
Proc. R. Soc. A (2010) 466, 2673–2694
doi:10.1098/rspa.2010.0017

Published online 10 March 2010

The instability theory of drumlin formation
applied to Newtonian viscous ice of finite depth

BY A. C. FOWLER*

MACSI, Department of Mathematics and Statistics, University of Limerick,
Limerick, Republic of Ireland

The Hindmarsh instability theory of drumlin formation is applied to the study of
interfacial instabilities, which may arise when ice flows viscously over deformable
sediments. Here, the analytic form of this theory is extended to the case where the ice is
Newtonian viscous and of finite depth, and where the basal till can be both sheared by the
ice and squeezed by basal effective pressure gradients: previous authors assumed infinitely
deep ice, based on the assumption that the developing waveforms had wavelength much
less than ice depth.

The previous infinite depth theory only allowed transverse instabilities to occur,
and these have been associated with the formation of ribbed moraine; one of the
purposes of extending the analysis to finite depth is to see whether three-dimensional
instabilities, which might be associated with the formation of drumlins or mega-scale
glacial lineations, can occur: we find that they do not. A second purpose is to calculate
under what circumstances the infinite depth theory provides accurate prediction of
bedform development in ice of finite depth di. We find that this is the case if the waveforms
have a wavelength less than approximately 1.2di. Finally, the finite depth theory allows us
to compute, for the first time, the response of the ice surface to the developing unstable
bedforms. We find that this response is rapid, and we give explicit recipes for the surface
perturbation transfer functions in terms of the perturbations to the basal stress and the
basal topography.
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1. Introduction

Drumlins are streamlined hills that are usually found in clusters, and there
is a scientific consensus that they have formed through the action of formerly
existing ice sheets. They have been observed and studied in the literature for well
over a hundred years (Kinahan & Close 1872), and a good deal of discussion
as to their origin has occurred over that time (e.g. Gravenor 1953; Menzies
1979). More recently, there has been a separate emphasis on ribbed moraine
(Dunlop & Clark 2006) and mega-scale glacial lineations (MSGLs), particularly as
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2674 A. C. Fowler

the latter have recently been observed to be actively forming under the Rutford ice
stream in Antarctica (King et al. 2009). These three types of bedforms represent
a continuum from two-dimensional transverse ridges (ribbed moraine) through
drumlins to MSGLs, which are longitudinally oriented rolls aligned with the flow
direction (Sugden & John 1976).

In the classical literature, the genesis of drumlins is often discussed in the
light of concepts of deposition and erosion. Deposition involves the idea that
subglacial till is transported by the ice and then deposited, while erosion refers
to the idea that pre-existing sediments are eroded by the ice, or by subglacial
water. The latter idea may be more readily consistent with some observations of
stratified drumlin interiors (for example, in the Puget Sound), although others
may be constructional, as in northern Saskatchewan (Shaw 1996); the former may
be consistent with drumlins formed largely of till, though some of these may also
be erosional (e.g. Kor et al. 1991; Sharpe et al. 2004).

Although erosion and deposition are no doubt important agents in drumlin
growth, neither concept has been shown to produce the landforms that are
observed, based on a quantitative theoretical model. More recently, a formation
theory based on the concept of an instability of the ice–sediment interface has
been proposed (Hindmarsh 1998a), which shows that if the ice is underlain by wet
saturated sediments at high water pressure, then instability will almost inevitably
occur, under very general assumptions concerning basal till deformation and ice
sliding. The principal ingredients of this theory are slow Newtonian viscous ice
flow and water pressure-mediated sediment shear flow. While water is essentially
present in this instability theory, subglacial stream flow has so far been largely
ignored, as has possible sediment removal by such streams. A number of other
formation theories have been advanced in recent years, particularly for MSGLs.
These include a groove-ploughing theory of Clark et al. (2003), and a more
recent instability theory based on the behaviour of ice as a non-Newtonian
fluid (Schoof & Clarke 2008), although neither theory provides a particularly
convincing explanation of these landforms.

However, the principal competing mechanism to describe drumlin formation
is the so-called flood theory advanced by Shaw and co-workers (e.g. Shaw &
Kvill 1984; Shaw & Sharpe 1987; Shaw 1994), which envisages subglacial flood
water eroding sediment and thus carving drumlins. This mechanism has been
widely criticized (e.g. Clarke et al. 2005), perhaps because the popular version
invokes enormous floods, which are less easy to understand, even though it
is generally accepted that huge floods arising from ice-dammed pro-glacial
lakes have occurred in the past (Bretz 1923, 1969; Clarke et al. 2004). Insofar
as the flood hypothesis involves the transport of subglacial sediments, some
elements of it may have a bearing on the instability hypothesis; specifically,
this will involve including the transport of sediment in stream flow as well
as its transport by ice. Water is essential in the instability hypothesis, and if
there is water, then it can be expected to erode sediments. This is because
groundwater flow through till is commonly thought to be insufficient to remove
the subglacially produced meltwater, which must therefore form subglacial
streams. If the stream flow is sufficiently rapid, then sediment transport will
occur. The importance of such stream-derived sediment transport is then largely
one of degree, as stream flow and till deformation will compete in transporting
the sediments.
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Drumlin instability theory 2675

The instability theory predicts waveforms transverse to ice flow, which can
be identified with ribbed (or Rogen) moraine. Furthermore, exploration of the
governing parameters has been shown to predict wavelengths of such ridges
that match well with extensive observations of the spacing of ribbed moraine
ridges (Dunlop et al. 2008). While the instability theory does make predictions of
amplitude and wavelength, for example (Fowler 2009), it has not yet been shown
to produce three-dimensional waveforms such as drumlins. This is due to the
fact that the theory does not predict purely longitudinal roll wave instability.1
Observations of MSGLs under former and present ice sheets (Clark 1993; King
et al. 2009) are suggestive of purely longitudinal roll instability, but no such
instability was found, assuming the ice is infinitely deep (Schoof 2002a). Part of
the intention of the present paper is, therefore, to study the instability theory in
the case where the ice depth is finite, to see whether that alters the conclusion
and indeed to see how much the infinite depth theory is altered quantitatively.
A second purpose is to provide a description of the ice surface perturbations
produced by the growing bedforms, thus extending earlier work by Guðmundsson
(2003), which dealt with the surface perturbations produced by prescribed basal
topography.

2. Mathematical model

A feature of previous theoretical analyses (Fowler 2000; Schoof 2007) is that they
assume, for convenience, that the ice is infinitely deep. Formally, this corresponds
to the assumption that the corrugation parameter s = l/di, where l is the drumlin
length scale and di is the ice depth, is small. Drumlin lengths are mostly in the
range of 200–1000 m (Clark et al. 2009), while typical ice depths where they form
may range from 500–4000 m, this being the present day range of ice depths in
ice caps and ice sheets. It is clearly a possibility that s ∼ O(1) or that s " 1. In
fact, the assumption of infinite ice depth allows the drumlin-forming instability to
occur, suggesting that the finite depth is not a crucial constituent of the theory.
On the other hand, the instability is fundamentally two dimensional, and three-
dimensional instabilities do not preferentially occur.

This has been held as a weak point of the theory (Schoof 2007), insofar
as drumlins are inherently three dimensional, and MSGLs, which one might
suppose represent an extreme drumlinized bedform when the ice velocity is
large, are essentially two-dimensional rolls oriented in the flow direction. They
cannot appear in the instability theory, at least with infinite ice depth, and
this is surprising because there appears to be a perfectly good instability
mechanism to form them. This is that where the ice is thicker, the basal
stress should be larger, and thus sediment removal will be larger. This
provides a positive feedback: where the ice is thicker, sediment removal is
more efficient, which further deepens the ice. Such a positive feedback suggests
an instability mechanism whereby a small transverse undulation might grow,
forming MSGLs.

1By longitudinal rolls, we mean sinusoidal wave forms whose axes are aligned with the ice flow
direction.
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2676 A. C. Fowler

This instability is essentially analogous to the rill-forming instability studied
by Smith & Bretherton (1972), and a clue to its absence in the infinite depth
drumlin theory may lie in the fact that the basal stress delivered by the overlying
ice flow is not then alterable by the flow over the underlying topography. Since
the Smith–Bretherton theory involves essentially the same physical ingredients
as we have here (that is to say, flow of a fluid of finite depth over an erodible and
transportable substrate), we might suppose that it is the finite depth of the ice
flow that will allow three dimensionality in the model. To this end, we pose the
model in the general setting of an ice flow of finite depth.

(a) Effective pressure

We modify the discussion in Fowler (2009) by more specific consideration of the
drainage. The instability theory indicates that drumlins can only form where the
effective pressure of the drainage system is very low, comparable to the basal shear
stress, and we suppose that this is associated with a distributed system of shallow
canals, as envisaged by Walder & Fowler (1994). Broadly speaking, we envisage
the inter-drumlin space to be swamp-like, with generally low water fluxes. Based
on the observations of subglacial floods below Antarctica (Wingham et al. 2006),
we may expect these low-lying swampy areas to be subject to occasional floods
that can flush sediments through the system, somewhat similar to (but much less
catastrophic than) the scenario envisaged by Shaw (1983).

In order to describe subglacial drainage, we make the particular assumption
that the stream system is isolated from the evolving topography, essentially
because the streams are supposed much smaller in width than the landforms,
and this allows us to suppose that their drainage leads to a relation between
the effective pressure in the stream system, Nc, and the water flux through the
system (which we suppose known). This effective pressure in the drainage system
is given, as with other drainage theories (e.g. Röthlisberger 1972; Walder & Fowler
1994), by the difference between far-field (cryostatic) ice pressure, and the water
pressure in the streams is determined by the elevation of the subglacial streams,
which we may suppose are at the lowest point of the evolving topography; thus,
we have

Nc = pa + rig(zi − s−) − pc, (2.1)

where pc is the water pressure in the local drainage system, pa is the atmospheric
pressure, zi is the ice surface elevation, ri is the ice density, g is the acceleration
due to gravity and s− is the minimum value of s, the ice–till interface elevation.
We are specifically assuming that this far-field pressure is ‘far’ from the stream
system on the scale of the streams, but ‘near’ the streams on the scale of the
bedforms.

From this, it follows that the effective normal stress at the bed is given by

N = Nc + Drwig(s − s−) + P − tnn , (2.2)

where
Drwi = rw − ri, (2.3)

rw is the density of water, tnn is the deviatoric normal stress in the ice and P is
the reduced pressure defined by

P = pi − pa − rig(zi − z), (2.4)
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Figure 1. Schematic representation of model geometry. Ice with surface z = zi lies above till; where
the effective stress at the base reaches zero, there would also be a water layer of depth hw. The
x-axis points down the ice upper surface, in the direction of flow.

where pi is ice pressure. Equation (2.2) presumes that water at the ice–till
interface is connected hydrostatically to the stream system. (Note that we
presume it is the far-field effective pressure (not normal stress) that is determined
by the stream drainage.)

(i) Ice flow

The geometry of the flow is shown in figure 1. We use a coordinate system
(x , y, z), where z is vertical and x points in the direction of the downstream
ice flow. The ice surface is z = zi, and the ice base is at z = s. In general, if the
ice separates from the till surface, we have a cavity or stream of depth hw. In the
present paper, dealing as it does with linear stability of an undisturbed flow in
which there are no cavities, we suppose that hw is always zero.

The equations describing the slow three-dimensional flow of an incompressible
fluid of viscosity hi can be written in the form

V · u = 0

and 0 = −VP − rigVzi + hiV
2u,

}

(2.5)

where zi is the ice surface, and the velocity is u = (u, v, w). The surface is
almost constant on the drumlin length scale, but there is a crucial small slope
that provides the driving basal stress, and this must be retained. Because the
landforms that we study have a natural length scale which is much smaller than
the horizontal extent of an ice sheet, the curvature or divergence of the ice flow
streamlines is largely irrelevant to their study, and for this reason, we suppose
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that the ice flow in the absence of any basal topography is a two-dimensional
flow. In this basic state, we therefore take

zi ≈ di − Sx , (2.6)

where di is local ice depth and S is the surface slope. In the unperturbed flow,
the x-axis is orthogonal to the elevation contours of the upper ice surface. The
slope defines a relevant ice sheet length scale

li =
di

S
. (2.7)

The presence of basal undulations will cause perturbations to this basic surface
profile.

(ii) Boundary conditions

The boundary conditions deviate from those considered by Fowler (2009) and
Schoof (2007), insofar as we apply conditions of no stress at the ice surface,
together with a kinematic condition:

P − tnn = 0, t1 = 0, t2 = 0

and w = vzi

vt
+ u

vzi

vx
+ v

vzi

vy
− B at z = zi,




 (2.8)

where B is the accumulation rate, and we define t1 and t2 as the two (x and y)
components of tangential shear stress. We calculate these in appendix A.

At the bed z = s, one of the boundary conditions is equation (2.2), i.e.

N = Nc + Drwig(s − s−) + P − tnn , (2.9)

which gives N in terms of s, P and tnn .
The magnitude of the basal shear stress at the bed is

t = [t2
1 + t2

2]1/2, (2.10)

where again t1 and t2 are the two tangential components of the shear stress at the
bed. The two x-tangential and y-tangential components of the basal velocity are

u1 = u + wsx

(1 + s2
x )1/2 and u2 = −usxsy + v(1 + s2

x ) + wsy

(1 + |Vs|2)1/2(1 + s2
x )1/2 . (2.11)

The sliding law at the bed is then taken to be

u1 = U (t, N )t1

t
and u2 = U (t, N )t2

t
, (2.12)

where U (t, N ) is the sliding velocity. We will also use the sliding law in the form
that is more commonly determined by sliding theories; that is, we invert U to
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find t as a function of U and N :

t = f (U , N ). (2.13)

The final condition at the base is the kinematic condition,

w = st + usx + vsy ; (2.14)

this ignores basal melting, which is negligible in this context. (Basal melting is
of the order of mm yr−1, whereas accumulation is of the order of 0.1–1 m yr−1,
which, as we show below, is also negligible.)

(iii) Till flux

The evolution of the bed s is determined by the Exner equation

st + V · q = 0, (2.15)

in which q is the till flux, given by

q = aV, (2.16)

where a is the depth of deforming till and V is the mean till velocity. We suppose
that till deformation is caused by a combination of a shearing component and a
squeezing component, as described in appendix B:

V = cu|z=s − bVN , (2.17)

where u|z=s is the ice velocity evaluated at the bed, c ≤ 1, and we suppose that
deforming till depth is constrained by the depth at which the increase of effective
pressure brings the stress below the yield stress. This leads to the prescription
(see Fowler 2009 for details)

a = A(t, N ) = t − mN
mDrswg(1 − f)

, (2.18)

where m is the coefficient of friction, f is the porosity of the till and Drsw = rs − rw
is the difference between sediment and water density.

In reality, following a change in N at the ice–till interface, the effective pressure
profile with depth will change over a finite time, controlled by the permeability
and compressibility of the till. The consolidation equation for adjustment of the
till effective pressure follows from the equations

ft + V · v = 0

and v = k
hw

VN ,




 (2.19)

where k is till permeability and hw is the viscosity of water; thus (assuming
material quantities are constant)

vN
vt

= k
hw|f′(N )|V

2N , (2.20)

where f(N ) is determined by the till compressibility (see Clarke 1987 for details).
Equation (2.6) determines a time scale for adjustment of effective pressure of
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the form

tT = d2
Thw|f′(N )|

k
, (2.21)

where dT (defined below) is an effective measure of deformable till thickness. Since
tT will be found to be small, the equilibrium prescription (2.18), may be assumed.
Fowler (2009) used a modification of equation (2.18), which allowed relaxation
towards the equilibrium value, and which included also a flux term V · q, on the
basis of an analogy with erosion and deposition of sediments in rivers.

(iv) Non-dimensionalization

We define two depth scales. The first is associated with drumlin elevation, and
is given by

dD = Nc

Driwg
, (2.22)

where Driw = rw − ri is the difference between water and ice density. The second
is given by

dT = Nc

Drswg(1 − f)
, (2.23)

and is a measure of deforming till depth. We also define a representative length
scale l , which is determined by balancing the stress and strain rates, thus

l =
(

hiu0dD

Nc

)1/2

=
(

hiu0

Driwg

)1/2

, (2.24)

where u0 is an appropriate ice velocity scale.
We take the basic shear flow without bed perturbations to be

u =
[
u0 + tb

hi

(
z − z2

2di

)]
i, (2.25)

where
tb = rigdiS (2.26)

is the basal shear stress of the underlying ice flow; i is the unit vector in the
x-direction. Note that this is not an exact solution for the boundary conditions
on the surface, but is an accurate approximation for small slope S . When the
aspect ratio dD/l of the emerging bedforms is small (as is the case in practice),
then the perturbation to the velocity is correspondingly small.

We now scale the model by choosing

s ∼ dD, x ∼ l , pe, N , P, tnn , t, f ∼ Nc, U , V ∼ u0, zi = dih, B ∼ Su0,

u −
[
u0ū + tb

hi

(
z − z2

2di

)]
i ∼ nu0, a, A ∼ dT, q ∼ u0dT, t = tD ∼ dDl

dTu0
;






(2.27)

the dimensionless velocity ū is introduced here because the development of the
topography causes a change in the mean sliding velocity. Its prescription is given
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below. From equation (2.18), the dimensionless equilibrium deforming till depth
A is given by

A =
[

t

m
− N

]

+
. (2.28)

With this choice of scaling, the dimensionless model for the ice flow is

V · u = 0

and 0 = −VP − q

S
Vh − qs i + V2u,




 (2.29)

where

s = l
di

and q = tb

Nc
. (2.30)

It is convenient to define the perturbed surface profile H by putting

h = 1 − sSx + SH
q

, (2.31)

so that the momentum equation becomes

0 = −VP − VH + V2u, (2.32)

and note that in the basic unperturbed state, H = 0. Note also that h is constant
to O(S), and this allows simplification of the surface boundary conditions (2.8),
adopting the definitions in equations (A 2) and (A 3), and bearing in mind that
the slope terms are of O(S/s) " 1, to the form

P − 2wz = uz + wx = vz + wy = 0

and w = a

sn

vh
vt

+ 1
sn

[
ū + nq

s

(
h − 1

2
h2

)
+ nu

]
+ vh

vx
+ 1

s
v

vh
vy

− S
n
B

at z = h
s

,






(2.33)

where

n = dD

l
and a = dT

dD
, (2.34)

and the second equation in (2.33), the kinematic condition, can be written in the
approximate form

w = lHt + d (−sq + Hx) (ū + g + nu) + ndHy − SB
n

, (2.35)

where

g = nq

2s
, d = S

nsq
and l = da = (rw − ri)

2

ri (rs − rw) (1 − f)
. (2.36)
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Using the definitions in equations (A 2) and (A 3), the basal conditions take
the form

− tnn =
2[ux(1 − n2s2

x ) + vy(1 − n2s2
y) + nsx(q + uz + wx)

+nsy(vz + wy) − n2sxsy(uy + vx)]
1 + n2|Vs|2 ,

t1 =
[(1 − n2s2

x )(q + uz + wx) − 2nsx(ux − wz)
−nsy(uy + vx) − n2sxsy(vz + wy)]

(1 + n2|Vs|2)1/2(1 + n2s2
x )1/2 ,

t2 =
[{1 + n2(s2

x − s2
y)}{vz + wy − nsx(uy + vx)}

−2nsy{vy(1 + n2s2
x ) − wz − n2s2

xux} − 2n2sxsy(q + uz + wx)]
(1 + n2|Vs|2)(1 + n2s2

x )1/2 ,

t =
[
t2

1 + t2
2
]1/2 ,

ū + nqz + nu + n2wsx

(1 + n2s2
x )1/2 = U (t, N )t1

t
,

−n2(ū + nqz + nu)sxsy + nv(1 + n2s2
x ) + n2wsy

(1 + n2|Vs|2)1/2(1 + n2s2
x )1/2 = U (t, N )t2

t
,

w = ast + [ū + nqz + nu] sx + nvsy ,
N = 1 + (s − s−) + P − tnn ,
st + V · q = 0
q = aV, V = c [{ū + nz} i + nu] − bVN ,






(2.37)

and these are all applied at z = ns; b is defined by

b = an

3q
, (2.38)

where we use the magnitude of b from (B 6), that is,

b = dTu0

3tb
. (2.39)

With l = 300 m, di = 1500 m, thus tb = 0.15 bar with an assumed ice surface
slope of S = 10−3, dD = 50 m, Nc = 0.4 bar, dT = 5 m, u ∼ 100 m yr−1, typical values
of the parameters are

s ∼ 0.2, q ∼ 0.38, n ∼ 0.16, a ∼ 0.1, b ∼ 1.4 × 10−2,

g ∼ 0.15, d ∼ 0.08, l ∼ 0.8 × 10−2.

}

(2.40)

Additionally, if we take hw = 10−3 Pa s, |f′(N )| ∼ 10−7 Pa−1, k ∼ 10−15 m2 (Clarke
1987), then the till adjustment time scale in equation (2.21) is tT ∼ 0.1 yr, and the
ratio of this to the drumlin formation time scale tD = dDl/dTu0 in equation (2.27)
is tT/tD ∼ 0.3 × 10−2, corroborating our assumption of equilibrium deformable till
thickness in equation (2.28).
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3. A reduced model

We now simplify the model by assuming that the aspect ratio n is small. This has
two effects. The first is that the terms in n in equation (2.37) can be ignored. The
second is that the basal boundary condition can be applied at z = 0. Of the other
parameters, we put S , 3 and d to zero, but we retain l, a and b. a is retained as it
is known to provide a regularizing effect on the two-dimensional instability, and
indeed to control its growth time. l represents the time scale for adjustment of the
surface, so its incluson allows assessment of the stability of the surface. Finally, b
represents the small lateral till flux term, which is a singular perturbation to the
basic model, and is expected to be important when cavities form, as it describes
cavity infilling owing to till squeezing.

The reduced model equations for the ice flow are then

V · u = 0

and 0 = −VP − VH + V2u,

}

(3.1)

and the boundary conditions become

P − 2wz = uz + wx = vz + wy = 0

and w = lHt on z = 1
s

,




 (3.2)

while on the base,

−tnn = 2[ux + vy],
t1 = q + uz + wx ,
t2 = vz + wy ,

t =
[
t2

1 + t2
2
]1/2 ,

ū = U (t, N )t1

t
,

0 = U (t, N )t2

t
,

w = ast + ūsx ,
N = 1 + (s − s−) + P − tnn ,

st + V · q = 0,
q = aV,
V = cūi − bVN

and a = A(t, N ),






(3.3)

all now applied at z = 0. It should be noted that the mean sliding velocity ū is
a function of time only, and is to be determined by ensuring that the spatial
average of u is zero.

Proc. R. Soc. A (2010)

 on September 23, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


2684 A. C. Fowler

(a) The Exner evolution equation

We can uncouple the determination of the ice flow from that of the base in
the following way. The evolution of the bed is found by solving the Exner set of
equations for s, N and H , all functions of x , y and t, given by

N = 1 + s − s− − H − Q,

st + cūax = bV2N
and lHt = X,





(3.4)

where Q and X are determined once the ice flow problem is solved by defining
P − 2wz = −H − Q on z = 0

and X = w on z = 1
s

.




 (3.5)

It is appropriate to comment at this point on the equation for the effective
pressure in equation (3.4), or its dimensional equivalent in equation (2.2). The
choice of scales for the model assumes that the channel effective pressure Nc is
constant, which is consistent with simple drainage theories, but this is unlikely
to be true in general. If we suppose that Nc varies, then we may use the effective
pressure at the origin,

N 0
c = pa + rig(di − s0

−) − p0
c , (3.6)

as the scale for the stresses. If we assume pc = p0
c is constant, for example, we

would replace equation (3.4)1 by
N = 1 − sqx + s − s− − Q, (3.7)

and this would have a mild effect on the subsequent stability calculation. Of
course, the assumption of constant channel water pressure ignores the hydraulics
of water flow through the system. A proper resolution of this issue requires a
proper discussion of dynamic drainage, and as we discuss in the conclusions, this
will form a focus for future development of the model. For the moment, we retain
the simpler assumption inherent in equation (3.4)1.

(b) Ice flow solution

We can use the Fourier transform of a function

f̂ (k) =
∫∞

−∞

∫∞

−∞
f (x , y)eik1xeik2y dx dy, (3.8)

where k = (k1, k2), to solve the ice flow equations. This has been done by Schoof
2002a), for example. First we define

K = ast + ūsx and f (ū, N ) − q = F . (3.9)
The solution for the transformed flow variables is

û = (ik1, ik2, −k)b+zekz + (−ik1, −ik2, −k)b−ze−kz + a+ekz + a−e−kz

and P̂ + Ĥ = −2k[b+ekz + b−e−kz ],

}

(3.10)
where k = |k| and a± and b± are functions of k.
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The eight coefficients that constitute a± and b± are found by applying the
transformed boundary conditions, which take the form

û′ − ik1ŵ = F̂
ŵ = K̂

v̂′ − ik2ŵ = 0




 on z = 0,

P̂ − 2ŵ ′ = 0
û′ − ik1ŵ = 0
v̂′ − ik2ŵ = 0




 on z = 1
s

,






(3.11)

together with two conditions that arise from requiring consistency of equation
(3.10) with the transformed continuity equation

ŵ ′ − ik1û − ik2v̂ ≡ 0. (3.12)

The primes here denote derivatives with respect to z . These eight equations
and their solution are given in electronic supplementary material, appendix C,
and from these we can construct expressions for the transforms of Q and X, for
incorporation into equation (3.4). These take the form

Q̂ = 2k
D5

[
2Ĥ + 2G23F̂ − (G21 + G22)K̂

]

and X̂ = G27Ĥ + G28F̂ + G29K̂ ,





(3.13)

where the coefficients Gk and D5 depend on k1, k2 and s only, and are given
explicitly in electronic supplementary material, appendix C. Together with
equations (3.4) and (3.9), this provides a closed nonlinear system for the evolution
of s and H .

(c) Linear stability

Equations (3.4), (3.9) and (3.13) have a steady uniform solution in which s = 0,
N = 1 and H = 0, and we suppose also that ū = 1 and A = 1. The nonlinearity
in the model is in the advective term in equation (3.4)2, and the sliding law
function F . We write

N = 1 + P, (3.14)

assume s, P and H are small, linearize the terms A and F and Fourier transform
the resulting system, denoting transforms by overhats. We then write

ŝ = s̃(k)eSt , (3.15)

etc., where

S = r + ikcw, (3.16)
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and r is the growth rate and cw is the wave speed. We thus obtain

K̃ = (aS − ik1)s̃,

F̃ = fNP̃,

Ss̃ = (ik1A′ − bk2)P̃,

P̃ = s̃ − H̃ − Q̃,

lSH̃ = X̃,

Q̃ = 2k
D5

[2H̃ + 2G23F̃ − (G21 + G22)K̃ ]

and X̃ = G27H̃ + G28F̃ + G29K̃ ,






(3.17)

assuming that ū ≡ 1.
Eliminating the redundant variables, we can write this as a homogeneous

system of three linear equations for s̃, P̃ and H̃ , and the condition for a solution
is that the determinant should vanish. This leads to a quadratic equation for S
in the form

2kl[m2 − 2aDkQm1]S2 + [Qm3 − 2kD{aQ2m4 + l(1 − 2ik1kQm1)}]S
− DQ[1 − 2ik1kQm4] = 0, (3.18)

where
D = (ik1A′ − bk2), (3.19)

and the new coefficients Q and mj are defined in electronic supplementary
material, appendix C.

(i) The limit s → 0

In the limit of infinitely deep ice, s → 0 and the coefficients Q and mj tend to
one. In this limit, the quadratic (3.18) can be factorized, and the two roots are

S1 = − 1
2lk

and S2 = D(1 − 2ik1k)
1 − 2aDk

. (3.20)

The first of these is a surface mode, and describes the relaxation of the surface to
equilibrium on a rapid time scale l. Note that at large wavenumbers, this mode
apparently becomes neutral; as we shall see in a moment, this is not practically
the case.

The second mode is that describing the bed instability. Computing its real
part, we find that the growth rate is

Re S2 = 2k2
1kA

′(1 − aA′) − bk2(1 + 2abk3)
(1 + 2abk3)2 + 4k2

1k2a2A′2 , (3.21)

and instability occurs if A′ > 0, as has been previously found (e.g. Fowler 2009).
The till squeezing coefficient b acts diffusively, and is weakly stabilizing. For small
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values of a and b, the growth rate is

r ∼ 2k2
1kA

′. (3.22)

Note that purely longitudinal (MSGL) modes are neutrally stable (r = 0).

(ii) s " 1

For finite s, the quadratic can almost be factorized; if we take m1 = m4 and
m2 = m3, then the roots are

S1 = − Q
2lk

and S2 = D(1 − 2ik1kQm4)
m2 − 2aDkQm1

, (3.23)

and we can see from electronic supplementary material, appendix C, that, since
m1 − m4 and m2 − m3 are relatively small, these are good approximations.

Since Q(0) = 0, the modification of S1 shows that the surface mode is stable at
small wavenumbers. Specifically, Q ∼ (k/2s) for small k, and thus S1 ∼ (−1/4ls).
For small a and b, the basal mode growth rate is modified to

r ≈ kk2
1A

′[fNq2 + 2k2Q(1 + q4)]
k2 + k2

1 f
2
Nq2

2
, (3.24)

where the coefficients qj are defined in electronic supplementary material,
appendix C. Since q2 < 0 and q4 > −1, the system is again stabilized at small
wavenumbers, but the instability criterion is still essentially that A′ > 0.

(iii) l " 1

A more directly accurate approximation uses the fact that the parameter l " 1.
The instability mode is then

S2 ≈ D(1 − 2ik1kQm4)
m3 − 2aDkQm4

(3.25)

(which is indeed equation (3.23)2 if m1 = m4 and m2 = m3). Ignoring the small
terms in b, the growth rate is

r ≈ k2
1A

′[2kQm4(1 − aA′) + (fNq3/k)]
1 + {2akQm4A′ − (fNq3/k)}2 , (3.26)

with the same conclusion as before.

(iv) k1 = 0

Finally, we consider the exact quadratic for purely longitudinal modes with
k1 = 0. In this case, one readily finds that the coefficients of the quadratic are all
real and positive, and therefore both modes are stable, and approximately,

S1 ≈ − Q
2lk

and S2 ≈ −bk2. (3.27)

However we look at it, we see that the finite depth hardly affects the conclusions
of the infinite depth theory. Further, consultation of Q, q3 and q4 in figures S1–S3
of electonic supplementary material, appendix C, indicates that the infinite depth
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theory (in the form (3.25)) should be accurate for k ! 5s, i.e. for dimensional
wavelengths

2pl
k

" 2pdi

5
≈ 1.2di. (3.28)

This seems to be well satisfied in practice, suggesting that the infinite depth
theory is sufficient. Note that even with the supposition of large depth, it is still
possible to calculate the surface perturbation, which is found (see equations (3.4)
and (3.13) by equating X to zero.

4. Discussion

The instability theory of drumlin formation (Hindmarsh 1998a; Fowler 2000;
Schoof 2007; Dunlop et al. 2008) has been successful in predicting two-dimensional
transverse waveforms interpretable as ribbed moraine. However, drumlins are
three dimensional, and MSGLs, while essentially two dimensional, are aligned
with the ice flow direction. There has been a focus on MSGLs recently,
particularly as they have been recently found under the Rutford ice stream (Smith
et al. 2007; King et al. 2009; Smith & Murray 2009), and a number of alternative
ideas for their formation have been presented (Clark et al. 2003; Schoof & Clarke
2008). Of these, the paper by Schoof and Clarke proposes an instability based on
non-Newtonian ice rheology, a radically different idea to that presented here, but
one which is able to produce longitudinal rolls.

While it must be emphasized that the absence of a three-dimensional
linear instability does not at all preclude the possibility that finite amplitude
computations will yield three-dimensional wave forms, it would certainly be
easier for the instability theory if such three-dimensional instabilities did exist.
Particularly, MSGLs are very suggestive of purely two-dimensional longitudinal
rolls, as opposed to the transverse ridges of ribbed moraine.

A particular motivation of the present paper was therefore to examine whether
the instability theory would allow three-dimensional modes to grow when the
ice is assumed to be of finite depth. If the instability theory is to provide a
unified theory for the formation of subglacial bedforms, then it must be able to
explain not only the formation of ribbed moraine, but also drumlins and MSGLs.
A secondary motivation has been to examine the conditions of accuracy of the
infinite depth theory, and indeed to provide a framework for future studies, as
well as to integrate into the theory the signal which the bedforms produce at the
ice surface.

The instability theory in the form presented by Schoof (2007) and Fowler
(2009) has been adapted here to allow for the squeezing of till under effective
pressure gradients. This is found to be a small effect (the parameter b " 1),
and one which is weakly stabilizing. If the present theory were to be applied to
the computation of finite amplitude bedforms in the manner outlined by Fowler
(2009), then this squeezing term will become significant, since the presence of
cavities allows the effective pressure to jump discontinuously. We would expect
that the squeezing term would replace these sharp jumps with steep boundary
layers, and in particular, till will be squeezed into cavities.
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Figure 2. The basal sliding transfer function GSC defined in equation (4.3).

Inclusion of a finite depth allows the determination of the perturbation of
the ice surface in terms of the bedrock undulations below. This is a subject
that has been of quite some interest, insofar as it provides an indirect method
for potentially assessing basal conditions, and in particular the variability of
the sliding velocity at the base (Hindmarsh 1998b; Guðmundsson 2003, 2008;
Raymond & Guðmundsson 2005; Schoof 2002b), but most previous work has not
incorporated the dependence of the sliding law on the effective hydraulic pressure
(an exception is the paper by Hindmarsh (1998b)). In the present theory, we find
that the surface relaxes rapidly to an equilibrium that is determined by X = 0 in
equation (3.13)2, that is,

Ĥ = −G28

G27
F̂ − G29

G27
K̂ , (4.1)

and using the definitions of the coefficient functions in electronic supplementary
material, appendix C, this can be written in the form

Ĥ = ik1

[
GSC(k)

k
F̂ + kGSB(k)ŝ

]
, (4.2)

where k = k/s, and

GSC = ikG28

k1G27
and GSB = G29

kG27
. (4.3)

The real transfer functions GSC and GSB represent the effects on the ice surface
of perturbations to the basal sliding velocity and to the bed surface, and are
plotted in figures 2 and 3. Note in particular that purely longitudinal rolls
(MSGLs) have no effect on the surface in this theory. Figures 2 and 3 show
that, as we might expect, short wavelength features have relatively little effect on
the surface. From equation (2.31), the amplitude of these surface perturbations
is of O(diS), which, for ice of depth 1000 m and slope 10−3, is 1 m.
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Figure 3. The basal sliding transfer function GSB defined in equation (4.3).

5. Conclusions

In this paper, we have extended the instability theory of drumlin formation
to the case of finite ice depth, and we have examined the stability of fully
three-dimensional perturbations.

In essence, we repeat calculations of Hindmarsh (1998b), with the distinction
that our results are analytic. We find that the infinite depth theory is
accurate for bedform wavelengths less than the ice thickness, but that even
for longer wavelengths, the essence of the theory is not substantially altered,
either qualitatively or quantitatively. In particular, the instability remains
fundamentally two dimensional, and associated with the formation of transverse
ridges, which we identify with ribbed moraine. Purely longitudinal rolls
(corresponding to MSGLs) are essentially neutrally stable, although the inclusion
of the effects of till squeezing renders them weakly stable. The instability
theory in its present form therefore does not allow for the direct formation of
MSGLs, although the possibility that they form through a secondary instability
of transverse ribbed moraine still exists. Thus, we support Schoof’s (2007)
scepticism as to whether the instability theory is a realistic candidate to explain
the variety of subglacial bedforms.

An issue for the future is thus whether a more sophisticated version of the
instability theory will have the capacity to produce drumlins and MSGLs directly.
The key requirement would seem to be the necessity of an unstable purely
longitudinal mode. The key physical simplification that has been made in the
theory is that the stream flow is assumed to be passive: we suppose that there is
an articulated stream system that passes through the evolving bedforms without
being affected by them. It seems fairly evident that this assumption is unrealistic,
since the development of transverse ridges will act as a barrier to water flow.
Therefore, the next step in the development of the theory is to pose a more
realistic model for stream flow, which allows it to interact dynamically with the
deforming sediment.
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Supplementary material

The five files of supplementary material are an Appendix C, which gives the
results of solving (3.10), and the computations of the coefficients Gk , D5, Q and
mj as used in (3.13) and following. The file supplementary pdf gives the iterative
equations which are solved in computing these coefficients, and msgl.gnu gives a
gnuplot_le (described in Description of msgl.gnu) which was used for numerical
checking and computation. There is also a nomenclature.

I acknowledge the financial support of the Mathematics Applications Consortium for Science and
Industry (www.macsi.ul.ie) through the Science Foundation Ireland mathematics initiative
grant 06/MI/005. The support of NERC through grant NE/D013070/1, {Testing the instability
theory of subglacial bedform production}, is also acknowledged. For continuing fruitful discussions,
my thanks to Chris Clark, Chris Stokes, Felix Ng, Heike Gramberg, Matteo Spagnolo, Paul Dunlop
and Richard Hindmarsh.

Appendix A. Interfacial stress components

To calculate the normal and tangential components of stresses and velocities at
an interface, for example at the bed z = s(x , y, t), we use the normal, x-tangential
and y-tangential vectors, which we define as

n = (−sx , −sy , 1)
(1 + |Vs|2)1/2 , t1 = (1, 0, sx)

(1 + s2
x )1/2

and t2 = n × t1 = (−sxsy , 1 + s2
x , sy)

(1 + |Vs|2)1/2(1 + s2
x )1/2 ,





(A 1)

where Vs = (sx , sy). From this, we find that the normal deviatoric stress is
defined by

−tnn =
2h

[
ux(1 − s2

x ) + vy(1 − s2
y) + sx(uz + wx) + sy(vz + wy) − sxsy(uy + vx)

]

1 + |Vs|2 .

(A 2)
The two tangential shear stresses at the ice–till interface (t1, t2), where
ti = n · t · ti, are

t1 =
h[(1 − s2

x )(uz + wx) − 2sx(ux − wz) − sy(uy + vx)
−sxsy(vz + wy)]

(1 + |Vs|2)1/2(1 + s2
x )1/2

and t2 =

h[(1 + s2
x − s2

y)(vz + wy) − 2sy{vy(1 + s2
x ) − wz − s2

xux}
−sx(uy + vx)(1 + s2

x − s2
y) − 2sxsy(uz + wx)]

(1 + |Vs|2)(1 + s2
x )1/2 .






(A 3)

(Analogous expressions hold at z = zi, with s replaced by zi.)
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Appendix B. Sediment flux

That subglacial sediment can be transported by ice sheets, we consider to be
undeniable. It follows that till may be deformable, and the issue then arises of
describing an appropriate and effective rheology for it. Boulton & Hindmarsh’s
(1987) early expression of a nonlinear viscous rheology was later refuted by
Kamb (1991), who proposed a plastic rheology. The debate led to controversy
(Tulaczyk et al. 2000; Iverson & Iverson 2001; Fowler 2003), partly fuelled by a
lack of appreciation of what plastic flow actually consists of. Few would argue
that till, as a granular material, has a yield stress, but how the till deforms when
this yield stress is reached still requires a rheological choice. Although this is still
a subject of current research, viscoplastic rheologies such as that of Jop et al.
(2006) suggest that plastic till flux can be described by an effective viscous flow
law, in which the effective viscosity is determined by the yield stress.

Let us suppose that this is the case, and that till flows as a Couette–Poiseuille
flow, driven by a shear stress t and an effective pressure gradient (for example,
in the x direction) −N ′. If the deformable till is of depth a and effective viscosity
hT, then one finds that the till velocity at the ice–till interface is

ub = ta − (1/2)N ′a2

hT
, (B 1)

while the sediment flux is

q =
∫ a

0
u dz = ta2

2hT
− N ′a3

3hT
. (B 2)

We anticipate that N ′a " t; then it follows that

ub ≈ ta
hT

, (B 3)

and the sediment flux can be written as

q ≈ 1
2
uba − a2ub

3t
N ′. (B 4)

If we suppose that there is no slip between till and ice, so that ub = u is the basal
ice velocity, then we may generalize equation (B 4) to three dimensions as

V = cu − bVN , (B 5)

where we write q = aV, and here

c = 1
2

and b = a|u|
3t

; (B 6)

note that equation (B 5) is independent of the effective till viscosity. The term in
VN in equation (B 5) represents also a small correction, but one that turns out
to be singular, and therefore needs to be retained for that reason.
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