a layer of wet, deformable till.
The horizontal and vertical axes are (z,z), and the objective is to calculate
the elevation of the ice-till surface z=s(x,t). The geometrical framework
is indicated in figure 3. The model was first proposed by Hindmarsh (1998)
and analysed by him and Fowler (2000). Schoof (2007a) also presented
the model and, in particular, rendered it dimensionless, and we follow
his presentation, with some minor modifications that are described in
appendix A.

A major simplification to this model is obtained by assuming that the aspect
ratio v of the bed is small. If we put v =0, the basal boundary conditions (A 40)
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can be applied on z=0 and are

_Tnn=2lpzx7
T=0+ lI/zz - lpTT?
u= U(TaN)7
-V, =as; + uS;,
N=1+s+1I — 1y,
qg=aV,
St + q;n:()
and aa + g, = A,

(2.1)

all applied at z=0. In these (dimensionless) equations, t,, is the deviatoric
normal stress, ¥ is a stream function for the perturbation of the ice velocity
from the basic shear flow, t is the basal shear stress, @ is the (leading-order)
sliding velocity, N is the basal effective pressure, IT is the reduced pressure, ¢ is
the sediment flux, a is the deforming till thickness and V is the mean till velocity.
See appendix A for further details. It should be noted that the sliding velocity @
is a function of time only and is to be determined as described below.
We can use the Fourier transform of a function

Foo=| et (2.2)

—0o0

to solve the ice flow equations. The result is that
@ = (4 + bz)exp(—|klz) and IT=2ikb exp(—|k|2), (2.3)

where & and b are functions of k. Applying the approximate boundary conditions
(2.1), we find

N =1+ 5+ 2ik|k|a,
v=">-—|k|a
and ika = F(as; + us,),

where v =W, and F also denotes the Fourier transform.
We can invert these results using the fact that the Fourier transform of the
Hilbert transform

1 (™ g@)dt
H@z—f g (2.5)
T J s t—2
satisfies
F{H(g)}=—I|klg. (2.6)
We then find that s is found by solving the system
Si=—q, q=aV,
N:1+S—2H{aszt+ﬂ5zx} .

and aa + g, =A.
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The determination of w follows from the requirement that the mean of v is
zero. Thus, u is determined by the requirement that

0 =Ff(w,N). (2.8)

The model in equation (2.7) is equivalent to that presented by Schoof (2007a),
with some minor modifications. In particular, we identify a drumlin elevation
scale dp that is distinct from the till thickness scale dr, and their ratio dr/dp
defines the (small) parameter «. Schoof (2007a) defines the sediment flux

Q=aV (2.9)

as a function of t and N; equivalently, we would have a and V as functions of ©
and N. Simple assumptions are to take, following equation (A 36),

V=cU(x,N)~cu and a=A(t,N)=/c [L—N} , (2.10)
K +
where ¢, ¢/ < 1. There is some redundancy here, since in practice, it is the product
cc’ that is important. Note that since A, >0 and Ay <0, as well as U, >0 and
Uy <0, then also @; >0 and Qy <0, as assumed in equation (A 22).

If we adopt equation (2.10), then the entrainment rate A is defined by equation
(2.7)4, and the model is equivalent to that of Schoof (2007a). Alternatively, in
detachment-limiting conditions, we might suppose that entrainment of sediment
by erosion is rate limiting, in which case, a suitable generalization of equation
(2.10) might be

a=tza (2.11)

&

where the transport-limited result in equation (2.10) is regained if ¢ — 0.

It should be emphasized that the derivation of the expressions in equation
(2.7) relies on the smallness of v and not on any linearization procedure; thus the
model in equation (2.7) is a fully nonlinear model for the evolution of drumlins.

(a) Instability

Linear stability of the uniform state has been studied variously by Hindmarsh
(1998), Fowler (2000) and Schoof (2007a). The summary below follows Schoof’s
discussion. We take Q= Q(t,N)=A(r, N)V(r,N). The basic uniform state is
s=0, N=1,t=60, u=1and q=gy=cc'(8/u — 1), as determined by equation
(2.10), since we can take

fa,1H =6 (2.12)

by choice of the velocity scale uy. For greater flexibility, we retain the symbol ,
which will allow us to pinpoint the destabilizing term in the model. Linearizing
equation (2.7) about this state and taking the Fourier transform as before, we
find, after some algebra, that solutions are proportional to e’’, where

o =1+ ikey, (2.13)
the wave speed is
R[1 + 4o Rk

1+ 4a2R2k4 (2.14)

C\V =
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in which
R=0Qn+ fnQ; (2.15)

and the growth rate is

2k%|k|R(4 — aR)
= .
1+ 402 R2KA

It follows from this that the uniform flow is unstable if R > 0 (presuming ¢ R < u).

There is a simple characterization for this instability (Schoof 2007a). Since
T~ f(u,N), then Q~ Q{f(u, N), N}is a function of N only and R~ ('(N). Thus
instability occurs if @' > 0, i.e. the sediment flux increases with effective pressure
(although Qy <0).

Because « is small, the maximum value of r occurs when k is large, and
the relevant scaling for the linear stability analysis when o <« 1 is obtained by
rescaling time and space in equation (A 38) to (A 40) via

(2.16)

1/2

T, zZ~a and t~a’/?. (2.17)

The dimensional time scale for growth of the fastest growing wavelength is

d 1/2 95/2 R1/2
ax — & — (218)
up Ne 33/
and the dimensional wavelength of this fastest growth rate is
_ 2nN2R (nugdy 12 519
b=~ () (2.19)

To estimate these directly, we use values n =6 bar yr, uy=100m yr~!, dr =5m,
N.=0.4 x 10°Pa, R=1 and @ =1; then,

tmax =0.94yr  and [ =234 m. (2.20)

The suggestion implicit in our scaling is that, over a longer time scale, the
drumlins will coarsen and evolve to a longer length scale (formally; in fact lyay ~ [,
where [ is the drumlin length scale defined in equation (A 37)).

3. An extended model

We now consider the problem of solving the nonlinear set of equations (2.7). This
problem was studied by Schoof (2007a). So long as Q'(N) > 0, the instability of
the uniform state will continue to grow. There are two physical constituents of
the model, which may act to prevent this. The first (which we call capping) is
that, for sufficiently large N (= 6/u), the till becomes immobile, and @ must
decrease to zero. Thus, @' <0 for sufficiently large N, and this may stabilize the
growth of s.

The second is that when N reaches zero, cavitation will occur. In effect, this
can prevent s decreasing indefinitely, because equation (2.7); still applies and
(roughly) N ~ 1+ s. While the effect of capping is easily effected by making
@ decrease at large N, the effect of cavitation is less easily dealt with. This is
discussed in the following section.
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(a) Cavitation

When the model described earlier is solved numerically, it is found that the
interface evolves unstably, but that, fairly early in the computation, the interfacial
effective pressure reaches zero (Schoof 2007a). Cavities form when this happens,
and the ice separates from the underlying sediments. When cavities are present,
we identify s with the cavity roof, and then its determination is made differently
to the part where the ice is attached, where N > 0. To be precise, the boundary
conditions at z=0 are

t=f(u,N), w=as+us;,, Ss+q¢=0 and N=14+s+ 11 —1,, >0,
(3.1)
but when a cavity is formed, these are replaced by the conditions

=0, w=as+us, and N=14+s+1II —1,,=0. (3.2)

In terms of the model (2.7), the single change is to replace the Exner equation
by the extra condition N =0; assuming that f(u,0)=0, the shear stress is
automatically equal to zero in this case.

The question arises as to how this can be solved numerically. The mixed
boundary conditions provide a challenge for any method, because the cavity
endpoints are not known, and there are potential stress singularities at these
points. This problem has been studied in depth by Schoof (2007b). When the ice
separates from the bed, the prescription of the bed z = b must be determined
separately. In Schoof’s formulation, he supposes that no sediment transport
occurs in the cavity (since there is no shear stress), and thus he poses the
Exner equation,

by=0, b<s. (3.3)

This equation is supplemented by requiring that b is continuous at the
downstream ends of the cavities, but b is not necessarily continuous at the
upstream ends. In general, we can expect the sediment flux ¢ to be positive
upstream of a cavity, and the resulting jump in ¢ causes a ‘shock’ to form
in the till bed, and this propagates forwards at a finite rate. The shock will
correspond physically to a slip face. Schoof then seeks travelling wave solutions
of the problem using complex variable methods and finds a one-parameter family
of such solutions in terms of their period.

Schoof’s generalization of the model equation (2.7) (in which we take ¢=
Q(N)), can be succinctly written in the form

bi=—q, q=QN) and N=14 s—2H {aSy + USu}, (3.4)
together with the alternative contact conditions
s>b, N=0, ze(C, and s=b, N>0, ze(’, (3.5)

where C denotes the cavitated bed and C” denotes the uncavitated bed; this
assumes Q(0) =0, as is assumed here and also by Schoof (2007b). The ice base
s is assumed to be continuous, but neither b nor N is continuous at both cavity
endpoints.
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Figure 4. The function A(N) given by equation (3.7), where f(u, N) = Ou®N’. The parameters used
are b=0.6, 1 =04,0=08 u=1and ¢ =1.

Here, we propose a different way of formulating the problem with cavitation.
Our strategy is to find a kind of weak formulation, such that the differing
boundary conditions can be replaced by a single set of conditions. The resulting
(still discontinuous) formulation will then be solved by approximating the
discontinuous conditions by a suitable continuous set of boundary conditions.

Coalescence of the zero shear stress condition 7 =0 with the sliding law u =
U(t,N) is easily done by suitable selection of the sliding law. For example, the
generalized Weertman law (with coefficients such that f(1,1) =6)

T=0U°N’ (3.6)

(suitably modified when t < uN) allows t =0 automatically when N =0.
We now come to the gist of the matter. We allow for cavitation by extending
the definition of A in equation (2.10) to the case N =0 by specifying

S [f(ﬂ, )
78

—N:|7 N>0, and A>0, N=0. (3.7)
+

A typical form of A(N) is shown in figure 4. By extending the definition in this
way, we retain the Exner equation and enable the determination of the cavity
roof by allowing the ‘flux’ ¢ to vary in such a way that N =0.
This way of extending the model can be written succinctly in the form

(taking ¢’ =1)

S$i=—q,, gq=cua and N=1+s—2H {as, + U}, (3.8)
together with the alternative contact conditions

a>0, N=0, ze€(C, and a=AN), N>0, ze(C'. (3.9)
This can be compared directly with equations (3.4) and (3.5).
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The fundamental mathematical distinction between Schoof’s formulation
and that here is that, in Schoof’s formulation, discontinuities in N cause
discontinuities in the sediment flux, and this leads to a discontinuity in 6. In
the present formulation, we will find that the sediment depth (and thus also
the flux) is continuous, even though N is discontinuous: there is no tendency to
form shocks.

Schoof’s formulation also has a simple and appealing physical basis, which
lies in the assumption that sediment in cavities does not deform. Indeed, the
situation appears comparable to the lee faces of fluvial and aeolian dunes, where
the slip faces are manifestations of sediment shocks. However, a distinction in
the subglacial case is that there is a lateral effective pressure gradient in the
till between uncavitated parts of the bed and cavitated parts. This suggests the
possibility that till may be squeezed into cavities from the sides, and indeed this
is evidenced by the existence of crag and tail features. If such infilling can occur,
then it suggests a formulation as given here, where the effective sediment flux
(which arises through this infilling) is just such as to keep the till interface at the
cavity roof. However, it should be pointed out that the present model formulation
does not include cavity infilling in an explicit way.

(b) Numerical solutions

The presence of the Hilbert transforms in equation (3.8) suggests the use of a
spectral method, but this method also has difficulties. We used a spectral method
to solve the equations, in the form

St =~z qzcﬂa, N:1+s_2H{a5:vt+ﬂ5zz}

and
AN) — a (3.10)
Qe+ g =—",
e
in which we take ¢ <« 1, and where A(N) is given by the graph
0
A=c’|:—Nb—N:| , N>0, and A>0, N=0, (3.11)
K +

assuming the generalized sliding law (3.6). We take u=1 and c¢=1 for
convenience. Then the choice ¢/ = /(0 — ) allows the steady value A =1 when
N =1. This is a unimodal function if b < 1, for which A’(1) > 0 if b0 > u, which
thus gives the instability criterion for this particular choice of sliding law and
sediment flux.

However, we cannot use equation (3.11) directly, and we must approximate A.
In our first simulations, we thus chose

A:[S{%—l}-{—Nﬁ(Q—N)] , (3.12)

+

with small values of § corresponding to the approach to equation (3.11),
see figure 5.

The solutions behave in the following way when started with initial data close
to N =1 and when A’(1) > 0. There is an initial phase where the solution for s
grows in amplitude, propagating forwards as it grows. During this initial phase, N
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Figure 5. The approximating function A(N) given by equation (3.12), where the parameters used
are §=0.1, =2 and y =2.
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0.05
N
0 \/\_/v\/\/\/
~0.05
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~0.10 \/\/V\/\/\/
0.15
-0.20

0 2 4 6 8 10

Figure 6. Final steady state of the ice base s (upper curve) and the deformable sediment base s — aa
(lower curve) in the solution of equation (3.10) with equation (3.12). The deformable sediment (of
thickness aa) is of constant thickness. The model uses 512 grid points and (when inverting) 60
Fourier modes and is solved using a pseudo-spectral method with a time step of At=25 x 1077.
The steady state is reached at ¢t~ 1. Parameters used are « =6 =¢=0.1 and y = =2.

also grows in amplitude, oscillating spatially about N =1 on the unstable branch
of the A(N) curve (figure 5). When the maximum of N reaches the maximum of
A, there is a rapid transition to a new regime in which N resembles a square
wave, oscillating back and forth between values, such that A is constant. In
this regime, the solution reaches a steady, finite-amplitude state, consisting of
stationary drumlins.

Figures 6 and 7 show the final steady states that were achieved in one particular
run. We interpret the result in figure 7 as follows. The wiggles in the figure are a
consequence of the Gibbs phenomenon, in which a finite Fourier truncation aims
to approximate a piecewise continuous function. We thus infer that an accurate
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Figure 7. Final steady state of the effective pressure N. Model and parameters as for figure 6.

solution would portray the steady N profile as piecewise constant. Second, the
minimum value of N represents the attempt of the effective pressure to reach
zero; it does not get there because of the approximation in equation (3.12). We
thus interpret the lower value of N as representing cavitation.

In order to test these interpretations, we modify the output for N to suppress
the spurious Gibbs wiggles by taking a moving average of the form

1 A
Nsmooth(x) = oA J N(x + I/) diL'/, (313)
2A J_A

equivalent to filtering the Fourier transform N by multiplication by the

windowing filter r =sin kA/kA (i.e. we put N=rN ). In addition, we replace
the approximation to A in equation (3.12) by

A |:f1v—f1 n <9N—90) (No —N):| 7 (3.14)
fo—h g1 — 9 +
where
1
_ — B
fN_(8+N)V and gy=(+ N)*, (3.15)

and the limit we seek is obtained when § — 0. This has the effect of putting the
lower limit of N near zero, evidently attractive for cosmetic reasons (figure 8).
Figures 9 and 10 show the results of a computation with these alterations
in place. We see that cavities form ubiquitously downstream of obstacles and
that the drumlins themselves remain fairly regular in shape. We have tried other
methods of smoothing or improving the results; we mention two. In one method,

Proc. R. Soc. A (2009)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on 7 October 2009

Instability modelling of drumlins 2693
3 -
2 L
A
1 L
0
0 1 2 3
N

Figure 8. The approximating function A(N) given by equations (3.14) and (3.15), where the
parameters used are § =0.4, =2, y =2 and Ng=2.

Figure 9. Final steady-state profile for N, using the approximation in equation (3.12), and where
a local average has been applied using a half interval length of A =0.05. The parameters used are
as in figures 6 and 7, but with § =0.4 in equation (3.15).

we filtered N with r=1 /(1 4+ Ak?), with the idea of suppressing high-frequency
oscillations in N. This improves the numerics, which can now run with a time
step of 107°, and to some extent smoothes N, but at the price of introducing
spurious wiggles in s. The other method changes the equation for a to

[A(N) = a] = AN, (3.16)

1
oA+ a, = —
&

where A is small. In this case, we find that, as we would expect, the solution for NV
is indeed smoothed, but that now the waves travel at non-zero speed, to the right.
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Figure 10. Final steady-state profile for s (upper curve) and s—aa (lower curve) with the
superimposed vertical lines indicating cavity boundaries (the cavities are indicated by the thick
horizontal bars). These lines are precisely from the (unsmoothed) graph of N — 0.8. The smoothed
graph in figure 9 is of the same numerical output.

4. Discussion

We have discussed the onset of cavitation in the instability theory of drumlin
formation and have developed a numerical technique to follow the solutions for
the evolving bedforms past this onset. In our formulation of the model, it is then
necessary to specify what happens at the bed of the cavity. Implicitly, we assume
that the till beneath has no strength at N =0, so that it can freely flow into
the cavity. In effect, there is no cavity, or, at least, the cavity is infilled with
weak till. Since this is essentially what a crag and tail is, it seems a reasonable
assumption to make, at least in some cases. We must contrast our model to that
of Schoof (2007b). In his model, he assumes that the sediment is immobile in
cavities, so that the cavities are water filled. It is difficult to compare results of
the two versions of the theory, because Schoof restricts his attention to travelling
wave solutions, in which consequently the sediment flux is discontinuous, whereas
we do not find a tendency to form shocks (in a).

A further discrepancy between the models lies in the fact that Schoof does
not consider till locking at high N and thus he effectively takes A= N (his eqn
(2.6)). It can be seen, in our solutions, that the decreasing part of the graph of
A(N) is essential in order that we can have A = constant in a stable steady state
(the stability being associated with values of A in which the slope of the graph
of A(N) is decreasing).

Non-trivial steady states are not possible in the Schoof formulation (3.4) and
(3.5) because, in that case, the flux ¢ must be continuous (otherwise a shock
would propagate), and as ¢ = constant in a steady state, we would infer that
() =1 is constant, and thus also IV, if @) is monotonic. There is a possibility for
non-trivial steady states either for the Schoof formulation with till locking or
with the present formulation without till locking, but in both cases, we might
expect such possible solutions, even if they exist, to be unstable, because of the
positive-sloping portion of the Q)(/N) curve at one of the two values of N for which
@ = 1. Certainly, we have seen no numerical evidence for such steady states in
our computations.
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An interesting consequence of till locking is that, as the effective pressure
increases at the summit, the shear stress at the bed will become concentrated
there, and thus (since the far-field stress owing to the ice depth and slope does not
change) the stress lower down the flanks will decrease. If the decrease is to a value
below the yield stress, then the lower parts of the drumlin may become immobile,
and in this way, one may obtain a situation in which the drumlin becomes capped
by a layer of immobile till, with only the low-lying area between drumlins having
low stress and also low effective pressure. The sediment in these areas is then
marshy. Stream flow will be concentrated at the base and can erode the sediments
and, as it does so, we might imagine that the capped drumlins can gently subside,
as the sediment at their base is squeezed out. There is no evidence to support
this idea, but it is consistent with what is known of till deformation and erosion.

In an extreme version of this scenario, the sediment removal is entirely by
stream flow, and the till is virtually undeformable. This has been suggested by C.
Schoof (2008, personal communication) as a possible mechanism for the formation
of stratified drumlins in Washington State. The drumlins can retain previous
fluvially stratified structure as they erode because they become stationary (the
till is at high effective pressure), and the drumlins emerge as the landscape is
sculpted by the water flow.

In an even more extreme version, Shaw et al. (Shaw 1983, 1994; Shaw & Kvill
1984; Shaw & Sharpe 1987; Fisher & Shaw 1992) have suggested that drumlins
are sculpted in massive subglacial floods. An attraction of this radical theory lies
in the more recent discoveries of subglacial lakes in Antarctica and of the fact that
they can flow from one to another in subglacial floods. It has even been suggested
that massive floods of the type Shaw seeks might have occurred below the former
Laurentide ice sheet (Evatt et al. 2006). However, it is by no means simple to
generate such large floods. The two basic problems with the Shaw mechanism
are that there is no predictive way to get floods of the right magnitude in the
right place, and, worse, there is no theory that predicts what putative bedforms
might actually be produced. In actual fact, it may well be that basal water flow
plays a key role in certain aspects of the present theory, but it seems unlikely to
involve water in the biblical quantities imagined by Shaw. For further comments
on Shaw’s theory, see Eyles (2006), who also reviews more generally the effects
of water in the subglacial environment.

5. Conclusions

In this paper, we have extended the solution of Hindmarsh’s instability model
of drumlin formation to allow for the presence of cavities. We do this by firstly
representing till flux as ¢ = aV, where a is the deforming till depth and V is the
mean till velocity, which we simply assume is some constant fraction of the basal
ice velocity. We suppose that the depth of the deforming till is determined by
the position where the yield stress is attained, and we suppose that the sliding
velocity (and also till flux) satisfies a generalized Weertman law of the form given
in equation (3.6).

The consequence of these fairly general assumptions is that till flux will be a
hump-like function of effective pressure IV, and the uniform state in which the bed
is flat is then unstable on the part of this relation where ¢ increases with V. Our
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numerical investigations suggest that the resultant instabilities cause drumlins to
grow to a finite amplitude and that they become stationary. Estimates of height
and length of drumlins are roughly consistent with observations, but a detailed
comparison will await future work.
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Appendix A

(a) Effective pressure

In this appendix, we describe more fully the instability model for drumlin
formation. The model was first described by Hindmarsh (1998). The version
presented here stems from the work of Schoof (2002), and more specifically follows
Schoof (2007a), with some minor modifications.

If the pore water pressure at the interface z = s is p}, and the overburden normal
stress there is P®, then, assuming hydrostatic and lithostatic balance,

pw=1% +pug(s—2) and P =P +[pyd + ps(1 — $)]g(s — 2), (A1)

where p,, and ps are the densities of water and sediment, respectively, and ¢ is
the sediment porosity. Within the till, the effective pressure p, is defined as

pe=P —py (A2)
and thus
Pe=N+ (1~ ) Apsg(s — 2), (A3)
where
APsw = Ps — Pw (A4)
and we define N to be the effective normal stress at the ice-till interface, i.e.
N=P —p;. (A5)
The interfacial normal stress P° is related to the stress in the ice by
PP=—0,,= pis — Tnn,y (A 6)

where o, is the normal stress in the ice, t,, is the deviatoric normal stress in
the ice and p; is the ice pressure at the bed. We define a reduced pressure IT in
the ice by

pi=pa+ gz —2)+ 11, (A7)

where p, is the atmospheric pressure, and we define the effective pressure in the
drainage system as

Ne=pa + pigz — pe, (A8)
where p. is the water pressure in the local drainage system, which we
presume known.
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It then follows that
N = Nc + prigs + 1T — Tnns (A 9)
where
Apyi = P — Pi- (A 10)

There are two important consequences of equations (A 3) and (A9). The
effective pressure at the ice—till interface increases with its elevation. This causes
decreased till deformation at higher elevation. Additionally, the effective pressure
also increases with till depth; in effect, only a finite layer of till will deform.

(b) Ice flow

The equations describing slow two-dimensional flow of ice, considered to be an
incompressible fluid of viscosity 7, are

Uy +w, =0,0=—1I, — pigz + nV*u and 0=—IT, + nViw. (A11)

Here, IT is the reduced pressure defined in equation (A7) and z =92/dz. The
velocity components in the (z,z) directions are (u,w). We take the ice surface
slope 2 to be constant because the relevant horizontal length scale for drumlin
formation is much less than that over which ice sheets vary.

(¢) Boundary conditions

Appropriate boundary conditions in the far field are those of Schoof (2007a),
nmn—0, nu,— 1, and w—0 as z—> 00. (A12)

T}, is the ‘basal shear stress’, defined by
= —pig24Z . (A 13)

The validity of the conditions (A 12) depends on the value of the dimensionless
parameter

o=—, (A14)
&

in which [ is the drumlin horizontal length scale; equation (A 12) is appropriate
ifo k1.

At the bed z = s, one of the boundary conditions is equation (A 9); the normal
deviatoric stress is defined by

2n

m[(1—53)um+sm(uz+wz)]. (A 15)

—Tnn =

The shear stress at the ice—till interface (note that this is not the same as 13,) is

= rs? [ = D) (u. + w,) — 4s,u,]. (A 16)
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The sliding law at the bed is then taken to be

U+ ws,;

A+s)12 Uz, N), (A17)

where U(t, N) is the sliding velocity, which is discussed further below. We will
also use the sliding law in the more common form
=f(U, N). (A 18)
The final condition at the base is the kinematic condition
w= 8§ + US,, (A19)

wherein we ignore basal melting. We now consider the determination of s.

(d) Sliding and deformation of till
The evolution of the bed s is determined by the Exner equation
St + Qx=07 (A 20)

in which ¢ is the till flux, taken to depend, like the sliding velocity U, on bed
stress and effective pressure,

g=Q(t,N). (A 21)

Since t and N are already given by equations (A 16) and (A 9), this completes
the specification of the ice flow problem, once U and @ are given, we assume that
the partial derivatives satisfy

U >0, Q. >0, Uy<0 and Qy <0. (A22)
Equivalently to the assumptions on U, we suppose
fu>0 and fy>0. (A 23)

We suppose that till is ‘plastic’ in the sense that it has a yield stress t.; for
shear stresses below this, no deformation will occur. We take

Te = [APes (A24)
where u is an O(1) coefficient of friction. We define a depth scale
N,
dp = ——. (A 25)
Apiwg

For an elevation change of dp, the effective pressure at the ice—till interface
will change by N., which we suppose is comparable to t./u for flow over wet,
deformable sediment. Thus, this depth scale gives a drumlin height sufficient to
cause the till at the summit to cease deforming. We have in mind that the ‘locking’
of the till at the summit will provide a self-limiting mechanism to limit growth
of drumlins and thus that dp may be a representative drumlin height. Choosing
N.=0.4 x 10° Pa gives a value dp ~ 50 m.
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We define a second depth scale
f— NC .
B A;qug(l - ¢) 7

then, we can see that the effective pressure increases by N, ~ t./u in a depth dr
below the ice—till interface. This suggests that deforming till will be limited to
a finite depth of O(dr) below the ice-till interface, and in particular, it suggests
that in order of magnitude, Q@ ~ dr U.

Actually, it is appropriate to include the depth of deforming till explicitly.
This is because there can be no till flux if there is no deforming till. We
propose a prescription based on similar considerations that arise when considering
sediment transport in rivers (Howard 1994), where, in principle, one must consider
conservation of deformable sediment as a separate equation (Tucker & Slingerland
1994; Fowler et al. 2007). We retain the Exner equation (A 20), but now we
prescribe sediment flux as

dr (A 26)

g=aV, (A27)
where

V =V(,N) (A28)

is the mean till velocity and a is the deforming till thickness; in uniform
conditions, we suppose that

a=A(t,N) (A29)

and Q= AV still satisfies equation (A 22). Conservation of deforming sediment
requires that, in addition to equation (A 20), a should satisfy the conservation law

a + Q= .A, (A 30)

where A represents the rate of entrainment of sediment from the undeforming (B
horizon) sediment. This equation may be useful in situations in which sediment
supply is limited (detachment-limited kinetics, in fluvial parlance (Howard 1994)).

(e) Non-dimensionalization

We define a length scale [, yet to be chosen, which is to be a representative
length scale for drumlins. We define a stream function ¢ via

Yv,=u and —yY,=w. (A31)
We take the basic shear flow without bed perturbations to be
T
V= upz + -2 22, (A 32)
2n
and when the aspect ratio dp/l of the emerging bedforms is small (as is the case in
practice), then the perturbation to the stream function is correspondingly small.

This corresponds to the situation that occurs in sliding theory (Fowler 1981).
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We now scale the model by choosing

a~dr, s~dp, xz~l, pe, N, I, Typ,T,f~ N, Awﬁa
by 2 2 le
V=uuz+ 2" +udp¥, U,V~u, ¢Q@~ud and t~——;
2n drug
(A 33)

the dimensionless velocity « is introduced here because the development of the
topography causes a change in the mean sliding velocity. We scale the depth of
the till by writing

s—z=dr¢. (A 34)
Thus, the dimensionless effective pressure in the till is
pe=N+¢, (A 35)

and the yield criterion (A 24) implies that deformation will occur if the
dimensionless till depth ¢ satisfies

r<Z N, (A 36)
m

The value of v is determined by the magnitude of the sliding velocity, and the
horizontal length scale is defined by balancing the stress and strain rates, thus

= (”“‘)dD)m. (A 37)

N

If we choose 1y =100m yr~!, n=2 x 10"¥Pas, N,=0.4 x 10°Pa, dp =50m,
for example, then [ =274 m. Other typical values, with p, = 2.5 x 10°kgm™ and
¢ =0.4, are dy =4.6 m, and the time scale is 30 yr.

With this choice of scaling, the dimensionless model for the ice flow is

0=—1IT,+ V¥, + 06 and 0=—II, — V¥, (A 38)
with far-field matching condition
IT—0 and ¥ —0 as z—> 00. (A 39)

The basal conditions take the form
2 [(1 - VQS?;)WM + USZ(G + "I/zz - lllza;)]

—Tnn = 1+ U28§ )
= (1 - VQS;%)(Q + lpzz - q/z:v) - 4vsijzz
14 v2s2 ’

_ 9 (A 40)
u+vlz+ v, —vY,s,

(14 v2s2)1/2
Y, =as;+ [u+vlz+v¥,]s,, N=1+4+s+ 11— 1,
g=Q=aV, aa;+ q¢.=0 and s; + ¢, =0,

= U(r,N),

and these are all applied at z=vs.
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The dimensionless parameters o, 8, v and « are defined by

l d
o=—, GZE, v="2"and a:ﬁ. (A41)
; l dp
With [ =300m, z = 1500m, thus 7, =0.15 x 10° Pa with an assumed ice surface
slope of 1073, dp =50m, N, =0.4 bar and dr =5m, typical values are

o~02, 6~038 v~0.16 and o~0.1. (A 42)

The far-field matching condition (A 39) is appropriate if 0 <1, and so we
adopt the formal limit ¢ — 0. This simply removes the gravitational term from
the momentum equation in (A 38).
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