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THE MORPHOLOGY OF THE MARTIAN ICE CAPS: A
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Abstract. Spiral-shaped canyons on the polar ice caps of Mars are striking morphological
features whose explanation is still mysterious. We pose a model for the kinetics at the ice-atmosphere
interface based on the positive feedback properties of both dust and ice albedo within the north polar
ice cap, together with katabatic wind transport of exposed dust. Analysis of this model indicates that
traveling waves are possible, but only solitary waves are found in the numerical solution. This suggests
that the traveling wave hypothesis for trough formation may not be an appropriate explanation.
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1. Introduction. Mars has two polar ice caps, of which the larger is that in the
north. Both polar caps exhibit strange spiral structures, particularly that in the north,
as shown in Figure 1.1 (Blasius, Cutts, and Howard (1982)). These spirals are indica-
tions of a periodic winding sequence of canyons in the surface of the ice sheet, which are
made visible because of the increased presence of exposed dust layers within the ice.

The north polar cap is considered to consist largely of water ice (Kieffer et al.
(1976)), interspersed with a regular sequence of dust layers within the ice, thought to
be due to irregular fluctuations in the past climate (for example, due to major plan-
etary obliquity variations (Carr (1982), Cutts and Lewis (1982), Toon et al. (1980)).
General descriptions of the layered deposits are given by Kieffer et al. (1976) and
Thomas et al. (1992).

The characteristics of the northern ice cap spiral troughs have been described by
Howard (1978), Howard, Cutts, and Blasius (1982), and more recently by Howard
(2000). Figure 1.2 shows a cross-sectional profile through the ice cap. The dust
layers within the ice are thought to be between 5 and 50 m thick, while the troughs
themselves are spaced at typical intervals of 50 km (Carr (1982)). The troughs are
separated by scarps which have slopes up to 5◦ and are up to 1000 m high and up to
10 km wide, but may be both smaller and narrower (Howard (1978)). Troughs are up
to 1 km deep, between 5 and 30 km wide, and up to several hundred kilometers long
(Thomas et al. (1992)). The scarps form the spiral pattern seen in Figure 1.1 and are
visible because of their lower albedo, which is due to the higher dust fraction exposed
by the steeper slopes.

There has been much interest in the origin of the spiral canyons, which are unlike
anything known on Earth on either of the two major ice sheets of Antarctica and
Greenland. Howard (1978) was the first to suggest a possible mechanism for their for-
mation, the dust-albedo feedback hypothesis. This idea is based on the fact that south-
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2410 R. J. ZAMMETT AND A. C. FOWLER

Fig. 1.1. Aerial Viking Orbiter 1 images of the residual north and south polar ice caps (left
and right, respectively) courtesy of NASA/JPL/USG; see http://photojournal.jpl.nasa.gov/catalog/
PIA00190 and http://photojournal.jpl.nasa.gov/catalog/PIA00161. The photographs extend to 65◦N
and 60◦S, respectively. The north polar residual ice cap is about 1000 km in width at its maximum;
the large re-entrant valley (Chasma Borealis) is located at 300◦E and is 600 km long. Thanks to
Felix Ng for directing us to these images.
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Fig. 1.2. A cross section of the north polar ice cap, showing the scarps and canyons. Redrawn
from Ivanov and Muhleman (2000). The height is relative to a plane 5 km below the mean geoid.
The north pole is near the summit.

facing scarps receive more solar radiation, and ice there will therefore preferentially
sublimate, whereas on the cooler flats deposition will occur.1 The resulting sublima-
tion on the scarps exposes increased dust at the surface, and this decreases the albedo
of the surface, thus increasing sublimation. This positive feedback is a possible insta-
bility mechanism and suggests the possibility of a bistable switching between sublima-
tion and deposition of ice. This is then supposed to lead to the observed corrugations.

1The summer north polar temperature on Mars is about 200 K (Kieffer et al. (1976)), and melting
does not occur.
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Howard’s idea has been explored by others, notably Ivanov and Muhleman (2000),
who provided a mathematical basis for Howard’s descriptive model based on a descrip-
tion of radiation imbalance at the surface. Ng and Zuber (2006) have used this to
develop a more complete explanatory model which fully incorporates the dust-albedo
feedback mechanism and transport of ice and atmospheric water vapor. Their model
suggests that the troughs are evolving today from an ancient albedo imprint on the
ice cap surface and provides the conceptual starting point for the present work.

The core idea that the spiral waves arise as an instability informs Ng and Zuber’s
model, and it also lies at the heart of Pelletier’s (2004) theory. Pelletier uses a version
of the Fitzhugh–Nagumo model to produce spiral waves. It is well known in the
theory of reaction-diffusion equations (e.g., Murray (1993)) that the combination of
oscillatory reaction kinetics with a diffusive transport mechanism leads to periodic
traveling waves, and with a suitable central seeding mechanism either target patterns
or spiral waves can be formed. Evidently, the radial symmetry of received solar
radiation and/or the (approximate) symmetry of the ice cap will provide such a seeding
mechanism onMars, and the dust-albedo feedback mechanismmay produce oscillatory
kinetics. There then remains the issue of transport. Pelletier uses thermal diffusion of
ice temperature, which does not appear tenable, and indeed the strength of Pelletier’s
theory lies in how it makes the connection with reaction-diffusion theory; the physical
basis of both the kinetics and the transport of his model is questionable.

A number of authors, particularly Howard (1981, 2000), suggest that katabatic
winds flowing down the ice cap will provide the necessary transport mechanism, and
we follow this suggestion here. Despite a low atmospheric pressure of about 6 millibars
(600 Pa), weather systems on Mars are strong (Leovy (2001)), and visual evidence of
large dust storms shows directly that aeolian transport processes are effective. During
the polar winter, temperatures sink to 140 K, and the polar cap is covered with a CO2

frost, presumably preventing sediment transport. Elevated atmospheric temperatures
in the summer suggest downslope katabatic winds, and evidence for these exists in
wind streaks on the ice cap itself, and in the surrounding dune fields which are indica-
tors of wind direction (Tsoar, Greeley, and Peterfreund (1979), Greeley et al. (1992)).
Numerical simulations also suggest that downslope katabatic winds will be prevalent
in summer (Tyler and Barnes (2005)).

Paucity of observations means that it is difficult to be definitive about processes
which may occur on Mars, and there may be other important features to consider.
In particular, the ice cap will flow, albeit very slowly (perhaps millimeters per year),
and Fisher (1993, 2000) has used this as a basis for a description of the spirals (and
other features, notably the large re-entrant chasmae which can be seen in Figure 1.1).
Clifford (1987, 1993) has suggested that the large thickness of the layered deposits
(some 4–6 km) and the resulting insulating effect may cause basal melting to oc-
cur, and that possibly the chasmae were formed through massive subglacial floods
(jökulhlaups). While there is clear evidence of massive water flow on early Mars
(Baker (2001)), it remains speculative whether subglacial floods of this type could
have occurred from beneath the polar ice cap.

In this paper, we investigate the hypothesis that the troughs can be explained as
traveling waves on the ice cap surface. We first use Ivanov and Muhleman’s (2000)
model of sublimation kinetics to derive a mathematical model that describes the
kinetics of the interaction between ice and suspended atmospheric dust in the Martian
north polar region. This model is nondimensionalized and solved. We then modify the
original model to include transport terms in one dimension: ice transport by steady
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state creep and atmospheric dust transport by a downslope katabatic wind. Possible
traveling wave solutions of this model are investigated both analytically, using phase
plane analysis, and numerically.

2. Kinetics of ice and dust. We begin by formulating a model for the ki-
netics of the interaction between the ice surface and the overlying atmosphere (see
Figure 2.1). The constituent variables of the model will be the ice surface elevation
h, the surface temperature T , atmospheric water vapor pressure p and density ρv, the
atmospheric suspended dust concentration c, and the dust volume fraction φ in near
surface ice. We define also a quantity α, which is the volume fraction of dust con-
tained in atmospheric snow (supposing that accretion takes place by snowfall). This
encapsulates the idea that snow will form by nucleation on suspended dust particles,
as suggested by Pollack et al. (1979). We measure both ρv and c in units of kg m−3,
but φ and α are pure numbers, between 0 and 1. In this section we will ignore spatial
variations and suppose that all these variables are functions of time t only.

The basis of the model is the radiation balance at the surface, described by Ivanov
and Muhleman (2000). If I is the received short wave solar radiation at the top of the
atmospheric column (which in general will allow for the effect of season and latitude
as well as ice surface slope), then an energy balance at the ice surface takes the form

(2.1) I(1 − a) = γσT 4 +mL,

where m is the rate of sublimation (precisely, the rate of loss of water substance from
the ice surface; m < 0 indicates accretion, for example, via snowfall) and L is the
latent heat. The first term on the right is the black body long wave emitted radiation
at the surface (see, for example, Liou (2002)), corrected for the greenhouse effect of

dust

DUSTY ICE

s > 0 s < 0

d

WELL-MIXED ATMOSPHERE

water vapour suspended
dust

‘snow’
ρv

z = h(t)

z = 0
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c

Fig. 2.1. Schematic illustration of the kinetic processes on the ice cap. The atmosphere con-
tains dust (c) and water vapor (ρv) or, when freezing, snow crystals nucleated on dust particles.
Interchange occurs at the ice surface through sublimation (s > 0) or accretion (s < 0), thus releas-
ing or burying the dust content of the ice (φ). Arrows at the surface denote movement of water
ice/vapor: water ice sublimes into the atmosphere if s > 0 and accretes on the ice cap surface if
s < 0.
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atmospheric dust by a factor γ < 1, and the incoming radiation is modified by a dusty
ice albedo coefficient a. These coefficients depend on the dust content of the ice (a)
and the dust content of the atmosphere (c); thus a = a(φ), γ = γ(c), and a and γ
are decreasing functions of φ and c. The idea here is that dusty ice reflects incoming
short wave radiation, while a dusty atmosphere causes increased absorption of long
wave radiation, and thus an increased surface temperature because of the greenhouse
effect. The units of I are W m−2, while those of L are J kg−1, and therefore m has
units of kg m−2 s−1.

It is convenient to relate mass wastage to the rate of elevation of the ice surface,
measured as a velocity. Suppose this is s. From the definitions of φ and α, we therefore
have

(2.2) m =

{
ρi(1− φ)s, s > 0,
ρi(1− α)s, s < 0,

where ρi is the density of ice. An expression for m has been given by Ivanov and
Muhleman (2000). Sublimation will occur when the atmospheric water vapor pressure
is less than the saturation vapor pressure, which we denote by psat. Then Ivanov and
Muhleman suggest that

(2.3) m = D(psat − p)

√
mw

2πkT
,

where k is Boltzmann’s constant and mw is the molecular mass of a water molecule.
Ivanov and Muhleman further suggest that

(2.4) D = Au

√
2πmw

kT
,

where u is the surface wind speed, and with this we have

(2.5) m =
Amwu(psat − p)

kT
,

where A is an empirically determined pure number, which Ivanov and Muhleman
(2000) tentatively suggest should be A ≈ 0.002.

The saturation vapor pressure is determined from the solution of the Clausius–
Clapeyron equation; this is

(2.6) psat = prefsat exp

[
B

{
1− Tref

T

}]
,

where psat = prefsat at T = Tref , and the parameter B is given by

(2.7) B =
MwL

RTref
,

where Mw is the molecular weight of water, and R is the perfect gas constant. In
terms of the vapor pressure, the vapor density is given by the perfect gas law

(2.8) ρv =
Mwp

RT
.

For the ten variables h, ρv, c, T , p, φ, α, m, s, and psat, we have provided so far
the five algebraic equations (2.1), (2.2), (2.5), (2.6), and (2.8); five further equations
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are required. These consist of two constitutive equations for the dust fractions α and
φ, and three conservation laws for ρv, c and h. We consider first the constitutive
equations.

The most elusive is that for the ice dust fraction φ. This is easy enough if ice
accretes through snowfall, that is, s < 0. We defined α to be the volume fraction
of the snow particles occupied by dust. Then, if we suppose that no ice-free dust
accumulates on the surface by settlement, we simply have

(2.9) φ = α, s < 0.

However, if sublimation is occurring, then the value of φ is equal to the value of α
when the surface was last exposed. This leads us to define

(2.10) φ = α(τ), s > 0,

where, since the elevation rate of the surface is simply −s, τ is defined by

(2.11) τ = max

{
t∗ < t :

∫ t

t∗
s(t′) dt′ = 0

}
for s > 0.

Therefore, if sublimation is occurring (s > 0) definition (2.11) indicates that h(t) =
h(τ); i.e., the height of the ice cap surface is the same at times t and τ . We thus have
the combined definition of φ as

φ = α(τ),⎧⎨
⎩

τ = t, s < 0,

τ = max

{
t∗ < t :

∫ t

t∗
s(t′) dt′ = 0

}
, s > 0.

(2.12)

The dust volume fraction within snow particles, α, must be related to the atmo-
spheric dust concentration c (since if c = 0, then clearly α = 0). The definition of α
is only relevant when it is snowing, i.e., s < 0. A simple assumption is then that ice
nucleates on all dust particles so that α ∝ c, and the proportionality factor depends
on our assumption about snow crystal growth rates. For example, suppose that vapor
forms ice crystals rapidly, so that when p > psat, all the vapor crystallizes. Then the
atmospheric volume fraction c/ρs of dust (where ρs is the density of dust) is locked
into a volume fraction ρv/ρi of frozen vapor, so that

(2.13) α =
c

c+ rsiρv
,

where

(2.14) rsi =
ρs
ρi

is the ratio of dust to ice density. A more general assumption is that (2.13) provides
an upper bound for α.
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Finally, we have three conservation equations for h, ρv, and c. The simplest is
that for the ice surface h, which is just

(2.15)
dh

dt
= −s.

Conservation of atmospheric dust and water vapor in a column of height d implies

(2.16) d
dρv
dt

=

{
ρi(1− φ)s, s > 0,
ρi(1− α)s, s < 0,

and

(2.17) d
dc

dt
=

{
ρsφs, s > 0,
ρsαs, s < 0.

This completes this specification of the spatially independent model.
Complicated as it is, it is still an oversimplification. Two elaborations are worth

considering. One is to include explicitly a variable describing atmospheric snow con-
centration. Implicitly (2.16) describes snow crystal growth and removal, but in so
doing it prejudices a safe determination of α. Of course, snow may not occur, and
accretion could occur directly at the surface. This highlights a second shortcoming
of the model, for in that case α = 0 and there is no mechanism for dust accretion to
occur. In fact, (2.17) implicitly assumes that when ice sublimation occurs, the result-
ing exposed dust is instantly whisked up into the atmosphere, presumably by wind
erosion; this suggests that a more elaborate model would treat the surface density of
exposed dust as a separate variable.

2.1. Nondimensionalization. Our first task is to nondimensionalize these
model equations. We scale the variables with quantities subscripted (or superscripted)
by zero, and thus T ∼ T0, m ∼ m0, and so on; we thus have to choose scales for the
eight dependent variables (other than φ and α, which are already dimensionless num-
bers between zero and one), together with a time scale t0, and for future reference we
also choose a velocity scale u0 for the wind speed u. We choose the scales by balancing
terms in the equations, and in fact we balance all the terms except the latent heat
term in (2.1) and the terms in (2.16). We calculate a suitable scale for the insolation
using spherical geometry, so that

(2.18) I0 = S cos θf = 128 W m−2,

where S = 588 W m−2 is the Martian solar constant and θf = 77.4◦ is an average
solar zenith angle for the residual north polar ice cap (see Zammett (2008)). Using
this scale value for the insolation, we sequentially define the scales:

T0 =

[
I0(1− a0)

σ

] 1
4

, p0 = p0sat = prefsat exp

[
B

{
1− Tref

T0

}]
, m0 =

Amwu0p
0
sat

kT0
,

s0 =
m0

ρi
, ρ0v =

Mwp
0
sat

RT0
, c0 = rsiρ

0
v, t0 =

dc0
ρss0

, h0 = s0t0.(2.19)
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Table 2.1

Parameter values.

Parameter Meaning Typical value

L latent heat of sublimation of water ice 2.83× 106 J kg−1

R perfect gas constant 8.31 J mol−1K−1

Mv molar mass of water 1.80× 10−2 kg mol−1

σ Stefan–Boltzmann constant 5.67× 10−8 kg s−3 K−4

A turbulent drag coefficient 0.002
u0 wind speed 5 m s−1

mw molecular mass of water 2.99× 10−26 kg
k Boltzmann constant 1.38× 10−23 J K−1

d depth of layer of mixed atmosphere 100 m
ρs density of dust 2× 103 kg m−3

ρi density of ice 900 kg m−3

prefsat reference saturation vapor pressure 611 Pa
Tref reference temperature 273 K
a0 average surface albedo 0.33
I0 typical insolation 128 W m−2

We then derive the dimensionless form of the model (dropping the subscript v on ρv):

I(1− a) = γT 4 + λm,

m =

{
(1− φ)s, s > 0,
(1− α)s, s < 0,

m =
|u|(psat − p)

T
,

psat = exp

[
β

(
1− 1

T

)]
,

ρ =
p

T
,

φ = α(τ),

⎧⎨
⎩

τ = t, s < 0,∫ t

τ

s(t′) dt′ = 0, s > 0,

α =
c

c+ ρ
,

dh

dt
= −s,

dρ

dt
=

{
(1− φ)s, s > 0,
(1− α)s, s < 0,

dc

dt
=

{
φs, s > 0,
αs, s < 0,

(2.20)

and the dimensionless parameters are defined by

(2.21) β =
MwL

RT0
, λ =

m0L

σT 4
0

.

Using the parameter values given in Table 2.1, we calculate the following scales:

T0 ≈ 198 K, p0 ≈ 0.114 Pa, m0 ≈ 1.26× 10−8 kg m−2 s−1,

s0 ≈ 1.40× 10−11 m s−1, ρ0 ≈ 1.26× 10−6 kg m−3, c0 ≈ 2.80× 10−6 kg m−3,

t0 ≈ 9990 s, h0 ≈ 1.40× 10−7 m.(2.22)
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The value of p0 is in reasonable agreement with estimates of 0.13–0.26 Pa for the
partial vapor pressure of water at the poles (Ivanov and Muhleman (2000)). The
temperature scale is also in agreement with estimated summer temperatures at the
north pole of 200–220 K (Hvidberg (2003)) and 205 K (Zuber et al. (1998)).

From the above values, we calculate λ = 3.77× 10−4. As λ � 1, we can simplify
equation (2.20)1 to

(2.23) I (1− a(φ)) = γ(c)T 4.

We also calculate β ≈ 31.0.
Both the time and height scales (equation (2.22)) are small. This is because, in

the absence of transport terms, we have no choice about how to balance the terms in
the differential equations (2.15)–(2.17). We therefore look at a typical time and space
scale over which the sublimation kinetics occur, and we would expect sublimation
to occur in a thin layer over a short time scale. However, we are interested in the
long-term behavior of the ice cap. In the section below we rescale both the time and
height to obtain values that are more appropriate. However, although the scale for s
in (2.22) is small, it is O(mm a−1), which is comparable to an erosion rate on Earth.

2.2. Simplification of the model. There are only two parameters in the
model, β and λ, of which the latter is small, so that we may neglect it. Note also that
since φ = α(t) when s < 0, we may replace α by φ in the differential equations for ρ
and c, and also in the definition of m. Define

(2.24) ρ∗(T ) =
psat
T

=
1

T
exp

[
β

(
1− 1

T

)]
;

then we have

T 4 =
I[1− a(φ)]

γ(c)
,

s =
|u|(ρ∗ − ρ)

1− φ
.(2.25)

Thus T = T (φ, c) and hence s = s(φ, c, ρ).
The differential equations for h, ρ, and c are

dh

dt
= −s,

dρ

dt
= (1− φ)s,

dc

dt
= φs ;(2.26)

these admit the conservation law

(2.27) c+ ρ+ h = h∗,

where h∗ is constant.
Now we consider the awkward history-dependent recipe for φ. Note first that

dc
dh = −φ, so that at least for s < 0, i.e., while h is increasing, we have φ = α = c

c+ρ =
c

h∗−h
, and thus

(2.28) c = φ(h∗ − h),
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Fig. 2.2. Calculation of φ for s > 0 and s < 0 for a typical evolution of h.

and φ = φ0 is constant while it is snowing. Suppose that h evolves as in Figure 2.2,
i.e., h > h(0). For 0 < t < tA, s < 0 and thus φ = α is constant. Now for tA < t < tB,
s > 0 and so φ at P , for example, is equal to the value of α at P ′, and this is just the
constant φ0. Carrying on in this fashion, we see that in fact φ is constant for all t, so
that (2.28) applies always.

The argument fails if h decreases below h(0), for the initial condition for φ can
be arbitrary. But if this happens, φ simply switches to the value of φ appropriate to
the minimum value of h, and is thereafter constant at this value. This argument can
be followed through for any choice of α(c, ρ), since the conservation law (2.27) then
implies α = α(c, h), and it also applies so long as c and h satisfy ordinary differential
equations of the form ċ = f(c, h), ḣ = g(c, h); in other words, the argument does not
rely on the precise form of (2.26).

Taking now c(h) from (2.28), (2.27) implies

(2.29) ρ = (1 − φ)(h∗ − h),

whence

(2.30) ρ =
(1 − φ)c

φ
,

and the model collapses to the single equation

(2.31)
dc

dt
= φ s(c, I),

where the sublimation flux is given by

(2.32) s = |u|
[
ρ∗(c)
1− φ

− c

φ

]
,

and ρ∗ is given by

(2.33) ρ∗ =
1

T
exp

[
β

(
1− 1

T

)]
, T 4 = IA(φ)G(c),
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Fig. 2.3. Equilibrium values of c as a function of the radiative flux I for parameters β = 15,
φ = 0.2, α̂ = 0.6, g = 1.0 in the functions A = 1+ α̂φ, G = 1+ gc. Sublimative runaway occurs for
I > 0.73. Note the logarithmic scale for c.

where we have defined

(2.34) A = 1− a, G =
1

γ
.

A is an increasing function of φ, and G is an increasing function of c.
Equation (2.31) is essentially that describing thermal runaway in combustion, and

it has multiple equilibria, depending on the values of the parameters. If we use I as an
input parameter, then we obtain the equilibria of c in terms of I as shown in Figure
2.3. Note the extreme values of c. These are due to the large value of β. The lower
(“cool”) and upper (“hot”) branches are stable. Sublimative runaway occurs when
the insolation I increases beyond the values Ic indicated in the figure.

We can use the large value of β to obtain an approximate expression for Ic. The
nose of the curve occurs when T ≈ 1, and thus, if we define

(2.35) A = 1 + α̂φ, G = 1 + gc, I = 1 + Î ,

then we have

(2.36) T ≈ 1 + 1
4 (gc+ α̂φ+ Î),

and thus

(2.37) ρ∗ ≈ exp
[
1
4β(gc+ α̂φ+ Î)

]
.

After a little algebra, we find that the nose of the curve s = 0 is given by

(2.38) c exp
{− 1

4βgc
} ≈ φ

1− φ
exp

[
1
4β(α̂φ+ Î)

]
,

and thus runaway occurs for

(2.39) I > Ic ≈ 1− α̂φ− 4

β

[
ln

{
βgφ

4(1− φ)

}
+ 1

]
.
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For the values used in Figure 2.3, this gives Ic ≈ 0.63, as opposed to the actual value
0.73.

Instability is promoted for larger insolation rates, large dust-albedo coefficient,
or large dust fraction in ice. Dustiness is one of the distinguishing features of the
Martian atmosphere.

3. Mechanisms of transport. In order to study the effect of this sublimative
runaway mechanism in a spatially distributed system, we need to describe transport
terms. There are two obvious transport mechanisms. These are the flow of the ice
cap itself by viscous creep processes, and the atmospheric surface winds. We discuss
each of these in turn.

Katabatic winds are hydraulic flows driven down a cold glacial slope by negative
thermal buoyancy. The necessary theory to describe them can be found in several
places (e.g., Ball (1956), Nappo and Rao (1987), van den Broeke (1997), Grisogono
and Oerlemans (2001)). However, for simplicity we model the summer wind as a
constant velocity downslope katabatic wind.

Wind can transport dust, and ice flow can transport ice. The standard shallow
ice flow model for ice sheet flow uses lubrication theory and a flow law of Glen type
(Paterson (1994)) to predict, in two dimensions, an ice flux of

(3.1) qi ∝ −hn+2|hx|n−1hx,

where n is the exponent in the flow law (Fowler (1992)). This calculation assumes
an isothermal ice cap, but is easily modified for a thermally conducting ice cap at
low velocities. For conditions appropriate to Mars, typical surface ice velocities are
calculated to lie in the approximate range 1–10 mm a−1 (Hvidberg (2003)). Therefore,
the reduced Péclet number is given by

(3.2) Pe ∼ uid
2

lκ
∼ 3× 10−3,

where ui is a typical ice velocity of 10 mm a−1, κ = 38 m2 a−1 is the diffusion
coefficient of heat in ice, and l is the horizontal length scale (see below). As the reduced
Péclet number is small, this confirms that heat transfer is primarily by conduction in
the vertical.

However, for simplicity we model ice transport by a simple diffusion term. In this
way, we pose the model of sublimation with transport as

ht = −s+ hxx,

νct + ucx = φs,(3.3)

where u is the constant wind speed and we have now nondimensionalized using the
time scale over which the ice moves (ti). The corresponding depth scale is hi = h0/ν
where ν = t0

ti
, which is a measure of the ratio of ice speed to wind speed, and is of

order 10−11, for ice speeds of 10 mm a−1 and wind speeds of 30 m s−1. As ν � 1, we
neglect the time derivative in the equation for c and solve

ht = −s+ hxx,

ucx = φs.(3.4)

The new dimensional depth scale is h0/ν ∼ 2200 m, and the time scale is t0/ν ∼
1.58 × 1014 s ∼ 5 Myr, which are appropriate scales for the evolution of the ice cap
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(as we expect, since it is presumably controlled by sublimation–deposition balance).
The horizontal length scale l is defined by

(3.5) l =
du0c0
ρss0

≈ 50 km,

an appropriate scale for the width of a trough.
Although its derivation when there is transport is more opaque, we will continue

to assume that sublimation can be written as a function s(c, I) having a general form
akin to (2.32). The important feedback mechanism in the model is the dependence
of the sublimation flux on insolation. We let x measure distance from the pole, so
hx < 0. The dimensionless radiation flux received at the surface is approximately

(3.6) I = 1− μhx,

where

(3.7) μ =
h0 tan θf

l
.

Using the values above, we estimate μ ∼ 0.2.
This small dependence is amplified by the strong dependence of saturation vapor

pressure on temperature. Using the approximation of (2.37) in (2.32), we have

(3.8) s ≈ Âepc−nhx −Bc,

where

Â =
|u|

1− φ
exp

(
1
4 α̂βφ

)
, p = 1

4βg,

n = 1
4βμ, B =

|u|
φ
.(3.9)

With β = 31, the value of n is about 1.5.
This approximation fails to represent the eventual decline of s at large c as implied

by (2.32) and (2.33), and so as a model problem we define

(3.10) s = f(c)− nhx,

where f(c) has the cubic shape shown in Figure 3.1. To be specific, we choose

(3.11) f(c) = (c− 1)(c− 2)
(
1− c

M

)
,

which mimics the expression in (2.32), providing M � 1.
In reality, the location of the right-hand boundary of the ice cap is determined

by the evolution of the ice cap, and so this is a free boundary problem. However, for
simplicity we fix the right-hand edge of the ice cap by requiring

(3.12) h = 0 at x = L,
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Fig. 3.1. The function f(c) = (c− 1)(c − 2)
(
1− c

M

)
, with M = 5.

where

(3.13) L =
w

l
,

and w is the half-width of the ice cap. Experience with modeling terrestrial ice sheets
(Fowler (1992)) does not suggest that this will have a serious dynamic effect on the
behavior of the solutions. For the Martian north polar ice cap, w = 500 km, and so
using the value for l given in (3.5), we calculate that L = 10.

We require the ice cap to be symmetric about the pole, and so

(3.14) hx = 0 at x = 0.

Only one boundary condition is required for c; we choose to prescribe c at the pole,

(3.15) c = c0(t) at x = 0,

for some function c0(t). We discuss some specific choices of the function c0(t) below,
but note that there is no data that can be used to prescribe c at the pole.

The system of equations in (3.4) coupled with (3.10) has steady solutions of

constant slope, e.g., h = ĥ(1− x
L ), providing s = 0 and thus c = ĉ, where

(3.16) f(ĉ) +
nĥ

L
= 0.

Such a steady state does not satisfy the symmetry condition at the summit, and we
anticipate that there will be an adjustment region close to the summit to accommodate
this condition.

Stability. We expect that the wavelength of traveling waves on the ice cap surface
will be less than the length of the ice cap, and therefore do not seek to satisfy the
boundary conditions given by (3.12), (3.14), and (3.15) in the analysis below.
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We linearize the system of equations (3.4) and (3.10) about the straight line steady
state given above by setting

h = ĥ
(
1− x

L

)
+H exp (σt+ ikx),(3.17)

c = ĉ+ C exp (σt+ ikx),(3.18)

s = S exp (σt+ ikx),(3.19)

where H , C, and S are small in comparison with the steady state values. We find
that the growth rate and wave speed are, respectively,

Re σ = −k2 +
nωk2

ω2 + k2
,(3.20)

− Im σ

k
= − nk2

ω2 + k2
,(3.21)

where ω = φf ′

u . Instability occurs for Re(σ) > 0: from (3.20) this will be where
ω(n−ω) > 0, or equivalently where 0 < ω < n. Note that ω > 0 indicates that in the
steady state f ′(ĉ) > 0. From (3.21), the wave speed is always negative, and so waves
will travel polewards.

If Re(σ) > 0, we can calculate the most unstable wavenumber km using (3.20) to
be

(3.22) k2m = ω
(√

nω − ω
)
.

The requirement that km be real implies that n > ω; this is always the case because
it is the criterion for instability to occur. We therefore conclude that a steady state
in which f ′ > 0 may be linearly unstable to traveling waves of finite wavelength.

Traveling waves. As the steady state may be linearly unstable to finite ampli-
tude traveling waves, we look for such solutions directly. Thus we put

(3.23) h = h(ξ), c = c(ξ),

where the traveling wave variable is

(3.24) ξ = x+ vt,

and we expect, but do not assume, that v > 0. The linear result above would in fact
suggest that 0 < v < n. Substituting (3.23) into equations (3.4) yields the pair of
ordinary differential equations

b′ = vb− s,

uc′ = φs,(3.25)

in which b = −h′ and s = s(c, b). These equations can therefore be simply analyzed
in the (c, b) phase plane.

We consider as a generic example the case where s = f(c)+nb, and we denote the
steady states as P , Q, R, as shown in Figure 3.1. The results are then the following.
When 0 < v < n, P and R are saddles, while Q is a node or spiral, which undergoes
a Hopf bifurcation at

(3.26) v = vc = n− φf ′

u
,
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Fig. 3.2. Phase plane of equations (3.25). Parameter values used were φ = 0.2, n = 1.53,
c1 = 1, c2 = 2, M = 100, u = 1, and V = 1.34. The orange and magenta dashed lines are the
nullclines; arrows show trajectory direction. (Color version available online.) The steady states at
(1, 0) and (100, 0) are saddle points, while that at (2, 0) is an unstable spiral about which there is a
limit cycle.

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

c

b

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

10 0.5 1.5 2.52 3
-2

-1

0

1

2

c

b

Fig. 3.3. Phase plane of equations (3.25) with parameter values as in Figure 3.2, except that
V = 1.388. The limit cycle has become a homoclinic orbit to the saddle point at (1, 0).

assuming vc is positive. Q is unstable for v > vc, and numerical computations suggest
that the Hopf bifurcation is supercritical, so that there is a stable periodic solution
for v > vc. This orbit exists up to a value v = vh, at which it becomes heteroclinic
to P , and disappears in a “blue skies” bifurcation (Thompson and Stewart (1986)).
The stable orbit and its disappearance are shown in Figures 3.2 and 3.3.

If v > n, P and R are still saddles, and Q is an unstable node or spiral. It is
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possible that the limit cycle may still exist, and this probably depends on the size of
f ; it is also possible for the limit cycle to disappear by coalescence with R, but this
seems unlikely for large R. In fact, it is found that as M → ∞ in (3.11), the limit
cycle remains finite and independent of M . This indicates that the limit cycle for the
actual definition of s can be suitably computed using the large β approximation (3.8),
i.e.,

(3.27) s(c, b) ≈ Aepc+nb −Bc,

where the constants are given by (3.9). Computation of solutions using (3.27) shows
that the limit cycle which appears is generally unstable. This does not necessarily
imply that the underlying traveling wave is unstable, however.

In general, one expects to see traveling waves in systems such as reaction-diffusion
equations when a steady state has an oscillatory instability. In particular, systems
whose kinetics admit a Hopf bifurcation will generally possess traveling wave solutions,
and the stability of these solutions can be expected to be associated with the issue
of whether the Hopf bifurcation is subcritical or supercritical. In the present case,
because traveling waves exist only in the neighborhood of a fixed point (Q) which is
directly unstable, it is to be expected that the traveling waves we have found will also
be unstable, and indeed this appears to be confirmed by numerical solution of the full
equations.

Numerical solution. To obtain numerical solutions to the system of equations
(3.4) and (3.10), we implemented a numerical method in Fortran 77. We used an
implicit finite difference scheme to evolve h in time and an improved Euler method
to solve the quadrature for c. At the boundaries, we used second order accurate
approximations for the height and slope.

Steady state ice cap profiles were calculated using a constant boundary value for
the suspended dust concentration at the summit; i.e., the boundary condition for c
in (3.15) is given by c0(t) = c0, where c0 is constant. To obtain a steady state profile
comparable to that of the current day ice cap, we first note that the scale for h is
2200 m, while the current day ice cap elevation at the pole is approximately 3000 m
(Zuber et al. (1998)). This indicates that, dimensionlessly, h(0) ≈ 1.36.

Using this value, we calculated the straight line approximation to the steady state
described above; this approximation was then used as the initial condition for h. We
also calculated the three corresponding constant values of c in the steady state away
from the summit and used these as the boundary values c0: c0 = 1.34, 1.65, and
20.0122.

The resulting steady state profiles of h for each boundary value c0 are shown in
Figure 3.4. For all three values of c0 a steady state is attained that has constant slope
away from the pole. Close to the pole there is a correction region due to the symmetry
condition, (3.14). We see that is possible to produce a physically realistic steady state
shape profile for different boundary values c0. In the two uppermost plots, this steady
state is very close to the initial condition (which was a straight line passing through
(0, 1.36) and (10, 0)).

In the lowest plot, where c0 is close to M = 20, the steady state is not close to
the initial condition. This is because close to M the value of f(c), and therefore the
value of s, is more sensitive to changes in c. This means that the change in c across
the correction region near the pole has a larger effect on f(c) and, from (3.10), it
therefore has a larger effect on the resulting h profile. From the numerical solutions
it is verified that away from the pole s = 0 in the steady states. The same qualitative
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Fig. 3.4. Steady state profiles of h with c = c0 at x = 0. The upper plot shows the solution
for c0 = 1.34, the central plot for c0 = 1.65, and the lower plot for c0 = 20.0122. Parameter values
used were φ = 0.2, u = 1, n = 1.53, c1 = 1, c2 = 2, and M = 20; in all cases the initial condition
for h was a straight line passing through (0, 1.36) and (10, 0). The corresponding constant values of
c in the steady state away from the correction region near x = 0 were ĉ = 1.31, 1.62, and 20.0041.

behavior is seen for larger values of M : the value M = 20 was chosen for ease of both
illustration and numerical calculation.

All three steady states shown in Figure 3.4 are stable; if this were not the case,
they would not be seen numerically. This might seem to contradict the earlier cal-
culation that if c0 lies on the middle branch of the f(c) curve where f ′(c) > 0, the
steady state is unstable. However, previous analytic calculations did not account for
the boundary conditions on h and c, which appear to have a stabilizing effect. Later
we see that some steady states where f ′(c0) > 0 are indeed unstable.

For 1 < c0 < 1.85 and c0 > 20, numerical solutions indicate that a steady state
exists with an h profile that has a shape similar to those shown in Figure 3.4: a straight
line away from the pole which has positive h everywhere. For 0 < c0 < 1 and 7 < c0 <
20, a similarly shaped steady state exists, except that the ice cap elevation is negative
everywhere. It is not clear what the physical interpretation of negative h is; one
possibility is that it represents a situation in which no steady state ice cap is possible.

However, for 1.85 < c0 < 7, no steady state profile is found numerically; instead,
global oscillations in both c and h occur. This is an indication that the steady state,
if it exists, is unstable. These global oscillations have three main phases.

First, as shown in Figure 3.5, there is a phase where c increases from a value
close to the boundary value c0 to an O(M) value, and a polewards-traveling wave
in c across the ice cap is observed. A corresponding depression forms on the ice cap
surface, which deepens and migrates polewards.
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Fig. 3.5. Numerical calculations of the elevation h and suspended dust density c as a function
of distance from the pole, x, with boundary condition c0 = 1.9. The upper plot shows the elevation
of the ice cap surface, h, and the lower plot the evolution of the suspended dust density, c. The
solution is shown between times t = 0 and t = 4.8 at time intervals of t = 0.6; the wave in c travels
from right to left, as does the wave in h. The remaining parameter values are as in Figure 3.4.

In the second phase shown in Figure 3.6, the wave in c changes direction and moves
equatorwards across the ice cap; when this wave reaches the right-hand boundary, c
decreases from an O(M) value to an O(c0) value. The surface depression continues
to deepen, but does so less rapidly.

Finally, over a much longer time scale, both the surface elevation and suspended
dust density increase back to their initial profiles and the cycle begins again. This
final phase is shown in Figure 3.7.

A three-dimensional plot of the c profile of the same oscillation is shown in Figure
3.8; the maximum and minimum values of c as a function of time are shown in Figure
3.9. Both figures have a logarithmic c scale for ease of illustration. Figure 3.8 shows
the waves in c moving from the pole to the right-hand boundary (we do not see the
polewards traveling waves as they are on the far side of the “bump”). From Figure 3.9
it can be seen that the oscillations are periodic in time and that the traveling waves
in c move quickly. Both c and h become negative over some or all of the ice cap,
which has no meaningful physical interpretation. If these global oscillations occur, a
backwards-traveling wave in c is initiated, as shown in the uppermost plot of Figure
3.5. The effect of this wave in the suspended atmospheric dust is manifested in the
corresponding surface profile as a depression that deepens as the wave in c migrates
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Fig. 3.6. Numerical calculations of the elevation h and suspended dust density c as a function
of distance from the pole, x, with boundary condition c0 = 1.9. The upper plot shows the elevation
of the ice cap surface, h, and the lower plot the evolution of the suspended dust density, c. The
solution is shown between times t = 4.8 and t = 6.8 at time intervals of t = 0.5; the solution at
the final time t = 6.8 is shown as a dashed line for ease of illustration. In this case, the surface
depression shown in the upper plot is deepening with time, and the wave in c shown in the lower
plot is moving from left to right. The remaining parameter values are as in Figure 3.4.

polewards. Such a depression has a similar shape to a trough, i.e., a steeper equator
facing wall.

Although the initial condition for the solution shown in Figures 3.5–3.9 is an
approximation to the steady state, in this case there is in fact no steady state ice cap
on which the trough can form. However, if c0 is initially constant at a value close
to c1 for which there is a stable steady state, and then subsequently increases to a
value at which global oscillations occur, a trough can form as a surface depression on
a steady state ice cap. At later times after the initial transient, global oscillations in
c and h occur, as would be seen if c0 was constant at the end value.

A trough can also form if the boundary condition on c causes a transition between
stable steady states (rather than a transition between a stable steady state and the
global oscillations described above). One such example is shown in Figure 3.10, where
the boundary condition causes a transition between a steady state with positive ele-
vation and one with a negative elevation. At a later time (not shown), h and c reach
their steady state profiles.

Such a transition between stable steady states can in fact occur via either a
polewards- or an equatorwards-traveling wave. A polewards-traveling wave occurs
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Fig. 3.7. Numerical calculations of the elevation h and suspended dust density c as a function
of distance from the pole, x, with boundary condition c0 = 1.9. The upper plot shows the elevation
of the ice cap surface, h, and the lower plot the evolution of the suspended dust density, c. The
solution is shown between times t = 6.8 and t = 36.8 at time intervals of t = 10; the solution at the
initial time t = 6.8 is shown as a dashed line for ease of illustration, and is the same as the final
profile indicated by the dashed line in Figure 3.6. In this case, both the ice cap surface elevation and
the suspended dust density are increasing. The remaining parameter values are as in Figure 3.4.

if c0 changes from the lower steady state value to the higher steady state value at
the boundary, and an equatorwards-traveling wave occurs if the reverse is true, i.e.,
c0 changes from the higher steady state value to the lower steady state value at the
boundary. However, for no choice of boundary condition c0(t) was more than one
trough formed on the ice cap surface; it was not possible to obtain a sequence of
traveling waves. This indicates that if the traveling wave solutions found in the phase
plane analysis exist, they are unstable. However, it seems that the imposed boundary
conditions determine the behavior observed in the numerical solutions, and these are
not accounted for in the previous analytic work.

Also, once a surface depression has formed on the ice cap surface, the model is
no longer valid. This is because the katabatic wind should always flow downslope;
therefore, over a portion of the ice cap where hx > 0, the wind should change direction,
and it can therefore no longer be assumed that u is constant over the whole ice
cap. Another issue is that it is not realistic to prescribe c0 at the pole, and the
choice of c0(t) is arbitrary, although numerical simulations indicate that an increase in
Martian obliquity will cause an increase in the amount of atmospheric dust (Newman,
Lewis, and Read (2005)). Therefore, increasing or decreasing c0 at the pole could be
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Fig. 3.8. A three-dimensional surface plot of the suspended dust density as a function of space
and time. Note the logarithmic scale on the c axis. The parameter values and boundary conditions
used were as in Figure 3.4. Red indicates large c values, while blue indicates low c values. The
spatial resolution is 0.5 space units and the solution is shown from t = 0 to t = 250 at intervals of
t = 0.2.

0 50 100 150 200 250
1

1.5

2

2.5

3

Time 

ln
(5

+
c
)

Fig. 3.9. Numerical calculation of the maximum value of c as a function of time (upper solid
line) and the minimum value of c as a function of time (lower dashed line). The parameter values
and boundary conditions used were as in Figure 3.4.
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Fig. 3.10. Numerical solution for h and c as functions of x (upper and lower plots, respectively).
The initial condition and parameter values are as in Figure 3.4; the boundary condition used was
c0 = 1.34 + 0.5(8 − 1.34) {tanh [30(t − 0.5)] + 1}. The solution is shown at time intervals of 0.01
between t = 0.45 and t = 0.60. The waves in c and h travel from right to left.

physically motivated as a representation of obliquity-induced climate change. Finally,
the model allows both h and c to become negative, and this has no meaningful physical
interpretation.

On the other hand, the model produces steady state ice cap profiles with a realistic
shape, and it allows a single trough to develop for certain choices of boundary condi-
tion. This trough typically has the correct shape, i.e., a steeper equator-facing slope,
and it is possible to describe some features of such a trough analytically (Zammett
(2008)).

4. Conclusions. In this paper, we have derived a mathematical model of the
kinetics of ice and dust in the Martian north polar region. This model was based
on the description of sublimation kinetics by Ivanov and Muhleman (2000) and on
the coupling of these kinetics with water vapor transport by Ng and Zuber (2006),
and describes dust-albedo feedback. However, the model presented here explicitly
describes dust, both frozen in the ice cap and suspended in the atmosphere above it.
We have also included the greenhouse effect of suspended atmospheric dust.

Solutions of the model in the absence of transport terms suggest that multiple
equilibria are possible, and that these equilibria can be characterized by the insolation
received at the surface and the suspended dust density. We then added transport
terms to the model: the transport of atmospheric dust by a downslope katabatic
wind and ice transport by steady state creep. We used the simplest mathematical
expressions for such processes by including a constant velocity wind and a linear
diffusion term to model ice transport. In addition, we supposed that the ice cap
margin was fixed, rather than allow it to be a free boundary. This is somewhat
equivalent to prescribing an oceanic margin for a terrestrial ice sheet rather than
a land-based margin. There is no suggestion that this difference is significant for
terrestrial ice sheets, and we do not consider it likely that it will affect the possibility
of forming multiple troughs, for example. Finally, we used the results from the kinetic
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model to prescribe a function for the sublimation flux. This simplification reduces the
model to a pair of coupled partial differential equations for the ice surface elevation
and the suspended dust density.

Steady states of this system are possible in which the ice cap elevation is approx-
imately a straight line and the suspended dust density has a constant value across
the ice cap away from the pole. Linear stability analysis suggests that such a steady
state may be linearly unstable, and phase plane analysis shows that traveling wave
solutions are possible.

However, no such traveling waves are seen in the numerical solutions, suggesting
that if such waves exist, they are always unstable. Instead, it is possible to generate
solitary traveling waves in the suspended atmospheric dust density, and such a wave
causes a depression in the ice cap surface to form. These waves in the suspended dust
density are generated by changing the boundary condition on the suspended dust
density at the pole as a function of time. This could be interpreted as a change in
the dustiness of the Martian atmosphere caused by a change in climate. Therefore,
in this model, a single trough may form, but there are no stable traveling waves as in
the model of Ng and Zuber (2006), and multiple troughs are not seen in the model.
This suggests that the troughs do not form as a patterning instability if the katabatic
wind velocity is assumed to be constant, contradicting the prediction of Ng and Zuber
(2006).

However, the model as it stands requires modification if it is to accurately describe
processes occurring in the Martian north polar region. First, it may not be realistic to
prescribe the suspended dust density at the summit, and it is this boundary condition
which determines the features of the numerical solution. As mentioned above, a
katabatic wind should always flow downslope; when a depression has formed on the
ice cap surface, the assumption of a constant velocity wind is no longer valid. When
these problems are rectified, we find that an improved model does in fact allow multiple
troughs to form in certain circumstances (Zammett (2008)).

In a two-dimensional model such as this, we are unable to address the issue of the
spiral form of the troughs. In reaction-diffusion systems, the breaking of symmetry
of target patterns to form spiral waves may be associated with the finite size of dust
particles which are able to “fix” a rotating periodic oscillation on their surfaces. In
the present case, we might suppose symmetry breaking could occur if the troughs
propagate inwards, so that the margins act as the nucleation zones. This is entirely
speculative, of course, but somewhat consistent with the inward propagation shown
in Figure 3.10.
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