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Abstract In certain blood diseases, oscillations are found in blood cell counts. Par-
ticularly, such oscillations are sometimes found in chronic myelogenous leukaemia,
and then occur in all the derived blood cell types: red blood cells, white blood cells,
and platelets. It has been suggested that such oscillations arise because of an instabil-
ity in the pluri-potential stem cell population, associated with its regulatory control
system. In this paper, we consider how such oscillations can arise in a model of com-
petition between normal (S) and genetically altered abnormal (A) stem cells, as the
latter population grows at the expense of the former. We use an analytic model of
long period oscillations to describe regions of oscillatory behaviour in the S–A phase
plane, and give parametric criteria to describe when such oscillations will occur. We
also describe a mechanism which can explain dynamically how the transformation
from chronic phase to acute phase and blast crisis can occur.

Keywords Chronic myelogenous leukaemia · CML · Chronic phase · Oscillations ·
Delay equations · Blast crisis

1 Introduction

Chronic myelogenous leukaemia (CML) is a progressive, malignant disease char-
acterized by a large number of abnormal blood cells in the bone marrow and pe-
ripheral blood (Hoffbrand and Pettit 1993; Whittaker 1987; Druker et al. 2001). Ab-
normal blood cells contain the Philadelphia (Ph) chromosome, the result of a re-
ciprocal translocation between the chromosomes 9 and 22 (De Klein et al. 1982;
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Fig. 1 An entirely schematic representation of the progression of CML through three distinct phases. The
units of cell count are arbitrary (as the graph is schematic) and the time is indicated in years for a typical
progression of the disease. After an initial period of 5 to 10 years during which the abnormal cell count
rises to a relatively steady (and possibly oscillatory) level, the system reaches a chronic phase during which
the disease is diagnosed. After several years in the chronic phase, an instability arises which proves fatal
after a period of the order of months

Nowell and Hungerford 1960). Cells with this new form of chromosome have a pro-
liferative advantage over the normal ones because by the time the disease has be-
come sufficiently advanced to permit a diagnosis to be made, which is approximately
8 years after the initial cell alteration (Kamada and Uchino 1978), the Ph chromo-
some is present in a majority of blood cells (Goldman 1997; Strife and Clarkson
1988). This leads to the conclusion that the initial transformation starts in a sin-
gle pluripotent hematopoietic stem cell in the bone marrow (Buckle et al. 2000).
However, in the majority of patients at diagnosis, it is found that the bone mar-
row still contains a significant number of normal stem cells, and it is only later
that these normal Ph negative cells decline with time (Strife and Clarkson 1988;
Frassoni et al. 1999).

Somewhat like AIDS, the clinical course of chronic myelogenous leukaemia when
diagnosed can be divided into an apparently stable chronic phase, a transitional accel-
erated phase, and a subsequent acute phase (Faderl et al. 1999; Hill and Meehan 1999;
Cortes et al. 1996). The chronic phase, lasting for 3–6 years, is characterized by a
larger than normal but relatively constant number of abnormal cells which neverthe-
less function almost normally, so the disease can be controlled (Eaves et al. 1998).
Eventually, the disease transforms into a more advanced phase characterized by an
accelerated increase of the abnormal cells, which is manifested by a sudden expan-
sion in the number of abnormally proliferated immature blood cell types (Goldman
1997). This acute phase leads to fatality in a period of 3–9 months (Cortes et al.
1996). Figure 1 shows a schematic progression in time through these phases.

The progression from the chronic, seemingly stable, phase to the advanced
phase has intrigued experimental haematologists for several decades. One possi-
ble explanation for this progression is that during the chronic phase, leukaemic
cells develop additional mutational events, which cause partial or complete loss of
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Fig. 2 Oscillations in leukocytes, platelets, and reticulocytes in a patient with CML. Data from Iizuka et
al. (1984). The period is about 60 days. Figure supplied courtesy of M.C. Mackey

the cells’ ability to undergo differentiation and maturation (Frassoni et al. 1999;
Strife and Clarkson 1988).

A way in which such mutational events might be mathematically modelled is
through the slow evolution of parameters with time, and a consequent interpreta-
tion of the onset of the acute phase is that it occurs through the loss of stability of a
slowly evolving quasi-steady state, in which there is a balance in the interaction be-
tween normal and abnormal stem cells (the most primitive cells in the bone marrow)
and their progeny, and possibly also the immune system response. It is this possibility
which motivates our study of the dynamics of the blood cell lineages.

A related issue, and one which also concerns us here, is the presence of regular
oscillations in blood cell counts in patients with CML. Such oscillations have been
found in many different CML patients, and many cases have been documented by
Fortin and Mackey (1999) and Bennett and Grunwald (2001), including that shown
in Fig. 2, while these and other such oscillatory blood cell diseases are reviewed by
Haurie et al. (1998) and Guerry et al. (1973). When oscillations occur in blood cell
counts, these are seen in all blood cell types, consistently suggesting that the oscil-
lations originate in the stem cell population. This was suggested by Mackey (1978,
1979, 1997), who also provides a model for the control of the stem cell population
which can be subject to oscillatory instability. It is not at all clear whether cell oscilla-
tions are a side effect of the disease, or are instrumental in controlling the course of its
progression. In order to further our understanding of this question, we are here con-
cerned with models which can describe such oscillations, and we aim to do so in the
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context of a presumed competition between normally and abnormally proliferating
stem cells.

Stem cells are a small group of cells in the bone marrow which possess an exten-
sive capacity to maintain the blood cell production in the body (Lodish et al. 1995;
Alberts et al. 1989; Fox 1996; Potten 1997; Schwarzenberger et al. 2002). The most
primitive stem cell is the pluripotent haematopoietic stem cell. This cell gives rise
to myeloid and lymphoid stem cells. The myeloid line differentiates into various
types of myeloid progenitor cell which eventually generate erythrocytes, neutrophils,
eosinophils, basophils and mast cells, monocytes, and platelets. The lymphoid line
gives rise to lymphocyte progenitor cells that eventually mature into T lymphocytes,
B lymphocytes, and natural killer (NK) cells. The process of blood cell formation is
called haematopoiesis; it takes place in the bone marrow, and it involves the progres-
sive development of structural and functional characteristics specific for a given cell
type (maturation), and cell proliferation (Hughes-Jones and Wickramasinghe 1997;
Hoffbrand and Pettit 1993).

As maturity increases, the ability of cells to proliferate and self-renew decreases
(Hoffbrand and Pettit 1993). When the fully matured and functional cells are formed,
they leave the bone marrow and enter the blood. In healthy individuals, some stem
cells enter the blood as well, but they are present in such small numbers that they
cannot be counted or identified in the usual type of blood count.

Although some of the process of hematopoiesis is known, there are a lot of open
questions concerning the role of the stem cells in this process. One of the questions of
interest for our model is whether the stem cells self-renew (i.e., replicate themselves
in order to maintain their number). Gordon and Blackett (1998) offer two different
hypotheses for this: either sufficient stem cells are produced during embryogenesis
to supply the needs of the adult animal throughout life, which would mean that stem
cells are quiescent until they are needed to supply mature blood cells; or adult animals
contain only a small number of stem cells that can self-replicate to produce more
stem cells, in which case when the stem cells divide, not all of the daughter cells
differentiate.

In the second case, it is believed that the molecular abnormality that arises in stem
cells in CML causes an abnormality in the delayed negative-feedback mechanisms
of the cell cycle (Gordon et al. 1999) which then results in the overproduction of
cells of the granulocytic series. However, the link between the molecular and cellular
phenotypes remains poorly understood. It is believed that some or all of the normal
stem cell proliferation rate, differentiation rate, apoptosis rate, and the time the cell
spends in the proliferative cycle, are perturbed in abnormal cells (Frassoni et al. 1999;
Eaves et al. 1998; Gordon et al. 1999; Jorgensen and Holyoake 2001; Kummermehr
and Trott 1997).

An alternative view is that of the discordant maturation hypothesis of Strife and
Clarkson (1988) and Strife et al. (1988), which proposes that the more mature prolif-
erating cells in chronic phase CML are responsible for the expansion of the leukemic
population. A mathematical model of this has been proposed by Rubinow and
Lebowitz (1976). This is in contrast to the Dowding hypothesis, which suggests that
leukemic stem cell proliferation alone can explain the expansion (Gordon et al. 1987).

The two models give rise to very similar model structures, as discussed below. In
this paper, we will largely for simplicity follow the idea of the Dowding hypothesis
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and will look into the regulation of the proliferation of the leukemic stem cell popu-
lation. Jorgensen and Holyoake (2001) investigated the influence of the Ph chromo-
some on the behaviour of the leukemic cells, and they concluded that the altered gene
may induce neoplastic transformation, enhance cellular proliferation and differentia-
tion, increase stem cell turnover, inhibit apoptosis, and produce defects in adhesion
to bone marrow. Eaves et al. (1998) indicate three biological changes affecting the
development of leukemic cells: an increased probability of differentiation at the level
of the most primitive leukemic stem cells, an increased turnover rate of the leukemic
progenitors at all stages of differentiation, and their increased ability to survive under
conditions of growth factor deprivation. Gordon et al. (1999) offer several explana-
tions for the expansion of the leukemic progenitor: reduced apoptosis in leukemic
stem cells, reduction in cell cycle time, an increase in stem cell proliferation rate, and
an increase in stem cell self-renewal rate. Bedi et al. (1994) suggest that CML cells
have a decreased rate of apoptosis.

This summary of evidence reported by these investigators leads us to make several
assumptions concerning the effect of CML on the model parameters:

1. The rate of apoptosis in normal stem cells is higher than in leukemic stem cells.
2. The time spent in the cell cycle is higher in normal stem cells than in the leukemic

stem cells.
3. The rate of differentiation is smaller in normal stem cells than in the leukemic

stem cells.
4. The recruitment rate is smaller in the normal stem cell than in the leukemic stem

cells.

2 The Mackey Model

Stem cells go through a cycle indicated in Fig. 3 comprising four activities: they
may be in an inactive resting phase (which is the most common phase (Gordon et

Fig. 3 A schematic representation of the control of pluripotent stem cell regeneration. The resting state
is designated G0 and its population size is denoted S, while the proliferative phase (of population size P )
is composed of various sub-phases, including those labelled D, DNA synthesis, and M , mitosis, as well
as intermediary phases G1 and G2; see Mackey (1981) for further details. The proliferative phase takes
a time τS , γ is the specific rate of cellular death (apoptosis) during proliferation, δ is the specific rate of
differentiation into all of the committed stem cell populations, and the specific recruitment rate β(S) is
usually taken to be in the form of the Hill function given in (2). Reasons for choosing a Hill function are
given in the Appendix. Apoptosis during the resting phase is not generally considered (Mackey 1981), but
would in any case only have the effect of altering the value of δ
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al. 1999)), they can proliferate (by dividing to produce two daughter cells), they can
differentiate (becoming more mature and beginning the progression to fully differ-
entiated blood cells), and they can undergo apoptosis; in other words die. There is a
delay in the model, because it takes a time τS for cells to go through the proliferative
phase.

Mackey’s model of the replication control system shown in the figure consists of
two delayed differential equations that simulate the evolution of a stem cell popula-
tion. The model is based on earlier formative work by Lebowitz and Rubinow (1969),
and Rubinow and Lebowitz (1975); the latter paper also discusses the maturation of
the cells. Mackey’s equations are given by

dP

dt
= −γP + β

{
S(t)

}
S(t) − e−γ τS β

{
S(t − τS)

}
S(t − τS),

dS

dt
= −[

β
{
S(t)

} + δ
]
S(t) + 2e−γ τS β

{
S(t − τS)

}
S(t − τS),

(1)

where β(S) is given by the Hill function

β(S) = β0θ
n

θn + Sn
. (2)

2.1 Oscillatory Behaviour

Under certain circumstances, the steady state of (1)2 is oscillatorily unstable, and the
cell population undergoes spontaneous oscillations. These oscillations can have long
periods (by comparison with τS ), as shown in Fig. 2, which can be understood in
terms of (1)2 when the differentiation rate δ is relatively small.

Fowler and Mackey (2002) analysed the stem cell regulation model (1)2 when δ

is small, and we begin by recapitulating the main points of their findings here. The
equations can be written in dimensionless form by scaling S and t as S ∼ θ , t ∼ τS ;
the resulting equation for the dimensionless resting population S is

dS

dt
= g(S1) − g(S) + ε

[
μSg(S1) − S

]
, (3)

where S1 = S(t − 1), and

g(S) = bSSh(S), h(S) = 1

1 + Sn
, (4)

and the parameters are defined by

bS = βSτS, ε = δSτS, μS = 2e−γSτS − 1

δSτS

. (5)

Fowler and Mackey (2002) analysed this class of delay differential equations using
singular perturbation analysis, based on the assumption that bS and μS are O(1), but
ε � 1. (Typical estimates based on clinical data were bS = 3.9, μS = 2.6, ε = 0.11.)
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Oscillations occur when ε � 1 if bS > bc, where bc = 3 for n = 3, and are relax-
ational; the period is of dimensional order 1/δS , and is controlled by the differenti-
ation rate. Long period oscillations in the model thus result when the differentiation
time is long.

A good deal of work has been done on this G0 stem cell model, and variations
thereof. Models which consider only the stem cell population, and with a constant
time delay include those by Mackey (1978, 1979, 1997), Fowler and Mackey (2002),
Pujo-Menjouet and Mackey (2004), and Pujo-Menjouet et al. (2005). Colijn and
Mackey (2005) and Colijn et al. (2006) synthesized several previous mathematical
models of hematopoietic stem cell dynamics (Mackey 1978, 1979, 1997), and mod-
els for the regulation of neutrophils (Haurie et al. 2000), platelets (Bélair and Mackey
1987), and erythrocytes (Mahaffy et al. 1998) into a single model for the regulation
of the hematopoietic system.

Adimy et al. (2005a) use the G0 model but assume that the time delay (or pro-
liferating phase duration) is uniformly distributed on an interval. The main objective
is to investigate the effect of time delay on the dynamical solutions. It is shown that
there exist some critical values of the time delay such that a local Hopf bifurcation
occurs at the non-trivial equilibrium. Adimy et al. (2005b) apply a similar approach
on a maturation model. More recently, sufficient conditions for the stability of de-
lay differential equations with distributed delay have been obtained by Bernard et al.
(2001). They used some properties of the distribution to prove these results. However,
the authors focused on sufficient conditions for stability, there is no necessary con-
dition in these studies, and these results are not applicable directly to the maturation
model used by Adimy et al. (2005b).

Other approaches which do not use the G0 model have also been reviewed. Michor
et al. (2005) used a four-compartment model consisting of stem cells, progenitor cells,
differentiated cells, and terminally differentiated cells and involved both normal and
leukaemic cells to explain the kinetics of the molecular response to imatinib in a 169-
patient data set. Their model was a simple competition model comprising a system
of ordinary differential equations. Bessonov et al. (2006) use a population dynamics
approach and consider a population of individual cells instead of a density which
is usually considered in the continuous models. This allows them to describe the
behaviour of cells and their interactions in a more explicit way. In their work, they
introduce a new software created to study hematopoiesis at the cell population level
with this individually based approach. Their main focus is to use it as an interface
between theoretical works on population dynamics and experimental observations.
Moore and Li (2004) model the interaction between the immune system (naïve T cells
and effector T cells) and CML cancer cells in the body, using a system of ordinary
differential equations which gives rates of change of the three cell populations.

Here, we use the G0 model, and focus on the approach described by Fowler and
Mackey (2002), where they analysed a single population stem cell model (1). We
extend their method by introducing an additional population of stem cells, and look
at the competition of the normal and the abnormal, leukaemic cells. In Sect. 3, we
describe the competition model. We then analyse this model and its fixed points and
stability in Sect. 4. We investigate the oscillatory behaviour of the model in Sect. 5.
Finally, we discuss and interpret the results in Sect. 6.
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3 A Competitive G0 Model

We now suppose that there are two types of stem cell, the normal population (de-
noted S) and the abnormal, genetically altered population, denoted A. We suppose
that A is controlled by a similar equation to that of S, but with different parameters,
as described below. A model of essentially this type was introduced by Rubinow and
Lebowitz (1976) in modelling acute myeloblastic leukaemia. However, they consid-
ered the precursor cells to be myeloblasts rather than stem cells, so that although
the model was quite similar to that given here, the appropriate parameter choice was
quite different. In order to write an appropriate model, we need to generalise how
the Hill function h(S) (cf. (4)) should be written when there are two cell populations
present. It is by no means obvious how to do this and, therefore, in the Appendix,
we examine a conceptual model of stem cell recruitment which is able to motivate
the choice in (4), and also to provide a plausible controller for the present purpose.
The result of this discussion is to suggest that the effects of crowding should lead to
a modification of the definition of β in (2) to the form

β(S) = βS

θn

θn + cSn
, (6)

where c is a crowding factor which depends on total cell density Θ . In the discussion
leading to the derivation of (67), we derive the form

c = 1
(
1 − Θ

Θc

)n , (7)

but the main point is that c should be an increasing function of Θ .
The competition of the two populations of cells in the bone marrow is modelled

by the equations

dS

dt
= 2e−γSτS βSSτS

h(SτS
/θ,ΘτS

) − [
δS + βSh(S/θ,Θ)

]
S,

dA

dt
= 2e−γAτAβAAτA

h(AτA
/θ,ΘτA

) − [
δA + βAh(A/θ,Θ)

]
A,

(8)

where

Θ = S + A, (9)

SτS
= S(t − τS), AτA

= A(t − τA), βS and βA represent maximum recruitment rate,
and the feedback function h is the Hill function

h(ξ,Θ) = 1

1 + c(Θ)ξn
. (10)
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We non-dimensionalisz the variables using θ as the scale for A and S, and τS as the
scale for t . The scaled version of (8) can then be written in the form

dS

dt
= (bS + ελS)S1h(S1,Θ1) − [

ε + bSh(S,Θ)
]
S,

α
dA

dt
= (bA + εαdAλA)Aαh(Aα,Θα) − [

εαdA + bAh(A,Θ)
]
A.

(11)

The parameters are defined by

bS = βSτS, ε = δSτS, λS = (2e−γSτS − 1)βS

δS

,

bA = βAτA, α = τA

τS

, dA = δA

δS

, λA = (2e−γAτA − 1)βA

δA

.

(12)

It should be noted that we have used the same value of θ in each Hill function. This
is largely for convenience. Differing values of θ can effectively be included by al-
lowing different definitions of the crowding coefficient in the Hill functions for each
controller. We omit such delicacies.

Previously (Fowler and Mackey 2002), we estimated values of bS = 3.9, μS =
2.6, ε = 0.11; noting that λS = μSbS , this implies λS ≈ 10.14.1 On the basis that
abnormal CML stem cells differentiate more rapidly, have a shorter cell cycle time,
proliferate at a greater rate, and die less often, we would surmise that

δA > δS, τA < τS, βA > βS, γA < γS. (13)

If this is the case, then the corresponding values of the dimensionless parameters
would be

dA > 1, α < 1, bA ∼ bS, λA ∼ λS. (14)

The equivalence of b and λ is due to the effect of competing inequalities in their
definitions. We have a mild preference for bA > bS , on the basis that the alteration in
recruitment rate β may be larger than that in cell cycle time τ . We also suppose that
it is likely that λA > λS , on the basis that both quantities in the numerator increase,
whereas only the single quantity in the denominator does so.

1The astute reader will note that the high value of λS appears to nullify the whole basis of the slowly
varying approximation, since in fact ελS ∼ 1. Although one could simply choose to proceed in any case,
formally assuming that λS = O(1), it may be pointed out that what is necessary is that λSh = O(1), and
this is suggested by the steady state values in (23) below, which indicate precisely this balance.
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4 The Slowly Varying Phase Plane

Our strategy in solving the competitive model (11) is to treat it in the same way as
we dealt with (3). First, we rewrite (11) in a similar form:

dS

dt
= bS

[
S1h(S1,Θ1) − Sh(S,Θ)

] + ε
[
λSS1h(S1,Θ1) − S

]
,

α
dA

dt
= bA

[
Aαh(Aα,Θα) − Ah(A,Θ)

] + εαdA

[
λAAαh(Aα,Θα) − A

]
.

(15)

Next, we assume that S and A are slowly varying on a time scale of O(1/ε) � 1;
expanding the delayed terms, we have

S1 ≈ S − Ṡ + · · · , Aα ≈ A − αȦ + · · · ,

Θ1 ≈ Θ − Θ̇ + · · · , Θα ≈ Θ − αΘ̇ + · · · ,
(16)

and thus, defining the slow time

τ = εt, (17)

we derive the slowly varying approximation for S and A,

M

(
S′
A′

)
=

( {λSh(S,Θ) − 1}S
dA{λAh(A,Θ) − 1}A

)
(18)

where S′ = dS/dτ , A′ = dA/dτ , and the matrix M is given by

M =
(

1 + bSH(S,Θ) bSJ (S,Θ)

bAJ (A,Θ) 1 + bAH(A,Θ)

)
, (19)

where

H(ξ,Θ) = h + ξ(hξ + hΘ), J (ξ,Θ) = ξhΘ. (20)

Inverting this, we have

(
S′
A′

)
= �−1

(
1 + bAH(A,Θ) −bSJ (S,Θ)

−bAJ (A,Θ) 1 + bSH(S,Θ)

)( {λSh(S,Θ) − 1}S
dA{λAh(A,Θ) − 1}A

)
, (21)

where the determinant of M is given by

� = detM = 1 + bSH(S,Θ) + bAH(A,Θ)

+ bSbA

[
H(S,Θ)H(A,Θ) − J (S,Θ)J (A,Θ)

]
. (22)

4.1 Fixed Points and Stability

We will assume that λA,λS > 1, so that both cell populations are viable. It is easy to
see from (18) that there are three fixed points (apart from the origin). Two of these
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correspond to steady states of one or other cell population. These two steady states
are given by S = S∗, A = 0, and S = 0, A = A∗, where S∗ and A∗ are the roots of

h(S∗, S∗) = 1

λS

, h(A∗,A∗) = 1

λA

. (23)

The third steady state corresponds to steady co-existing cell populations S̄, Ā satis-
fying

h(S̄, Θ̄) = 1

λS

, h(Ā, Θ̄) = 1

λA

. (24)

With h defined by (10), we have

S̄ = Ā

(
λS − 1

λA − 1

)1/n

, (25)

where Ā is the unique positive root of

Anc

[{
1 +

(
λS − 1

λA − 1

)1/n}
A

]
= λA − 1. (26)

The solution is evidently unique for any monotonically increasing function c(Θ).
To examine the stability of these fixed points, we note first that the S and A axes

are invariant. The stability of the fixed points to perturbations of the non-zero popu-
lation only (i.e., perturbations of S only for (S∗,0) or A∗ for (0,A∗)) is described by
the sign of 1 + g′ (Fowler and Mackey 2002), where here g(S) = bSSh(S,S). Now,
evaluation of � = detM on, for example, the S axis, shows that

� = [1 + bA][1 + g′] on A = 0, (27)

and thus sgn� = sgn(1 + g′) on the S axis; a similar result holds on the A axis.
Therefore, the stability of either fixed point to along axis perturbations is determined
by the sign of � at the fixed point. Since in fact we know that the consequence of
� < 0 at either fixed point is to promote relaxation oscillations, we assume for the
moment that � > 0.

Let us consider the behaviour of trajectories near (S∗,0). We write

S = S∗ + s, (28)

and linearise the equations, taking A, s � 1. This yields, using the definitions of H

and J in (20),

M∗
(

s′
A′

)
≈

(
λS(Hs + JA) − s

dA(λA − 1)A

)
, (29)

where H and J are evaluated at (S∗,0), and we have used the facts from the assumed
controller in (10) that

H(0,Θ) = 1, J (0,Θ) = 0. (30)
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The matrix M∗ = M|(S∗,0) is given by

M∗ =
(

1 + g′(S∗) bSJ (S∗,0)

0 1 + bA

)
; (31)

from this we see that

(1 + bA)Ȧ = dA(λA − 1)A, (32)

and thus that, with this choice of controller, the steady state (S∗,0) is always unstable
(a saddle) when λA > 1. Similarly, the steady state (0,A∗) is an unstable saddle, and
in the absence of the delay, we would surmise that the coexistence state (S̄, Ā) would
be stable.

4.2 Chronic Phase Stability

We identify the steady state (S̄, Ā) with a chronic phase of the disease. Putting

S = S̄ + s, A = Ā + a, (33)

the linearisation of (18) yields, after a little algebra,

M

(
s′
a′

)
= N

(
s

a

)
, (34)

where

M =
(

1 + bSHS bSJS

bAJA 1 + bAHA

)
, N =

(
λSHS − 1 JS

JA λAHA − 1

)
, (35)

and
HS = H(S̄, Θ̄), JS = J (S̄, Θ̄),

HA = H(Ā, Θ̄), JA = J (Ā, Θ̄).
(36)

The solutions s, a are proportional to eσ t , where the two possible values of σ are
the eigenvalues of M−1N . The stability of the fixed point depends on the sign of
Reσ , which is determined by trM−1N and detM−1N = detN

�
, where � = detM .

We have, in particular,

� = 1 + bSHS + bAHA + bSbA(HSHA − JSJA). (37)

Let us suppose firstly that � > 0. It is straightforward to show, assuming hξ < 0,
hΘ < 0, that detN > 0, and thus that detM−1N > 0. Therefore, the stability of the
fixed point is determined by trM−1N , and the point is a node or a spiral. We define

trM−1N = T

�
, (38)

where we have

T = (1 + bAHA)(λSHS − 1)

− bAλSJAJS + dA

{
(1 + bSHS)(λAHA − 1) − bSλAJAJS

}
. (39)
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Fig. 4 Phase portrait of (15)
when bA = bS = 1.5, λA = 4.5,
λS = 2, n = 3, Θc = 10,
dA = 1.1, ε = 0.05, α = 0.1.
The chronic steady state is
stable, since both � > 0 and
T < 0. The two nullclines of the
slowly varying system (18) are
the thick straight lines

It is easy to see that λH − 1 < 0 for both A and S and, therefore, T < 0 for
sufficiently small bA and bS . Hence, also trM−1N < 0, and the fixed point is a stable
node or spiral.

This is illustrated in the phase portrait (of the full system) of Fig. 4. Suppose that
bS , bA � 1, thus the stem cell recruitment rates into the renewal cycle are small; then
M ≈ I , the identity, � ≈ 1, and thus

S′ ≈ (λSh − 1)S,

A′ ≈ dA(λAh − 1)A.
(40)

The phase plane is easily studied in this case, and one can show that the fixed point is
a stable node. Obviously, this is perturbed for larger values of bS and bA. However,
consideration of the limit Θ → 0 shows that trajectories always move away from
(0,0) as an unstable node. So long as λS,λA > 1, the S and A nullclines must leave
the S and A axes as in Fig. 4, and as we have seen, the intersection of the nullclines
at the fixed point (S̄, Ā) is unique. Therefore, the topology of the phase portrait of
Fig. 4 in the trapezoidal region bounded by the axes and the nullclines is the only
possible one, at least if � > 0. The example in Fig. 4 illustrates this when bA and bS

are not small.

5 The Onset of Oscillations

There are two ways in which the chronic phase fixed point can lose stability. If the
nullclines are not both negatively sloped at the fixed point, then trajectories can cycle
round, and a Hopf bifurcation can occur if T > 0. We have seen that this is not the
case if bA and bS are small. Conversely, if they are both large, then

� ≈ bAbS(HAHS − JAJS), (41)
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Fig. 5 Approximately periodic
solutions of (15) when bA = 7,
bS = 7; other values as in Fig. 4.
For these values, we have � > 0
and T > 0, and the slowly
varying system has a periodic
solution

while

T ≈ bA

{
λS(HAHS − JAJS) − HA

}

+ dAbS

{
λA(HAHS − JAJS) − HS

}
. (42)

For the particular choice (10), we have at the chronic fixed point,

−H = (λ − 1)(B + n − 1) − 1

λ2
, −J = (λ − 1)B

λ2
, (43)

where

B = ξc′

c
> 0, (44)

and thus � > 0 providing λA,λS � 1 + 1
n−1 ; and if the inequalities are only just

satisfied, we will also have T > 0. In this case, (slow) oscillations will occur, and an
example is shown in Fig. 5.

The preceding discussion is appropriate as long as � > 0. Indeed, it still applies if
� < 0, except that the trajectory directions are reversed. However, we know from the
one-dimensional system (3) that regions where � < 0 are ‘no-go’ areas, and when
these are encountered, the variables undergo a rapid transition to another ‘safe’ area:
this is described further below. Therefore, we need to know where � < 0.

For small bA and bS , � ≈ 1 and is positive. As Θ → Θc , we find

� ≈ 1 − bS

ΘcSn−1
− bA

ΘcAn−1
, (45)

so that in fact there are small regions near S = 0,A = Θc and A = 0, S = Θc where
� < 0. That near S = 0, for example, is the approximate wedge

0 < Θc − Θ <

{
bSΘc

(1 + bS)
(
1 − bA

Θn
c

)
}1/2

S(n+1)/2, (46)

assuming bA < Θn
c . Furthermore, (27) (or its equivalent for S = 0) shows that � < 0

on A = 0 if 1 + g′
S < 0 there, where
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Fig. 6 Left: region (shaded) where detM < 0, when (S∗,0) is stable but (0,A∗) is unstable; parameter
values bA = 4, bS = 2; other values as in Fig. 4. Right: region (shaded) where detM < 0, when (S∗,0)

and (0,A∗) are both unstable; parameter values bA = 4, bS = 3.5; other values as in Fig. 4

gS = bSSh(S,S), (47)

and on S = 0 if 1 + g′
A < 0 (with gA defined analogously), and intervals on the S

and A axes where this is the case exist if bS > bc and bA > bc , respectively (cf.
the discussion after (5)). (The precise definition of bc will be slightly different if
c(S) 	= 1, but not very much if, as we suppose, Θc is reasonably large.)

What this suggests is that closed regions where � < 0 will grow as bS and bA are
increased from their initial locations near (0,Θc) and (Θc,0), and from (0,A∗) when
bA > bc (and from (S∗,0) when bS > bc). We recall from (12) that the parameters
bS and bA are dimensionless measures of the proliferative recruitment rate of normal
and abnormal cells, respectively; bc is the critical value such that oscillations in a nor-
mal S population occur when bS > bc. We might suppose in a healthy individual that
bS < bc, and additionally that as the chronic phase progresses, increasing mutation
causes the slow evolution of abnormal parameters such as bA. As bA increases, the
negative � regions may join up, and if the chronic phase stationary state (or its asso-
ciated periodic orbit) migrates into this region, there is a prospect of rapid migration
through this forbidden zone toward Θ = Θc. This latter evolution would correspond
to the onset of blast crisis and the acute phase. This model therefore contains the
potential for a dynamic understanding of the progression to chronic and then acute
phase; it remains to be seen whether such a sequence of events does actually occur in
this model. Figure 6 shows two examples where � < 0; in both there is an A-interval
where � < 0; in the left figure there is no such corresponding S-interval, whereas in
the right figure there is.

5.1 Oscillations

Oscillations will occur when the slow trajectories encounter a region where � < 0.
These regions are determined by bS and bA, whereas the shape of the slow trajectories
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Fig. 7 Slow approach to an
oscillatory chronic phase;
parameter values as in Fig. 6
(left)

is largely controlled by λA and λS . Various possibilities can occur depending on the
values of these parameters, and we focus on two of particular interest.

The first is shown in Fig. 7. There is a negative � field which separates the (slowly)
unstable S steady state from the stable A state. The connecting trajectory in the slow
phase space reaches the curve � = 0, and there is a fast transition, in which

dS

dt
≈ bS

[
S1h(S1,Θ1) − Sh(S,Θ)

]
,

α
dA

dt
≈ bA

[
Aαh(AαΘα) − Ah(A,Θ)

]
.

(48)

It is easy to show that the values of S and A across such a transition are related by

[
S + bSSh(Θ)

]+
− = 0,

[
A + bAAh(Θ)

]+
− = 0,

(49)

and this provides a map to take points (S−,A−) to (S+,A+) outside the negative
� field, where they resume their slow evolution toward the steady A state. Thus, in
this case, there is an initial slow evolution of the abnormal cell population, followed
by a sharp rise. This is somewhat reminiscent of the transition from chronic to acute
phase. Figure 8 shows the corresponding time series for A.

We can get some geometric understanding of the fast transition by defining the
new variables

S̃ = S + bSSh(S,Θ),

Ã = A + bAAh(A,Θ); (50)

note that M is the Jacobian of the transformation, i.e.,

M = ∂(S̃, Ã)

∂(S,A)
. (51)
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Fig. 8 Time series of A (full line) and S (dashed) corresponding to the phase diagram of Fig. 7. The
parameters are also those used in Fig. 7, i.e., the default parameters of Fig. 4, except that bA = 4, bS = 3.5.
The units of S and A are dimensionless, as are those of time t . The segment shown starts at t = 1 800 so
as to eliminate transient effects

Inverting (50), we have

Θ = S̃

1 + bSh(Θ)
+ Ã

1 + bAh(Θ)
. (52)

The right-hand side of (52) is sigmoidal, and there are generally either three values
of Θ or one value for each S̃ and Ã, and exceptionally two. The curve in (S̃, Ã) space
on which there are two is the image of the � = 0 curve in (S,A) space, because
of (51). Thus, Θ(S̃, Ã) is represented as a folded sheet in (S̃, Ã) space, with the
folded portion inside the image of � = 0, where Θ has three possible values. During
a rapid transition, Θ jumps rapidly in (S̃, Ã) space while S̃ and Ã remain the same.
In (S,A) space, this is manifested as a jump across the negative � field to the other
side, as shown in Fig. 7.

The jumps which occur when � < 0 are described by (49). For increasing values
of bA, the large A values begin to approach the overcrowding limit, which we identify
with the onset of blast crisis. We associate this with increasing values of bA due to
further cell abnormalities. Figure 9 shows a case where the parameter bA is quite
large. The initial slow evolution of A is accompanied by oscillations in S as the
trajectory repeatedly encounters � = 0, but as A increases, the oscillations reach
a threshold where A increases rapidly, and Θ reaches Θc: blast crisis is initiated.
Figure 10 shows the corresponding time series.

6 Discussion

There are two principal dynamic features of CML which one would hope that a model
could explain. These are the long period oscillations which are sometimes found, and
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Fig. 9 Slow oscillatory
‘chronic’ phase followed by an
acute phase; parameter values
are bA = 20, bS = 3.5; other
values as in Fig. 4

Fig. 10 Time series of A and S corresponding to the parameters of Fig. 9

the long duration of the chronic phase before the onset of the acute phase. It is not
clear whether these two features are related, but we would hope that a model might
shed light on both features, and in that way suggest possible therapeutic strategies
for the management of the disease. In this paper, we have formulated what is perhaps
the simplest model of the diseased state, in which normal and abnormal stem cells
compete with each other. Nevertheless, the model is complicated by the fact that
it consists of two coupled delay differential equations, and this fact makes useful
analysis hazardous.

We have adapted a novel technique developed by Fowler and Mackey (2002) to
analyse systems of this type, and in this way we are able to describe the evolution of
the system, and the onset of oscillations, in a fairly thorough analytical way, despite
the functional character of the equations. In this particular model, we find that normal
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and abnormal states can exist together in a steady state, but that this state can be oscil-
latorily unstable, and long period oscillations can occur. Although there are a number
of parameters in the model, we find that the principal controlling parameter is the
abnormal stem cell recruitment rate, as represented in the coefficient bA. Essentially,
as this is increased, we find a transition to periodic solutions, but for sufficiently large
bA, the trajectories lead to unlimited growth of the abnormal cell population, which
we identify with the onset of blast crisis. This sequence of events is very similar to
that which is observed clinically.

It should be emphasised that our study is essentially a proof of concept. There
are so many parameters, both dimensional and dimensionless, in the model, that our
strategy of illustrating the transition from stable coexistence to oscillations to an acute
phase has focussed on altering one particular parameter, bA, while keeping the others
fixed within reasonable limits. That said, our parameter choice is motivated by real-
istic values, and we find, for example, in Fig. 10 that if we take the stem cycle delay
τS ≈ 2.2 days (Fowler and Mackey 2002), then the oscillations have periods of about
80 days, while the chronic phase shown lasts some 2.5 years. These values are not
unreasonable.

The change in bA from its ‘normal’ value bA ≈ 4 to the value bA = 20 used in
the simulation in Fig. 10 represents a fivefold increase. Since we took α = 0.1, this
corresponds to a fiftyfold increase in recruitment rate. Such a low value of α is proba-
bly extreme, and a tenfold increase of abnormal recruitment is in line with our model
results. Increased abnormal proliferation rate is line with our expectation (see (13)),
but it is a hazard of our procedure that changing a single dimensional parameter (βA)
has the effect of altering both bA and λA (see (12)). It is a matter for future work to
explore parameter space more fully with a view to mapping out where oscillatory and
acute behaviour can be found.

Figure 10 shows oscillations only in the normal stem cells. Data such as that shown
in Fig. 2 does not typically distinguish between normal and abnormal cells, but we
might expect oscillations in the abnormal population as well or instead. The simula-
tion in Fig. 8 shows that the model is well able to produce such oscillations, but we
have not extended our parameter search to combine abnormal oscillations with blast
crisis.

Although it is reasonable that any model of CML will involve competing nor-
mal and abnormal stem cell populations, the particular model we have studied
falls short of reality in several respects. In particular, we have omitted discussion
of the developing maturation of the nucleated cells (Mackey and Rudnicki 1994),
nor have we included the effects of the immune system reaction (Neiman 2000;
Moore and Li 2004); other shortcomings could be mentioned. However, it is in the
nature of disease modelling of this type that it is as yet unclear what the important
constituents are, and in fact the purpose of exploring models such as that presented
here is to attempt to elucidate what such constituents might be.

One particular and potentially predictive feature of the model is the identification
of a critical parametric inequality bA > bS in order that the disease progress. In turn,
this may suggest possible clinical strategies. It remains to be seen what the effect of
treatment in the model is on the oscillations and rapid transitions we have identified
here. Clearly, the aim of a clinical strategy would be to keep � positive.
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Within the confines of the present competitive model, we have delineated one
mechanism which may be important in determining the onset of oscillatory cell
counts during the chronic phase, and that is the effect of the delay in the prolifer-
ative cycle. Although this is short (two days) compared with the much longer time
scales of oscillations or of secular increase of abnormal cell populations, it can have
a dramatic effect on the course of the disease, as shown in Figs. 8 and 10. In partic-
ular, we have found that the onset of oscillatory behaviour as a consequence of the
transition to the chronic diseased state can be explained relatively simply, as can an
abrupt transition to the acute phase, in terms of the slow dynamics of the variables,
which are largely determined by the regions of phase space where the determinant �

is negative. So far as we are aware, no other model has been able to provide a rational
basis for the transition from chronic to acute phase.
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Appendix A

The use of Hill functions in cell control models, or similar Monod growth functions
in cell population models, can be motivated by reaction schemes similar to those
describing cooperative enzyme kinetics. To this end, we consider a cartoon descrip-
tion of the resting stem cell population, in which the stem cell population S releases
signalling molecules M which bind to the stem cells. In this description, we then
suppose that a series of complexes Ci , i = 1, . . . , n are formed, in which Ci has i

molecules of M bound to the cell. Thus, we suppose multiple binding sites for M ,
and we suppose that only C0 cells can be recruited to the proliferative phase, at a
constant specific rate r . The signalling molecules are released by the whole stem cell
population, but the restriction of recruitment to C0 cells provides for an inhibitory
effect.

A reaction scheme to describe this cartoon, if there are n binding sites per cell, is

C0
r→ R,

C0 + M
k1
�
k−1

C1,

C1 + M
k2
�
k−2

C2,

. . .

Ci−1 + M
ki

�
k−i

Ci,

. . .

Cn−1 + M
kn

�
k−n

Cn.

(53)

http://www.macsi.ul.ie
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The recruited cell population is R, and we define the total stem cell population

S =
n∑

0

Ci. (54)

Then the law of mass action applied to (53) gives the system of equations

Ṙ = rC0,

Ċ0 = −(k1MC0 − k−1C1) − rC0,

Ċi = kiMCi−1 − k−iCi − (ki+1MCi − k−(i+1)Ci+1), 1 ≤ i ≤ n − 1,

Ċn = knMCn−1 − k−nCn,

Ṁ =
n∑

1

(k−jCj − kjMCj−1) + k+S − k−M,

(55)

where we have added to the kinetics of (53) a source of M proportional to total stem
cell density S, and a degradation rate proportional to M .

These equations can be written more simply by defining

Ri = kiMCi−1 − k−iCi, 1 ≤ i ≤ n, (56)

whence

Ċ0 = −R1 − rC0,

Ċi = Ri − Ri+1, 1 ≤ i ≤ n − 1,

Ċn = Rn,

Ṁ = −
n∑

1

Rj + k+S − k−M,

(57)

and β = rC0/S is the specific recruitment rate, which is to be found in terms of S.
Note that using (56) and (57), Ṡ = −βS.

It is conventional in considering such systems of equations to suppose that the
binding reactions are fast, so that all the bound complex equations for Ci , i ≥ 1 are
in equilibrium. With this assumption, we put Ri = 0, and if in addition M rapidly
equilibrates, then

M = LS, (58)

where

L = k+
k−

. (59)

The equations Ri = 0 define a sequence of difference equations for Ci , and we
solve these to find

Cm =
(

m∏

1

Kj

)

MmC0, (60)
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whence we determine C0 in terms of S as

C0 = S
∑n

k=0

{∏k
j=1 Kj

}
Mk

, (61)

and the consequent definition of the specific recruitment rate is

β = r
∑n

k=0

{∏k
j=1 Kj

}
LkSk

. (62)

The product within the summation takes the value 1 when k = 0.
We can write this in the form

β = r
∑n

k=0

(
S
θk

)k
, (63)

where we define

θk = 1

L
{∏k

j=1 Kj

}1/k
(64)

(and θ0 = 1). Evidently, the Hill function as in (4) follows from the identification
of βS = r and the assumption that θk � θn ∀ 1 < k < n; this follows if Kn is large
enough.

A.1 Overcrowding

The question now arises, how should we specify control when there are two stem
cell populations S and A, and in particular, how should we generalise (63) to allow
for the effects of spatial crowding. The ‘derivation’ of (63) using the law of mass
action implicitly involves the idea that cells and molecules have access to the entire
volume, i.e., the populations are ‘dilute’. When using the law of mass action, we
need to distinguish between the effects of signalling molecule density and that of cell
density. For the population S, we still suppose that M ∝ S (i.e., only normal cells
produce a signalling control for S). We also suppose that the dissociation rate factors
k−i remain constant and independent of crowding, since they should depend only
on cell density. However, the rate of binding depends on total cell density, for the
following reason. The law of mass action assumes dilute ‘solutions’, so that the rate
of meeting of cell and molecule is proportional to the density of each per unit volume
of the medium. However, when the cells occupy significant volume, then the rate
of binding of M will be proportional to its actual density in the intercellular space,
which is inversely proportional to

(
1 − Θ

Θc

)
, where

Θ = S + A (65)

is the total cell density, and Θc is the total cell capacity in the bone marrow. Conse-
quently, this suggests that we put kj , and thus Kj , dependent on Θ as

Kj = K0
j Θc

Θc − Θ
. (66)
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In this case, we could modify (63) to be

β = r
∑n

k=0

{
κ(Θ)S

θk

}k
, (67)

where

κ(Θ) = Θc

Θc − Θ
(68)

is an increasing function of Θ . A similar expression for the A controller then follows,
with the same crowding factor. This then motivates our choice of controller in (10).

References

Adimy, M., Crauste, F., & Ruan, S. (2005a). Stability and Hopf bifurcation in a mathematical model of
pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications, 6, 651–670.

Adimy, M., Crauste, F., & Ruan, S. (2005b). A mathematical study of the hematopoiesis process with
applications to chronic myelogenous leukemia. SIAM Journal on Applied Mathematics, 65, 1328–
1352.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. (1989). Molecular biology of the cell.
New York: Garland Publishing.

Bélair, J., & Mackey, M. C. (1987). A model for the regulation of mammalian platelet productiona. An-
nals of the New York Academy of Sciences, 504, 280–282 (Perspectives in Biological Dynamics and
Theoretical Medicine).

Bedi, A., Zehnbauer, B. A., Barber, J. P., Sharkis, S. J., & Jones, R. J. (1994). Inhibition of apoptosis by
BCR–ABL in chronic myeloid leukemia. Blood, 83(8), 2038–2044.

Bennett, M., & Grunwald, A. J. (2001). Hydroxyurea and periodicity in myeloproliferative disease. Euro-
pean Journal of Haematology, 66(5), 317–323.

Bernard, S., Bélair, J., & Mackey, M. C. (2001). Sufficient conditions for stability of linear differential
equations with distributed delay. Discrete and Continuous Dynamical Systems. Series B, 1, 233–256.

Bessonov, N., Pujo-Menjouet, L., & Volpert, V. (2006). Cell modelling of hematopoiesis. Mathematical
Modelling of Natural Phenomena, 1, 81–103.

Buckle, A.-M., Mottram, R., Pierce, A., Lucas, G. S., Russell, N., Miyan, J. A., & Whetton, A. D. (2000).
The effect of bcr-abl protein tyrosine kinase on maturation and proliferation of primitive haematopoi-
etic cells. Molecular Medicine, 6(10), 892–902.

Colijn, C., Fowler, A. C., & Mackey, M. C. (2006). High frequency spikes in long period blood cell
oscillations. Journal of Mathematical Biology, 53, 499–519.

Colijn, C., & Mackey, M. C. (2005). A mathematical model of hematopoiesis—I. Periodic chronic myel-
ogenous leukemia. Journal of Theoretical Biology, 237, 117–132.

Cortes, J., Talpaz, M., & Kantarjian, H. (1996). Chronic myelogenous leukaemia: a review. The American
Journal of Medicine, 100, 555–570.

De Klein, A., Geurts van Kessel, A., & Grosveld, G. (1982). A cellular oncogene is translocated to the
Philadelphia chromosome in chronic myelocytic leukemia. Nature, 300, 765–767.

Druker, B. J., Ford, J. M., Sawyers, C. L., Capdeville, R., Baccarani, M., & Goldman, J. M. (2001). Chronic
myelogenous leukemia. In American society of hematology education program book (pp. 87–112),
Orlando, Florida.

Eaves, C., Cashman, J., & Eaves, A. (1998). Defective regulation of leukemic hematopoiesis in chronic
myeloid leukemia. Leukemia Research, 22, 1085–1096.

Faderl, S., Kantarjian, H. M., & Talpaz, M. (1999). Chronic myelogenous leukemia: update on biology
and treatment. Oncology, 13(2), 169–184.

Fortin, P., & Mackey, M. C. (1999). Periodic chronic myelogenous leukaemia. British Journal of Haema-
tology, 104, 336–345.

Fox, S. I. (1996). Human physiology (5th edn.). Dubuque: Brown.
Fowler, A. C., & Mackey, M. C. (2002). Relaxation oscillations in a class of delay differential equations.

SIAM Journal on Applied Mathematics, 63(1), 299–323.



I. Drobnjak, A.C. Fowler

Frassoni, F., Podsta, M., & Piaggio, G. (1999). Normal and leukaemic haematopoiesis in bone marrow
and peripheral blood of patients with chronic myeloid leukaemia. Baillieres Clinical Haematology,
12(1/2), 199–208.

Goldman, J. (1997). ABC of clinical haematology: chronic myeloid leukaemia. British Medical Journal,
314(7081), 657–665.

Gordon, M. Y., Dowding, C. R., Riley, G. P., Goldman, J. M., & Greaves, M. F. (1987). Altered adhesive
interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia.
Nature, 328, 342–344.

Gordon, M. Y., & Blackett, N. M. (1998). Reconstruction of the hematopoietic system after stem cell
transplantation. Cell Transplantation, 7(4), 339–344.

Gordon, M. Y., Dazzi, F., Marley, S. B., Lewis, J. L., Nguyen, D., Grand, F. H., Davidson, R. J., & Gold-
man, J. M. (1999). Cell biology of CML cells. Leukemia, 13, S65–S71.

Guerry, D., Dale, D. C., Omine, M., Perry, S., & Wolff, S. M. (1973). Periodic hematopoiesis in human
cyclic neutropenia. The Journal of Clinical Investigation, 52, 3220–3230.

Haurie, C., Dale, D. C., & Mackey, M. C. (1998). Cyclical neutropenia and other periodic hematological
disorders: a review of mechanisms and mathematical models. Blood, 92(8), 2629–2640.

Haurie, C., Dale, D. C., Rudnicki, R., & Mackey, M. C. (2000). Modeling complex neutrophil dynamics
in the grey collie. Journal of Theoretical Biology, 204, 505–519.

Hill, J. M., & Meehan, K. R. (1999). Chronic myelogenous leukemia: Curable with early diagnosis and
treatment. Postgraduate Medicine, 106(3), 149–159.

Hoffbrand, A. V., & Pettit, J. E. (1993). Essential haematology (3rd edn.). Oxford: Blackwell Science.
Hughes-Jones, N. C., & Wickramasinghe, S. N. (1997). Lecture notes on haematology (6th edn.). Oxford:

Blackwell Science.
Iizuka, Y., Horikoshi, A., Sekiya, S., Sawada, U., Ohshima, T., & Amaki, I. (1984). Periodic fluctuation of

leukocytes, platelets and reticulocytes in a case of chronic myelocytic leukemia: the relation between
leukocyte counts, CFU–C colony formation, CSA and CIA. Acta Haematol. Jpn., 47(1), 71–79.

Jorgensen, H. G., & Holyoake, T. L. (2001). A comparison of normal and leukemic stem cell biology in
chronic myeloid leukemia. Hematological Oncology, 19, 89–106.

Kamada, N., & Uchino, H. (1978). Chronologic sequence in appearance of clinical and laboratory findings
characteristic of chronic myelocytic leukemia. Blood, 51(5), 843–850.

Kummermehr, J., & Trott, K.-R. (1997). Tumour stem cells. In Stem cells (pp. 401–419). London: Aca-
demic Press.

Lebowitz, J. L., & Rubinow, S. I. (1969). Grain count distributions in labelled cell populations. Journal of
Theoretical Biology, 23, 99–123.

Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P., & Darnell, G. (1995). Molecular Cell
Biology (3rd edn.). New York: Scientific American Books.

Mackey, M. C. (1978). A unified hypothesis for the origin of aplastic anemia and periodic haematopoiesis.
Blood, 51, 941–956.

Mackey, M. C. (1979). Dynamic haematological disorders of stem cell origin. In J. G. Vassileva-Popova &
E. V. Jensen (Eds.), Biophysical and biochemical information transfer in recognition (pp. 373–409).
New York: Plenum.

Mackey, M. C. (1981). Some models in hemopoiesis: predictions and problems. In M. Rotenberg (Ed.),
Biomathematics and cell kinetics (pp. 23–28). North Holland: Elsevier.

Mackey, M. C. (1997). Mathematical models of hematopoietic cell replication and control. In H. G. Oth-
mer, F. R. Adler, M. A. Lewis, & J. C. Dallon (Eds.), The art of mathematical modelling: case studies
in ecology, physiology and biofluids (pp. 149–178). New Jersey: Prentice-Hall.

Mackey, M. C., & Rudnicki, R. (1994). Global stability in a delayed partial differential equation describing
cellular replication. Journal of Mathematical Biology, 33, 89–109.

Mahaffy, J. M., Bélair, J., & Mackey, M. C. (1998). Hematopoietic model with moving boundary condition
and state dependent delay: applications in erythropoiesis. Journal of Theoretical Biology, 190, 135–
146.

Michor, F., Hughes, T. P., Iwasa, Y., Branford, S., Shah, N. P., Sawyers, C. L., & Nowak, M. A. (2005).
Dynamics of chronic myeloid leukaemia. Nature, 435, 1267–1270.

Moore, H., & Li, N. K. (2004). A mathematical model for chronic myelogenous leukemia (CML) and T
cell interaction. Journal of Theoretical Biology, 227, 513–523.

Neiman, B. (2000). A mathematical model of chronic myelogenous leukemia. M.Sc. Dissertation, Oxford
University.

Nowell, P. C., & Hungerford, D. A. (1960). A minute chromosome in human chronic granulocytic
leukemia. Science, 132, 1497–1501.



A Model of Oscillatory Blood Cell Counts in Chronic Myelogenous

Potten, C. S. (1997). Stem cells. New York: Academic Press.
Pujo-Menjouet, L., Bernard, S., & Mackey, M. C. (2005). Long period oscillations in a G0 model of

hematopoietic stem cells. SIAM Journal on Applied Dynamical Systems, 4, 312–332.
Pujo-Menjouet, L., & Mackey, M. C. (2004). Contribution to the study of periodic chronic myelogenous

leukemia. Comptes Rendus Biologies, 327, 235–244.
Rubinow, S. I., & Lebowitz, J. L. (1975). A mathematical model of neutrophil production and control in

normal Man. Journal of Mathematical Biology, 1, 187–225.
Rubinow, S. I., & Lebowitz, J. L. (1976). A mathematical model of the acute myeloblastic leukemic state

in Man. Biophysical Journal, 16, 897–910.
Schwarzenberger, P., Kolls, J. K., & La Russa, V. (2002). Hematopoietic stem cells. Cancer Investigation,

20(1), 124–138.
Strife, A., & Clarkson, B. (1988). Biology of chronic myelogenous leukemia: Is discordant maturation the

primary defect? Seminars in Hematology, 25(1), 1–19.
Strife, A., Lambek, C., Wisniewski, D., Wachter, M., Gulati, S. C., & Clarkson, B. D. (1988). Discordant

maturation as the primary biological defect in chronic myelogenous leukemia. Cancer Research, 48,
1035–1041.

Whittaker, J. A. (1987). Leukaemia. Oxford: Blackwell Scientific Publications.


	A Model of Oscillatory Blood Cell Counts in Chronic Myelogenous Leukaemia
	Abstract
	Introduction
	The Mackey Model
	Oscillatory Behaviour

	A Competitive G0 Model
	The Slowly Varying Phase Plane
	Fixed Points and Stability
	Chronic Phase Stability

	The Onset of Oscillations
	Oscillations

	Discussion
	Acknowledgements
	Appendix A
	Overcrowding

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


