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Explosive fragmentation criteria and velocities for vesicular magma
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We present a new criterion for primary fragmentation of natural rock samples in shock-tube experiments,
and new formulae for the effective strength of natural rock samples, for the size of primary fragments, and
for fragmentation velocities. These formulae and the fragmentation criterion are given in terms of the phys-
ical properties of the rock and in terms of experimental parameters. The formulae and criterion are derived
from numerical solutions and asymptotic analytic solutions to a novel recently published mathematical
model for the explosive fragmentation of vesicular magma in shock-tube experiments. This model is singu-
larly successful in accounting for the length-scales observed in these experiments. The criterion and formulae
provide good matches to data from shock-tube experiments on natural samples.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Explosive volcanic activity can take a wide range of forms, ranging
from Hawaiian fire fountaining and Strombolian eruptions to highly
energetic Vulcanian and Plinian eruptions. Fragmentation types may
be roughly divided into two end-members depending on magma vis-
cosity. In low-viscosity magma, bubbles can easily expand, ascend
and coalesce, so that proposed fragmentation mechanisms include
bursting bubbles and foam instability (Verhoogen, 1951; Sparks,
1978; Mangan and Cashman, 1996). On the other hand, in high-
viscosity magma, vesicles are not very mobile and bubble growth is
constrained by viscous forces resulting in overpressurised vesicles.
This magma tends to fragment in a brittle manner when the strength
of the magma is exceeded, and this is usually taken to be due to the
presence of pressurised vesicles (McBirney and Murase, 1970;
Heiken and Wohletz, 1991; Gilbert and Sparks, 1998; Cashman et
al., 2000). A common trigger mechanism for Vulcanian eruptions is
the sudden unplugging of a sealed volcanic vent (Alidibirov and
Dingwell, 1996; Yokoo and Ishihara, 2006; Mueller et al., 2008).

A number of experiments have been designed to explore in detail
the fragmentation processes underlying explosive eruptions either
using analogue material (Mader et al., 1994; Phillips et al., 1995;
Ichihara et al., 2002; Namiki and Manga, 2005; Kameda et al., 2008) or
natural samples (Alidibirov, 1994; Martel et al., 2000; Spieler et al.,
2004b; Scheu et al., 2006, 2008). This study focusses on experiments

with natural sampleswhere fragmentationwas achieved by the sudden
release of high-pressure gas in brittle magma. The experiments were
conducted in an apparatus based on the shock-tube principle, built by
(Alidibirov and Dingwell, 1996) and subsequently optimised and
adapted (Spieler et al., 2004a; Scheu et al., 2008), yet still based on
the same basic principles.

The setup consists of a high pressure section (autoclave, made from
Nimonic™ stainless steel or acrylic glass) which is sealed off from a de-
compression chamber (a 3 m long steel tank of volume 0.38 m3) by a
system of rupture discs. A cylindrical porous rock sample is tightly
mounted in the autoclave. The autoclave is slowly pressurised by argon
or nitrogen resulting in the pressurisation of the connected pore space
of the rock sample. After pressure equilibration, and (where relevant)
temperature equilibration, the high pressure section is rapidly dec-
ompressed by a systematic failure of the rupture discs. A shockwave
propagates into the decompression chamber while a rarefaction wave
travels down the autoclave towards the sample. When it reaches the
sample, the pressure difference that develops in the pore gases may ex-
ceed the fracture strength of the surrounding rock, resulting in fragmen-
tation of the sample, and ejection of the resulting detritus (Alidibirov and
Dingwell, 1996; Spieler et al., 2004a; Scheu et al., 2006, 2008).

The experimental and mathematical results discussed here are de-
rived from fragmentation experiments optimised for visual observation
via high-speed video recordings (Scheu et al., 2008; Fowler et al., 2009).
Autoclave and sample container are made from acrylic glass and special
glue was used to fix the sample in the sample container. These experi-
ments were pressurised using nitrogen gas. High-speed videos not only
confirmed layer-by layer primary fragmentation events progressing in-
wards from the depressurised end of the sample, but also revealed sec-
ondary intra-block fracturing of primary fragmented layers.
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Further fragmentation speed experiments are also considered
here (Kennedy et al., 2005; Scheu, 2005; Scheu et al., 2006; Mueller
et al., 2008). They were also conducted at room temperature, but
using argon gas and a steel autoclave allowing a broader range of ap-
plied pressures to be analysed. The samples are again glued into sam-
ple containers, but the glue is slightly stronger.

Sample and autoclave dimensions for both cases are very similar
with samples being 24–26 mm in diameter and 40–60 mm in length.
The autoclaves are both 200 mm in length and straight with the sam-
ple fixed slightly above the bottom end.

Different criteria based on physical models have been proposed
for magma fragmentation (Verhoogen, 1951; McBirney and Murase,
1970; Wilson et al., 1980; Alidibirov, 1994; Zhang, 1999; Scheu et
al., 2008); all of them provide insight into the fragmentation process,
but none are able to describe or capture the entire phenomenon.

Recent analyses of fragmentation have attempted to serve asmodels
for both erupting viscous magma and the laboratory experiments on
natural samples discussed above. These models are based on fluid be-
haviour in the gas, the bubbly magma, and the fragmented rock/gas
mixture (Alidibirov, 1994; Koyaguchi and Mitani, 2005; Koyaguchi et
al., 2008). The resulting shock-tube model (Koyaguchi and Mitani,
2005; Koyaguchi et al., 2008) enforces conservation of mass, momen-
tum, and energy as jump conditions across a gas rarefaction wave. The
fragmentation surface is found to travel along a characteristic line
with a constant fragmentation velocity. In that model, fragmentation
is due either to sufficient overpressure in gas bubbles to exceed tensile
strength, or to sufficient bubble volume to cause instability of thin
magma foam. The time taken for the pressure to drop at the sample sur-
face is not a consideration. The shock-tube modelling is in contrast to
our work in two key respects — in that model the magma is assumed
to be a fluid, and fragmentation is associated with closed porosity. In
our model gas flows through a solid deformable porous medium, and
changes in gas pressure are associated with gas flow through open po-
rosity. This reflects our more narrowly focussed interest in modelling
the laboratory experiments on solid natural samples.

With the particular aim of explaining the layered structure seen in
experiments, Fowler et al. (2009) have constructed a newmathematical
model from fundamental physical principles that explains layer-by‐layer
fragmentation. The idea is that as the rock column is depressurised, the
stress in the solid relaxes very rapidly, while the gas pore pressure
remains elevated, as its decline is reliant on escape of the gas through
the pore space. If the permeability is low enough, or the decrease of the
confining pressure is rapid enough, then the overpressure in the gas in
the pore space may exceed the fracture strength, and it is this which
causes the fractures in the model. Numerical solution of the model
indicates that it can explain experimental results, both quantitatively
and qualitatively.

Of particular interest is the manifestation of a length-scale in the
primary fracturing event. Modelling prior to that of Fowler et al.
(2009) does not predict such a length-scale. The time taken for gas
pressure at the surface of a sample to drop by a significant amount, al-
lows the pressure drop to effectively penetrate some distance into the
sample, leading to the length-scale observed.

In this paper, we extend the results presented in Fowler et al. (2009),
by considering their implications for the critical fragmentation pressure,
effective sample strength, the length scale on which fragmentation oc-
curs, and the speed of the primary fragmentation front. The dependence
of these aspects of the fragmentation process on physical parameters
like porosity, permeability, sample size and decompression speed is ex-
plored here.

In following sections of this paper, the mathematical model of
Fowler et al. (2009) is summarised, detailed numerical results from
this model are presented, a new criterion for fragmentation to occur
is presented and compared with previous results, and the depen-
dence of fragment size and fragmentation speed on physical parame-
ters is explored.

2. Fragmentation model

The theory underlying the model of Fowler et al. (2009) is that of
Biot (1956, 1962) which describes the poroelastic behaviour of the
deforming rock as an elastic solid, coupled with the motion of the
gas through the rock as a porous medium. As the flow is likely to be
turbulent, Forchheimer's equation for interfacial drag is used instead
of Darcy's law. A one-dimensional model of the solid deformation
and gas flow is presented, in which the vertical coordinate from the
base of the rock sample is z, and the principal variables of the model
are the gas pressure p and the solid displacement w.

For completeness, the model presented in Fowler et al. (2009) is
summarised in dimensional terms here in Appendix A, where the con-
servation and stress–strain equations are written down. The rescaling
that then leads to a reduced nondimensional set of equations is
summarised in Appendix B. In the following sections, nondimensional
variables are used without tildes on top, unless otherwise stated.

Nondimensional gas pressure p is shown in Appendix B to satisfy the
nonlinear diffusion Eq. (B.9), while solid displacement w satisfies the
force balance Eq. (B.10), which is a second-order boundary value prob-
lem. Before fracture occurs, the dimensionless height of the column is
one, and the top surface is at z=1. On this top surface, we find that
the pressuremeasured during shock-tube experiments in the gas cham-
ber above the sample may be fitted after nondimensionalisation, with a
decaying exponential of the form

p ¼ pc ¼ exp −atð Þ; ð1Þ

where a is a dimensionless constant. It is related through the time
rescaling to sample properties and to the experimental setup parame-
ters as

a ¼ l
tck

1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕρ0cF l
p0

s

; ð2Þ

where symbols are defined in Appendix B. In this expression, tc is a di-
mensional e-folding time for the surface pressure decay. This may
vary with experimental setup. For the experiments we are considering,
it is determined directly from measurements of the gas pressure at the
surface of the sample to be of the order of 1 ms; l is the column length, k
is the permeability of the sample, ϕ is the porosity, ρ0 is the initial gas
density, cF is an O(1) coefficient in the Forchheimer drag expression,
and p0 is the initial confining pressure (Pa).

Fracture occurs if the effective stress exceeds a critical value as
given in Eq. (A.9). This can be rewritten as shown in Eq. (B.11) in
terms of the strain wz as

wz >
1−ϕð ÞσY

p0
≡wcrit

z say; ð3Þ

where σY is the dimensional yield stress of the rock sample.
In the dimensionless model, before fragmentation, gas pressure

decay depends on the adiabatic index γ, which is fixed once the gas is
chosen, and on the decay rate a at the sample surface. There are no
other parameters in the diffusion equation governing gas pressure.
Hence the formula for a captures the essential dependence of gas pres-
sure on rock and experimental parameters prior to fragmentation.

That there is essentially only one parameter (given γ) in the di-
mensionless pressure problem, Eq. (B.9) illustrates the power of the
process of nondimensionalisation — dependence of pressure on all
of the other parameters like permeability, porosity, sample length,
and initial pressure, is contained in the parameters used to transform
from dimensional to nondimensional variables in Eq. (B.1). The non-
dimensional problem is solved by some method, and solutions de-
pend only on a (given γ). Converting to dimensional values does
not change the functional behaviour of solutions, it only changes
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the sizes of the variables. Dependence on the myriad of rock and ex-
perimental property parameters is revealed through the dependence
of dimensionless p, a, z and t on these parameters, and through the
dependence of dimensionless gas pressure p on a.

The rock displacement depends on gas pressure, hence on a, and
also on the glue parameter λ. Then the fragmentation criterion de-
pends on the critical strain wz

crit.
The effect of using different glue strengths is captured by varying

the parameter λ. Numerical solutions to our model reveal that chang-
ing λ has no effect on the critical pressure for fragmentation, or on the
time t⁎ taken to fragment. The fragment size is increased by reducing
λ, by an amount roughly proportional to

ffiffiffi
λ

p
, a scaling suggested by

the form of the solid force balance wzz=pz+λw. Hence, fragmenta-
tion speed (the size divided by the time to fragment) is dependent
on glue properties.

Indeed, if there is no glue, lift-off is immediate; if there is only glue
at the base of the sample, the first fragmentation occurs there and the
deduced fragmentation speed is faster than when glue is also on the
sides of the sample, because fragment size is larger, as discussed in
Fowler et al. (2009). If glue strength is too high, experimental experi-
ence is that the one-dimensional approximation used in our model
fails, and fragmentation occurs by scalloping out the sample in a
two-dimensional shape, leaving the glued sides attached to the appa-
ratus. Experimenters also find that if the glue penetrates too deeply
into the rock sample, altering the porosity there, this also gives prob-
lems (personal communication, O. Spieler). It is clear that to hold the
bulk of the sample in place initially without retaining the sides of it
upon fragmentation, λ must remain of order one, so cannot be
expected to vary much in practice. Hence, our focus here is on the ef-
fect of the inherently more interesting parameters a and wz

crit, which
take a range of values, as shown in Tables 1 and 2.

2.1. Numerical results

The model Eq. (B.9) for gas diffusion is solved using pdepe in
Matlab, a partial differential equation solver that discretises in z and
then solves the resulting coupled ordinary differential equations in
t, choosing the method and timestep dynamically according to the
stiffness of these equations. Once the pressure is solved for, wz can
be computed at any chosen time, by solving the ordinary differential
Eq. (B.10). Since it is a linear boundary-value problem, a Green's func-
tion can be used to reduce the problem of findingwz to a simple quad-
rature, as shown in Appendix C.

Arguments are presented in Fowler et al. (2009) (and here illus-
trated using numerical solutions in Fig. 6) that as the pressure drops
in the rock, the strain increases with a local maximum that penetrates
deeper as it grows. Critical to this maximum being internal and not at
the bottom of the rock sample, is the term λw in Eq. (B.10), which is
due to the glue holding the sample in place. When the criterion for
fragmentation is met, the glued rock sample is taken to immediately

break (primary fragmentation) in numerical simulations, with an ini-
tial average gap between fragments set by the pore size and porosity.
Strain at the gap faces immediately drops to zero. The broken piece of
rock then accelerates upwards, driven by the pressure difference
across it. Momentum conservation (Fowler et al., 2009) leads to the
approximate nondimensional equation

!P
δ 1−ϕð Þli€z

þ ¼ Δp

where Δp is the pressure drop across the broken piece, and z+ is the
location of the upper end of the gap. Gas conservation in the widening
crack leads to the following equation for the nondimensional gas
pressure p in the gap,

z½ &þ−
dp
dt

1=γ
¼ ϕ

p1=γ

pz

"""""

"""""

1=2

pz− 1−ϕð Þp1=γ _z
" #þ

−
; ð4Þ

where the notation [.]−+ means the difference between values at the
upper and lower ends of the gap. The first term on the right-hand
side of Eq. (4) is due to the gas flux from adjacent rock.

Solving the fragmentation problem now becomes a matter of solv-
ing these two ordinary differential equations simultaneously. They
are coupled to the gas flux into the gap from adjacent rock, which
must be obtained by solving the gas diffusion equation in each (re-
meshed) new fragment of rock. Small time steps are taken, so that
the pressure in the gap can be incremented using Eq. (4), and the dif-
fusion equation is solved in this time increment using the pressure
profile from the previous time as initial condition, and the new pres-
sure in the gap and at the upper surface as boundary conditions. Sec-
ondary fragmentation, of degassing moving fragments, also occurs in
numerical simulations, and is observed experimentally (Scheu et al.,
2008; Fowler et al., 2009).

This process is repeated, checking every piece of rock for further
fragmentation at every time step, until pressures and strains drop to
small values. Each fragmentation event leads to another pair of ordi-
nary differential equations being added to the coupled set of equa-
tions to be solved. Contours of a typical resulting pressure history
(Fig. 1) show pressures within the rock and in the gaps, dropping
from the top downwards. The constant-in-space pressure regions
mark the spreading gaps between accelerating fragments. Dips in
pressure indicate fragmentation events.

A typical strain plot like that in Fig. 2 reveals more strikingly the
fragmentation pattern, with strain rising to the critical value, dropping
to zero there on fragmentation, and rising, possibly to the critical
value, within the glued and the accelerating rock pieces as surface gas
pressures fall further. The fragmentation history associated with these
pressure and strain changes is presented in the first panel of Fig. 3,
showing the location of fragment surfaces versus time. Note that

Table 1
Ranges and typical values of the parameters that have significant ranges of values in
the model, and the resulting values of a. Gas densities range from hot nitrogen
(35 kg m−3 at 850 °C) to cold argon (140).

Parameter Min Typical Max Units

Permeability k 10−18 10−12 10−10 m2

Initial pressure p0 0.3 10 40 MPa
Porosity ϕ 0.05 0.4 0.9
Gas density ρ0 35 115 140 kg m−3

a 1.0 22 10,000
wz

crit 0.003 0.04 3
λ 0.1 0.6 10

Table 2
Typical values of the physical constants of the model. The gas properties are those of
nitrogen at room temperature.

Symbol Meaning Typical value

cF Ergun coefficient 0.5
dg Glue thickness 1 mm
E Elastic constant 1011 Pa
l Sample length 0.06 m
R Sample radius 1.2 cm
tc Chamber relaxation time 1 ms
γ Specific heat ratio 1.4
ηf Gas viscosity 1.8×10−5 Pa s
μg Glue shear modulus 2.5×109 Pa
ρs Solid density 2.6×103 kg m−3

σY Yield stress 1 MPa
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individual fragments can be observed to accelerate away to the right
(increasing z), as time increases, taking their strain history with them.

Of particular interest is a plot of the pressures observed in each of
the gaps as seen in the second panel of Fig. 3, especially the pressure
at the fragmentation front, at the face of the glued-down piece of
rock. Small pressure oscillations may be observed in the gaps be-
tween fragments, associated with the kinematics as rock pieces
come closer together and compress the gas between. The pressures
in the gaps on average behave very similarly to the pressure at the
uppermost surface, dropping at the same rate, delayed in time. This
is because pressures in gaps rapidly adjust to the driving pressure
drop in the chamber above the fragments — the kinematics is fast
compared to diffusion inside the rock.

This is important for simplifying later calculations of fragmenta-
tion speed and timing, since the full problem with gas diffusion and
accelerating fragments depends on a number of parameters (a, !/δ, ϕ)
as well as the size of each fragment, while the dimensionless problem
of depressurisation of the glued-in piece depends only on the rate of
pressure drop at the surface, which (for a given gas) depends only on
the parameter a.

3. Primary fragmentation

Fragmentation in our model is caused by the tensile stress associated
with pressure differences arising from gas discharge from the rock sam-
ple. The speed of decompression at the upper surface of the sample, rela-
tive to the speed with which gas can escape, together with the sizes of p0
and tensile strength σY, determines whether fragmentation will occur,
when it occurs, and how big is the piece that breaks off.

Previous authors (Alidibirov, 1994; Koyaguchi and Mitani, 2005;
Koyaguchi et al., 2008) have noted that in a shock-tube model (which
treats the rock as a viscous fluid), the initial pressure p0 and the porosity
of the rock sampleϕ are important in determiningwhether a rock sample
will fragment or not. This is based on energy arguments as well as empir-
ical matching to fragmentation data.

In our model, changes in gas pressure are associated with gas flow
through open porosity in a porous solid. The key role played by the
parameter a reflects the importance in our model of the speed of de-
compression in the gas rarefaction wave, which is slow compared to
solid decompression.

We consider in particular two of the equations appearing in
Koyaguchi et al. (2008), the first due to Alidibirov (1994) based on
bubble-wall strength, which Koyaguchi et al. (2008) (Eq. (5)) found,
gives the best fit to experimental data at both high temperatures
(850 °C) and room temperature,

pcrit0 ¼
2Sa 1−ϕ1=3

# $

ϕ1=3 ; ð5Þ

Fig. 1. Equally-spaced (in pressure) contours of constant pressure in rock fragments
and in the gaps between, obtained from numerical model solutions, versus distance z
and time t. Pressure is set to drop at the rock surface at dimensionless z=1. Pieces of
rock that fragment off are tracked and are included in the simulation. The (higher)
gas pressures inside them and in the gaps between are also contoured. Broken pieces
can be observed to accelerate to the right and exit from the graph at z=1. Gaps
show up as horizontal pieces (constant in z). The colour key is on dimensionless pres-
sure in the range of 0–1. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Equally-spaced contours of constant strain wz (versus distance z and time t),
plotted from numerical solutions for fragmenting rocks and the gaps between. When
maximum strain reaches the critical value (coloured red) the rock breaks there, and
strain is set to zero at the new faces. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) Fragment locations versus time, obtained by plotting the locus of the upper
and lower ends of any fragments obtained in numerical simulations; and (b) pressure
versus time, at the surface of the rock sample (the lowest curve, labelled “top”), at its
base (the highest curve, labelled “bottom”), and in the gaps between fragments. Prima-
ry fragment cracks are labelled in chronological order, P1, P2 and P3; the first second-
ary fragment crack is labelled “S1”.
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withfitted value of Sa≈6.682 MPa; and the second a new criterion due to
Koyaguchi et al. (2008) (Eq. (17)), which takes account of bubble-wall
thickness,

pcrit0 ¼ 2S3 1−ϕð Þ

3ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ−1=3−1

q : ð6Þ

The terms Sa and S3 are associated with the strength of the rock. A best
fit to data for Eq. (6) gives S3≈2.18 MPa. Eqs. (5) and (6) define critical
values of initial pressure to fragment rock of porosity ϕ and strength Sa
or S3.

Although the modelling of Koyaguchi et al. (2008) is fundamental-
ly different to that of Fowler et al. (2009), it is useful to recast our re-
sults into the same form as theirs for comparison with their results
and with experimental data.

Two types of fragmentation are identified in our model (Fowler et
al., 2009) and are seen in experiments, primary fragmentation where
the advancing pressure front first breaks off pieces from the glued-in
rock sample, and secondary fragmentation, where moving fragments
subsequently break into smaller pieces.

The criterion for primary fragmentation has beenwritten in terms of
a critical strain aswz≥wz

crit. We investigate the implications of numer-
ical solutions to our model, for the dependence of the maximum value
wz

max of wz on the parameters a and λ, to rewrite this criterion in a
way that reveals its dependence on rock and experimental parameters.
We also explore the time-dependence and location of fragmentation,
when it does occur. Dependence on the parameter a is paramount,
since it contains the major rock and experimental parameters. Depen-
dence on the glue parameter λ is of less interest. In the remainder of
this section, the usual value λ=0.6 is used.

3.1. Primary fragmentation criterion

Now we define an effective apparent material strength based on
our modelling,

Smodel ¼
ϕσY

wcrit
z

; ð7Þ

so that our criterion for fragmentation is then that the initial pressure
p0 exceeds the critical value

pcrit0 ¼ 1−ϕð ÞSmodel
ϕ

: ð8Þ

Note that in contrast to previous models, Smodel, given by Eq. (7), is
not a constant.

This is by design of similar form to Eqs. (5) and (6) above from
Koyaguchi et al. (2008), and if Smodel was a constant, would have the
same desirable properties of a vertical asymptote at ϕ=0 and a zero at
ϕ=1. In general, as we will see, the form is not as simple as it appears
here, since Smodel depends itself onϕ and p0, aswell as on rock and exper-
imental parameters, through wz, so that Smodel is not a constant, and the
form taken depends on the model results and upon other parameter
values.

Numerical solutions of our model are used to find critical values of
p0, by replacing wz

crit in Smodel with the numerically found maximum
wx

max of wz over z and t, for each value of the parameter a. This gives
values for strength from numerical simulation,

Smodel≈Snumm ¼ ϕσY

wmax
z

; ð9Þ

we use varying values of the parameter a to generate numerical values
for wz

max by solving numerically the nonlinear diffusion problem (Eq.

(B.9)). Given a andϕ, a value for p0 follows by rearranging the definition
of p0 (Eq. (2)) as

p0 ¼ B
ϕ
a2

;

where

B≡ l3ρ0cF
t2c

ffiffiffiffiffi
k

p : ð10Þ

Note that the value obtained for p0 depends on B, which depends on
a combination of rock and experimental properties, including gas den-
sity, sample length, sample permeability, and chamber depressurisation
timescale.

We calculate from Eqs. (8) and (9)

σY ¼ p0w
max
z

1−ϕ
;

which is the value for the strengthσY of the natural rock sample that can
be fragmentedby a shock-tube experimentwith the current values ofp0
and ϕ, given B. This provides σY as a surface in (p0,ϕ) space. This surface
is presented in Fig. 4 as contours of constant strength, with p0 and ϕ on
the axes. Each contour may be interpreted as a numerical prediction of
the critical initial pressure required to break a rock sample of porosityϕ
and tensile strength σY, at the given fixed permeability.

Also plotted for comparison are the criterion from Koyaguchi et al.
(2008), shown above as Eq. (6); the older curve Eq. (5) from Alidibirov
(1994), as quoted in Koyaguchi et al. (2008) and using their best-fit
value for strength Sa≈6.682 MPa; experimental data from Koyaguchi et
al. (2008) for natural samples at room temperature and at high tempera-
ture (850 °C); and experimental data fromMueller et al. (2008) exploring
the effects of varying permeability on natural samples.

Three cases are plotted in Fig. 4, one for permeability k=10−10 m2,
one for k=10−12 m2, and one for k=10−14 m2. For all three cases, the
rock samples that our numerical model predicts can be fragmented by
p0 values in the experimental range of 5–15 MPa, have values of tensile
strength that sit in the range of 2–10 MPa, for larger values of porosity.

Our numerical model reproduces the important features of exper-
imental behaviour, that the critical value of p0 rises steeply as ϕ→0,
and approaches zero as ϕ→1.

The effect of varying permeability on model results is also clearly
illustrated in the sequence of plots in Fig. 4 — as k increases, so does
the critical value of p0. This effect is usually more obvious at higher
porosities (Mueller et al., 2008), but is also evident in our results
near small ϕ values, as the near-vertical contours are shifted sideways
by this effect. One explanation for this dependence on permeability is
that a higher permeability implies that gas can escape from the rock
more easily, so that pressure gradients are smaller and pressure dif-
ferences are smaller, so that there is less stress on the rock. Hence it
is to be expected that it is more difficult to break higher permeability
rock by this mechanism, so that intuition and experiment match our
model results. Certainly, this is the observation from experiments
on natural samples by Mueller et al. (2008). This is consistent with
the observed shift to the right of our model contours at low porosity,
or shift upwards at higher porosity, as k increases. For the largest per-
meability case, the contour through σY=4MPa for our model is al-
most identical to the Alidibirov fit shown, which was considered to
be the best fitting model in Eq. (5). The larger permeabilities provide
a bettermatch to experimental data, assuming that the tensile strengths
of the natural samples lie in the range of 1–6 MPa.

Note that changing the gas density, sample length, or chamber
depressurisation timescale would also affect the match to experimen-
tal data, by changing the value of B.
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Permeability and porosity (or vesicularity) are known to be inter-
related, so we now consider what happens in our model if we allow
permeability to vary with porosity. The Kozeny–Carman relationship
is based on Poiseuille flow in capillary tubes, and can be written
(Costa, 2006):

k ¼ Ckc
ϕ3

1−ϕð Þ2
;

where Ckc=c /(8av2τ), where c is an empirical geometric constant, av
is the specific internal surface area (the ratio of exposed surface
area to solid volume), and τ is the tortuosity. However, the latter
two parameters in general depend on porosity, so the overall depen-
dence of permeability on porosity is not revealed by this relationship.

This has been adapted by Costa (2006) using a fractal formulation,
with the intention of achieving a better match to measured relation-
ships between permeability and porosity for volcanic vesicular rocks,
to obtain the formula

kcosta ¼ Cc
ϕm

1−ϕð Þ : ð11Þ

For vesicular basalts, Costa (2006) finds that the best fit parameters
are Cc=3.87×10−12 m2 and m=1.99. For silicic pumices, he finds
Cc=1.46×10−13 m2 and m=1.47.

We find that using the original parameter values of Costa (2006)
for vesicular basalts and silicic pumices leads to poor fits to fragmen-
tation data, and to permeabilities that are too low. Modifying the pa-
rameters to Cc=1.5×10−10 m2 and m=0.5 for example, leads to a
better fit as illustrated in Fig. 5. Note that this choice leads to a perme-
ability range of 10−14 to 10−11, for a porosity range of 0.05–0.8.

3.2. Approximations to numerical simulations

In this section we make some simplifications based on numerical
solutions to our model. We seek to provide simple formulae, that
summarise numerical results, and allow answers to questions about
model behaviour without resorting to a full numerical computation.

As illustrated in Fig. 6, numerical simulations confirm that at early
times, the location of wz

max penetrates deeper into the rock sample,
and the value of wz

max increases as time increases. The occurrence of
fragmentation is determined by whether this maximum reaches the
critical value wz

crit.
The numerically determined behaviour of wz

max versus non-
dimensional time is given in Fig. 7 for a wide range of values of a.
Note that for each a, wz increases to a unique maximum value wz

max

over both space and time, before decreasing again. All curves follow
the same relaxing late-time behaviour, suggesting that degassing of
the finite-sized rock sample begins to control the maximum strain at
later times. We approximate this maximum value by using (Fowler et
al., 2009),

wz∼p−pc ; λ≪1;

and we solve for pressure using a lumped-parameter approach. The av-
erage gas pressure p̂ tð Þ in the rock sample drops because pc drops, but
p̂ tð Þ lags behind pc. The maximum value of wz is then approximated
by p̂, taking pc≪p̂. The gas diffusion equation may be averaged as in
Appendix D to find the lumped-parameter analytic approximation

p̂ ¼ 1
c1t þ 1ð Þc2 ; c1≡

γ2−1ffiffiffiffiffiffi
2

p
γ
≈1

2
; c2≡

2γ
γ−1

¼ 7: ð12Þ

This approximationwmax
z ≈p̂ is plotted as the dashed line in Fig. 7,

and for all except the smallest values of a, it provides an excellent

Fig. 4. Numerical solutions of the coupled diffusion and stress equations have been used
to calculate at what initial pressure p0 a sample will fragment, versus porosity, given the
tensile strength, and the permeability k. These numerical results are the thin contour
lines, each labelled with a value of tensile strength in MPa. These may be compared
with the data from cold (circles) and hot (boxes) experimental results as presented in
Koyaguchi et al. (2008), with experimental data from natural samples of dome rock and
pumice fromMueller et al. (2008) (triangles), and with two approximate formulae from
Koyaguchi et al. (2008) (solid line) and Alidibirov (1994) (thick dashed line). The hot
data is from Spieler et al. (2004b). Plot (a) is for k=10−10 m−2, plot (b) is for
k=10−12 m−2, and plot (c) is for k=10−14 m−2, in the numerical analysis. TheMueller
et al. (2008) data is divided into three ranges of permeability, less than 10−13 m2 (low) is
shown on the lower plot, between 10−13 and 10−11 m2 (moderate) is shown on themid-
dle plot, and greater than 10−11 m2 (high) is shown on the upper plot.
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match to numerical values of wx
max (square symbols). For ab2, where

the maximum is relatively broad, it falls below our approximation,
because the assumption that pc vanishes faster than p̂ fails to hold.
This corresponds to the curve wz

max(t) becoming vertical near
t=0.5, near one end of our range of values of a.

We link t and a for both wz
max and p̂ by setting t=1/a, the relax-

ation time for pc, in Eq. (12). Hence fragmentation occurs when

p̂≥wcrit
z ;

that is,

p0≥pcrit0 ¼ 1−ϕð ÞσY
1
2a

þ 1
% &7

: ð13Þ

Then the log–log plot of wz
max versus a in Fig. 8 shows that our

lumped-parameter approximation wmax
z ≈p̂ provides a working fit to

numerical values over four orders of magnitude of a.
A simpler piecewise linear approximation to the numerical results

is also plotted in Fig. 8,

wmax
z ≈L ¼

a
10

; 1≤ a b 10

1; 10≤ a≤ 104
;

8
<

: ð14Þ

and is of similar accuracy to the lumped-parameter result.
The lumped-parameter approximation to simulated results gives

ϕpcrit0
1−ϕð Þ ¼ Smodel; where Smodel≈Sm1 ¼ ϕσY p̂; ð15Þ

while the simpler piecewise linear approximation gives

Smodel≈Sm2 ¼
10ϕσY

a
; 1≤ a b 10

ϕσY ; 10≤ a≤ 104
:

8
<

: ð16Þ

Fig. 5. Numerical solutions of the coupled diffusion and stress equations have been used to
calculate at what initial pressure p0 a sample will fragment, versus porosity, given the tensile
strength. These numerical results are the contour lines, each labelled with a value of tensile
strength in MPa. These may be compared with the data from cold (circles) and hot (boxes)
experimental results as presented in Koyaguchi et al. (2008), and from experiments on nat-
ural samples byMueller et al. (2008),whose data is divided into three ranges of permeability,
less than 10−13 m2 (smallest triangles), between 10−13 and 10−11 m2 (medium sized trian-
gles), and greater than 10−11 m2 (largest triangles). The hot data is from Spieler et al.
(2004b). Permeability has been specified in terms of porosity, in amodified Carman–Kozeny
approach. The model Eq. (11) proposed by Costa (2006) has been used with the values
Cc=1.5×10−10 m2 andm=0.5.

Fig. 6. The rock strain wz calculated from numerical solutions, plotted against z, for
a=22 and ten dimensionless times stepping evenly from 1/220 to 1/22. The lowest
curve is the earliest time 1/220, and wz increases with time due to the decreasing pres-
sure at the upper surface of the rock sample. The maximum value of wz at each time
step is marked with a circle, and can be observed to penetrate deeper into the rock
sample, and to increase, as time increases, at early times.
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Fig. 7. The maximum value for z∈(0,1) of rock strain wz calculated from numerical so-
lutions, plotted against t, for a=1 stepping logarithmically in twenty steps to
a=10,000 in order from the lowest solid curve to the upper-most. The squares mark
the location on each curve of the maximum over time of the spatial maxima of wz,
and are highest for the largest values of a. The dashed curve shows the approximation
Eq. (12) to wz

max described in the text.

Fig. 8. Numerical values of wz
max calculated from numerical solutions, plotted against a

(circles) using logarithmic scales. The solid line shows the lumped-parameter approx-
imation Eq. (12) calculated in the text, with the substitution t=1/a. The dashed line
shows the simpler piecewise approximation Eq. (14).
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Note also that since p̂ and L depend on a, which depends in turn on
ϕ and p0 (see Eq. (2)), these relationships are implicit in relating p0
and ϕ. The simplest relationship, Eqs. (8) and (16), can be rearranged
to obtain the critical pressure for fragmentation to occur, in explicit
form:

pcrit0 ¼

100σ2
Y 1−ϕð Þ2

Bϕ
;

Bϕ
100 1−ϕð Þ≤ σY ≤

Bϕ
10 1−ϕð Þ

σY 1−ϕð Þ; Bϕ
108 1−ϕð Þ

≤ σY ≤
Bϕ

100 1−ϕð Þ

8
>>><

>>>:
ð17Þ

The form of B in Eq. (10), and its appearance in Eq. (17), gives an
approximation to the way that effective strength also depends on pa-
rameters k, ρ0, l, and tc.

This linear approximation is compared to experimental data and
to the numerical simulation contours, for k=10−12 m2, in Fig. 9.

The approximation (Eq. (16)) suggests that fragmentation of rock
specimens by gas could be used to measure the tensile strength of a
wide range of rocks, provided that a≥10. Only the porosity is needed,
and a series of experiments with increasing p0 until the rock frag-
ments at a critical value p0crit. Then from Eqs. (8) and (16), the tensile
strength is given by

σY ¼ pcrit0
1−ϕ

:

Remarkably, this is independent of parameters like permeability,
speed of depressurisation, sample length or gas density, provided
only that a≥10. This is consistent with the experimental results of
Mueller et al. (2008), that for low permeability (large a), there is no
observed fragmentation dependence on sample permeability.

The plot in Fig. 9 of critical pressure versus porosity with constant
permeability indicates that this formula for tensile strength is of the
right form for all but the smallest porosities. It also suggests that the
formula is only approximate, since for example at a porosity of 0.3
and a critical pressure of about 10 MPa, the formula would give a

strength of 13 MPa whereas the more accurate numerical solution
says the strength is only 9 MPa, since the corresponding dashed and
solid lines cross there.

Fig. 10 presents a similar picture of critical pressure versus porosity,
but for the case that permeability is specified in terms of porosity, in a
modified Carman–Kozeny approach. The model Eq. (11) proposed by
Costa (2006) is used here, with the values Cc=1.5×10−10 m2 and
m=0.5.

If rock and experimental parameter values give 1≤a≤10, a more
complicated formula results from Eqs. (8) and (16), and the tensile
strength is then given by

σ2
Y ¼ ϕpcrit0 l3ρ0cF

100 1−ϕð Þ2
ffiffiffiffiffi
k

p
t2c

:

This formula compares well with that fitted by Mueller et al. (2008)
to experimental results, where they found a linear dependence of
the critical pressure on the square root of permeability, for large
enough permeabilities.

The above results for the piecewise linear approximation to Smodel

are echoed by the lumped parameter model, that for small a the critical
fragmentation pressure becomes independent of a, since the lumped
parameter model criterion for fragmentation Eq. (13) can be written
p0≥p0crit=(1−ϕ)σYf(a) where f (a) is one for a≪0.5.

3.3. Fragmentation time

Assuming that fragmentation occurs after a short time compared
to the time it takes for the average gas pressure to drop significantly,
we now consider how long it takes for the first fragment to break off.
This analysis is only valid then for a>10 and p0>σY(1−ϕ).

As above, we use the lumped-parameter pore gas pressure to ap-
proximate the criterion for breaking as

wz≈p̂ tð Þ−pc > wcrit
z : ð18Þ

Fig. 9. Critical fragmentation pressure p0 versus porosity ϕ. Data from cold and hot ex-
periments are shown as circles and boxes respectively. Data from experiments on nat-
ural samples of varying permeability by Mueller et al. (2008) is also shown, divided
into three ranges of permeability, less than 10−13 m2 (smallest triangles), between
10−13 and 10−11 m2 (medium sized triangles), and greater than 10−11 m2 (largest tri-
angles). The three solid lines are contours of accurate numerical simulations from our
model, labelled with rock tensile strength σY=5, 9, and 13 MPa. The three dashed lines
show the result of a piecewise linear approximation to effective strength, Eqs. (16) or
(17) in the text, using the same values of σY as for the solid numerical contours. For the
contours and linear approximations, a permeability of 10−12 m2 has been used, along
with the other typical parameter values listed in Tables 1 and 2.

Fig. 10. Critical fragmentation pressure p0 versus porosity ϕ. As in Fig. 9, data from cold
and hot experiments are shown as circles and boxes respectively, data from variable
permeability experiments by Mueller et al. (2008) is shown as variable-sized triangles,
and the three solid lines are contours of accurate numerical simulations from our
model, but here labelled with rock tensile strength σY=2, 4, and 6 MPa. The three
dashed lines show the result of a piecewise linear approximation to effective strength,
Eqs. (16) or (17) in the text, using the same values σY=2, 4, and 6 MPa going from the
lowest to the highest line. For the contours and linear approximations, permeability has
been specified in terms of porosity, in a modified Carman–Kozeny approach. The model
Eq. (11) proposed by Costa (2006) has been used with the values Cc=1.5×10−10 m2

and m=0.5.
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and we set p̂≈1 for early times. The plot ofwz
max versus 1−pc in Fig. 11

shows that 1−pc≈wz
max for large pc and a>10, in support of our approx-

imation in Eq. (18).
Then, using pc≡e− at, the inequality 1−pc>wz

crit is satisfied for
times greater than the fragmentation time

t' ¼
ln 1−wcrit

z

# $"""
"""

a
: ð19Þ

Fig. 12 illustrates that this approximation gives a goodmatch to fragmen-
tation times obtained directly from numerical solutions of our model
equations.

Also note that the dimensional time to fragmentation is given by

t'd ¼ tc ln 1−wcrit
z

# $"""
""";

which depends only on the (experimentally determined) timescale tc
for gas depressurisation at the upper surface of the rock sample, and
on rock porosity and tensile strength through wz

crit=(1−ϕ)σY/p0. It
is independent of other rock properties like permeability and density.

3.4. Fragment size

A relationship between z and twill yield the location of themaximum
ofwz, when t=t⁎. We consider the similarity solution that approximates
p at early times (Appendix E),with p being the solution of an ordinary dif-
ferential equation that depends on the similarity variable

η ¼ 1−z
β2t2=3

; β2 ¼ 9γ
4

% &1=3
≈1:5:

For problems with constant boundary conditions, the similarity variable
provides a link between z and t, for example in the case of linear diffusion
problems giving the classic behaviour that z varies as

ffiffi
t

p
, related to the

concept of depth of penetration. This leads to the hope that even in our
nonlinear case with time-varying surface pressure, it might be the case
thatwz has a maximum at a unique value of the similarity variable η.

Numerical results in Fig. 13 indicate that wz
max in fact varies with

both a and η, although it is of a similar order of magnitude for a wide
range of values of the parameter a. However, for larger a values, the

dependence of wz
max looks almost linear in ln a, and also looks propor-

tional to 1/η. A rough fit by eye to Fig. 13 suggests we can summarise
the numerical simulations by the relationship

wmax
z ≈0:6lna

η
þ 0:01 lna−4:6ð Þ2−0:25: ð20Þ

The fit of this relationship to numerical results is illustrated in Fig. 14,
and seems satisfactory.

The size of the fragment z⁎ that breaks off is found by settingwz
max

to wz
crit, so that Eq. (20) becomes

z' ¼ 0:6β2t
'2=3lna

wcrit
z −0:01 lna−4:6ð Þ2 þ 0:25

: ð21Þ

The accuracy of this approximation is illustrated in Fig. 15 as a plot of z⁎
versuswz

max for numerical solutions (boxes) and for our approximation

Fig. 11. The maximum strain wz
max calculated from numerical solutions, plotted against

the surface pressure drop 1−pc, for a=10,000, 1000, 100, 10, and 1 (solid lines). The
highest value of a corresponds to the uppermost curve and the fastest surface pressure
drop. As a is reduced, wz

max decreases. The dashed line shows where wz
max exactly

equals 1−pc, for comparison.

Fig. 12. A comparison of fragmentation times from numerical solutions of our model partial
differential equations (boxes) with the simple approximation t=|ln(1−wz

crit)|/a, for a
values ranging from 10 to 10,000. Note a log scale has been used to cover the wide range
on the t-axis. The times are plotted against wz

crit, which is the rescaled sample strength
(1−ϕ)σY/p0.

Fig. 13. Simulated values of the maximum rock strain wz
max, plotted against the similar-

ity variable η, one curve for each of a=10,000, 1000, 100, 10, and 1, progressing from
right to left through the curves.
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(curves), and in Fig. 16 as a plot of approximate versus accurate numer-
ical z⁎ values (circles, with the line illustrating a perfect match).

The dimensional size of the fragment is then

z'd ¼ 0:9l
ln 1−wcrit

z

# $"""
"""

a

0

@

1

A
2=3

ln a
wcrit

z −0:01 ln a−4:6ð Þ2 þ 0:25
; ð22Þ

which depends on all rock and gas parameters, through the parame-
ters a and wz

crit.

3.5. Fragmentation speed

The fragmentation speed (the speed at which the fragmentation
front penetrates from the top down into the glued stationary rock
sample) is approximated by the speed of the first primary fragmenta-
tion event, relying on the numerical and experimental observation
that primary fragmentation speeds appear to be constant. This corre-
sponds to assuming that the kinematics are fast enough that the pres-
sure drop at the surface of the remaining glued-in part of the sample
is given by the experimentally imposed drop pc, but delayed by the
time taken for the fragmentation front to reach the current surface.
Fig. 3 illustrates that numerical solutions to our model support this
assumption— the pressure drops observed at each newly fragmented
surface all look like translated-in-time versions of each other.

A sufficient condition for this to occur is that the movement of
rock pieces in the fragmented region is rapid enough that decompres-
sion here continues as if the rock is suddenly not present, once it frag-
ments. In this case, all terms in Eq. (4) and the equation preceding it
may be equally important, but if the timescale for these equations is
fast compared to gas diffusion in the remaining stationary piece of
sample, this would be a sufficient condition. That is, if gas decompres-
sion in the fragmented region is much the same as gas decompression
without rock present, this would be sufficient.

Note that we are also assuming here that the velocity of the de-
compression wave in the gas–fragment mixture is faster than the
fragmentation speed controlled by gas diffusion in unfragmented
rock. Such an assumption for the decompression wave in pure gas is
integral to our model, and corresponds to our parameter a being
greater than one. This is true for the entire physical range of material

properties considered in our work, see Table 1. Then our sufficient
condition above (that decompression in the gas/fragment mix is sim-
ilar to decompression in pure gas) gives our assumption here. It also
agrees with the results shown in Koyaguchi and Mitani (2005),
Fig. 4b, where all fragmentation speeds are less than the speed of
sound in the gas/fragment mixture.

Note that taking the first fragmentation event to give the speed of
the primary fragmentation front, leads to the consequence that the
fragmentation speed is constant in time.

The nondimensional speed of fragmentation s⁎ then follows in
terms of the parameter a and the yield strain wz

crit, by dividing the
fragment size by the time to fragment, s' ¼ z'

t' , so that

s' ¼ 0:9
ln 1−wcrit

z

# $"""
"""

a

0

@

1

A
−1

3

ln a
wcrit

z −0:01 ln a−4:6ð Þ2 þ 0:25

 !

: ð23Þ

A comparison of this approximate result with accurate numerical
values for nondimensional fragmentation speed may be seen in
Fig. 17 for various values of the parameter a.

In order to compare this approximation with data from shock-
tube experiments reported in Koyaguchi et al. (2008), we recast ve-
locity as a function of the initial pressure p0 and porosity ϕ. We set

Fig. 14. The maximum rock strain wz
max according to numerical model solutions, plot-

ted against the approximate value 0:6lna
η þ 0:01 lna−4:6ð Þ2−0:25 as circles, for early

times and for a=10,000, 1000, 100, 10, and 1. The straight line illustrates perfect
equality, and the size of the circles reflects the size of a used.

Fig. 15. The nondimensional size of the first fragment to break off, plotted against wz
crit,

for a=10, 100, 1000, and 10,000. The boxes are the results of numerical solutions of
the model equations, and the solid lines are the approximation Eq. (21).

Fig. 16. A comparison of approximation Eq. (21) to numerical values, for the non-
dimensional size z⁎ of the first fragment to break off, for a=10, 100, 1000, and
10,000. The straight line illustrates perfect equality, and the size of the circles reflects
the size of a used — the larger the circle, the larger a is.
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velocity to zero when p0 is below the critical value for fragmentation,
and we use the lumped-parameter approximation Eq. (13) to set this
value. Then we convert back to dimensional velocity in m.s−1, to get

v ¼ 0; p0b 1−ϕð ÞσY
1
2a

þ 1
% &7

s'v0; else

8
<

: ð24Þ

where s⁎ is given by Eq. (23), and

wcrit
z ¼ 1−ϕð ÞσY

p0
; a2 ¼ Bϕ

p0
; v0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
p0l

2

ϕBt2c

s

; B ¼ l3ρ0cF
t2c

ffiffiffiffiffi
k

p :

This theoretical formula for fragmentation velocity is compared
with and gives good matches to two different sets of data from
shock-tube experiments, in Figs. 18 and 19, using tensile strengths
of 14 MPa for Unzen data and 13 MPa for Montserrat data. The tensile
strengths were chosen to give critical values of p0 for fragmentation
that matched the data values, so that the jumps from zero speed
occur close to where the data indicates they should. The best match
for both of these data sets for permeability–porosity relationships
was obtained by using the Costa (2006) fractal formulation (Eq.
(11)) of the Carman–Kozeny relationship with Cc=4×10−11 m2

and m=4. The resulting values for a range from 8.3 to 883 for the
Unzen case, and from 6.5 to 1422 for the Montserrat case.

With this choice, the model matches the experimental data within
the natural scatter of data values.

The matches to fragmentation velocity from shock-tube theory il-
lustrated in Koyaguchi et al. (2008) differ in appearance from our
model in two respects — our curves are straighter, and we have a
jump from zero fragmentation speed to a finite fragmentation speed
at the critical pressure p0. This jump is because just below the critical
pressure, the maximum stress occurs at some finite depth and time,
but is not yet enough to break the rock. Just above critical, this max-
imum is high enough to rupture the sample, and is still at some finite
depth and time, hence gives the sudden appearance of a nonzero
fragmentation velocity.

The above calculations of fragmentation time, size and speed are
only for the first fragmentation event. The good match to fragmenta-
tion speed data from experiments suggests that this first event is a
good indicator of overall fragmentation speed. After this event, the ki-
nematics of the ejection of that fragment and subsequent fragments
couple to the continued diffusion of gas in each piece of rock
(Fowler et al., 2009) to modify the pressure changes at the faces of
each piece. However, the kinematics is relatively fast. Our full numer-
ical simulations (which do not make this assumption) indicate that,

for example, the speed of fragmentation is almost constant as succes-
sive glued-in pieces break off (primary fragmentation), and the frag-
ment sizes, while they decrease a little, remain of the same order.
Furthermore, simulated pressures in the gaps between fragments
can be observed in Fig. 3(b), after a brief initial lag, to decrease in a
similar manner to the pressure at the upper surface of the
fragmenting rock. Hence the first fragmentation event is an indicator
of subsequent events, and has a similar velocity. Secondary fragmen-
tation is also observed numerically and experimentally, where mov-
ing fragments themselves subsequently break in two, perhaps
several times, due to internal gas pressures.

4. Dependence on sample length

Here we consider the implications of the results of previous sec-
tions, for the dependence of the fragmentation criterion (Eq. (17))
and the size of primary fragments (Eq. (22)) on the length of the

Fig. 17. Primary nondimensional fragmentation speeds versus wz
crit for a=10,000,

1000, 100, and 10. Circles show numerical simulation results, and solid lines show
the approximate formula Eq. (23).
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Fig. 18. Fragmentation speed versus initial gas pressure. The symbols are from shock-
tube experiments from Unzen (Scheu et al., 2006), with porosities of 0.061 (circles),
0.13 (diamonds), 0.21 (crosses), 0.34 (triangles), and 0.50 (asterisks). The lines are
model predictions, using the same porosities, σY=14 MPa and using the lumped-
parameter approximation for maximum solid strain. Jumps to zero velocities occur at
the modelled critical pressure for fragmentation to occur. Permeability is taken to
vary with porosity as proposed by Costa (2006) in a fractal formulation of the
Carman–Kozeny relationship, with the values Cc=4×10−11 m2 and m=4.
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Fig. 19. Fragmentation speed versus initial gas pressure. The symbols are from shock-
tube experiments fromMontserrat (Kennedy et al., 2005; Scheu, 2005), with porosities
of 0.024 (circles), 0.20 (diamonds), 0.44 (crosses), and 0.67 (triangles). The lines are
model predictions, using the same porosities, σY=13 MPa, and using the lumped-
parameter approximation for maximum solid strain. Jumps to zero velocities occur at
the modelled critical pressure for fragmentation to occur. Permeability is taken to
vary with porosity as proposed by Costa (2006) in a fractal formulation of the
Carman–Kozeny relationship, with the values Cc=4×10−11 m2 and m=4.
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sample l (in m). Since fragmentation time is independent of sample
length, fragmentation velocity will have the same dependence on l
as primary fragment size.

The critical overpressure for fragmentation, in expression Eq. (17),
switches from a simple dependence solely on effective tensile strength
σY(1−ϕ) to amore complicated dependence on rock and experimental
properties, as the tensile strength increases through the critical value

σ crit
Y ¼ Bϕ

100 1−ϕð Þ ¼
l3ρ0cFϕ

100 1−ϕð Þt2c
ffiffiffiffiffi
k

p :

Hence, if all rock and experimental properties are fixed and sample
length is increased, this critical value will increase until it is bigger
than the actual value of σY for a given rock sample, and hence for longer
samples the simpler fragmentation criterion will hold, p0>p0crit=σY(1
−ϕ), that is, the criterion is then independent of sample size. A typical
(critical) value of l for which the switch occurs (using typical values of
the other parameters, as tabulated in Tables 1 and 2), is 20 mm with a
range from 1 to 130 mm.

For l less than this critical value, the critical pressure for fragmen-
tation to occur is

pcrit0 ¼ 100σ2
Y 1−ϕð Þ2t2c

ffiffiffi
k

p

l3ρ0cFϕ
:

Clearly, this critical gas pressure for fragmentation reduces rapidly as
sample length is increased, provided it remains below the critical
length for switching mentioned above.

Fragment size, given that fragmentation occurs, is given by Eq. (22),
and the dependence on sample length is not immediately clear from
this complicated formula — the parameter a depends on l. Hence we
have graphed the value of fragment size versus sample length, for vari-
ous values of permeability and porosity, in Figs. 20–23. In all of the cases
considered, over the applicable range of lengths, fragment size (in m)
increases as sample length increases, according to ourmodel. However,
with theminor exception of the very low permeability case, the relative
size of the fragment decreases with sample size.

5. Conclusions

The newmodel developed by Fowler et al. (2009) for the fragmenta-
tion of solid magma in shock-tube experiments has here been explored
approximately and numerically and compared with experimental data.
Model predictions of critical initial pressures versus porosity for fragmen-
tation give good matches with data. Model predictions of fragmentation

velocities versus initial gas pressure also lead to good matches with data
over a wide range of porosities.

The model criterion for fragmentation, that the solid strain exceed
the critical value wz

crit=(1−ϕ)σY/p0, together with a linear approxi-
mation to numerical results for solid strain, gives the approximation
for sample tensile strength

σY ¼ pcrit0
1−ϕ

where p0crit is the critical gas pressure for fragmentation of the sample.
This approximation applies to porosities above 10%, and is more accu-
rate at higher porosities. It may provide an alternative method for
measuring the tensile strength of rock, given its porosity.

The central role played by the relative speed of decompression at
the surface of the sample is reflected by the importance of the param-
eter a in our model. It appears in approximations based on our model
and numerical solutions expressed in Eq. (22) for fragment size, and
Eq. (24) for fragmentation velocity.

The temperature of rock samples has not been discussed previous-
ly in this paper, although hot samples have been distinguished from
cold samples in Figs. 4 and 9. Hot samples (squares) are seen in
these figures to fragment at relatively lower initial gas pressures
than cold samples (circles), and we make a brief comment on this
here. Temperature increases affect our model in several respects —
gas density and sample tensile strength are reduced; and the thermal
expansion of the sample container compared to that of the rock sam-
ple is not a consideration in our work here (this could alter the initial
stress state); glue strength will also be affected. The corresponding
decrease in gas density implies a small decrease in the parameter a,
which implies a slightly decreased maximum stress exerted by gas
pressure differences on the solid. This increases by a small amount
the critical gas pressure for fragmentation, against the trend seen in
the data. The observed trend to a decreased critical pressure is consis-
tent with a reduction in tensile strength with increasing temperature
that overwhelms the density effect. It would be interesting to explore
this further experimentally, especially for temperatures near the glass
transition.

We found that in general, fragmentation occurs more readily for
longer samples, up to a critical length where fragmentation becomes
independent of sample size (and permeability and density). Fragment
size generally increases with sample size.

Note that while it is tempting to conclude that very long gassy rock
samples, such as might be found ex vitro, fragment independently of
length, our conclusions do not extend beyond sample lengths of about
4 m for typical values of other parameters. This is partly because if sample
length is increased further, the Reynolds number will then become small,

Fig. 20. The dependence of (dimensional) fragment size zd⁎ on sample length, for typical
values of other parameters, except that permeability takes the values 10−10 (upper-
most curve), 10−12 (middle curve), and 10−18 (lowermost curve).
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Fig. 21. The dependence of nondimensional fragment size z⁎ as a fraction of sample
length, on sample length, for typical values of other parameters, except that permeabil-
ity takes the values 10−10 (uppermost curve), 10−12 (middle curve), and 10−18 (low-
ermost curve).
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and we will no longer be able to discard certain terms in the full model,
and reduce it to the model we are solving here. So any reduced model
for significantly longer length scales will be different. Another indication
that it is unwise to try to extend length scalesmuch beyond our laborato-
ry values, is that the denominator of the fitted behaviour Eq. (22) goes
through zero at higher sample lengths — the behaviour only fits over
the given range of values of the parameter a.

So no firm conclusions can be drawn from our work, about length
scales for volcanic applications ex vitro. This is not the only reason our
model does not extend to volcanism in nature — our model was con-
structed specifically and exclusively to explain results of laboratory
experiments on gas-charged solid porous rock samples, and in this re-
spect it has been successful. However, modelling gas exsolution in a
rising molten magma that is solidifying remains an interesting chal-
lenge and an outstanding problem.
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Appendix A. Dimensional model equations

Here, for completeness, we summarise part of the dimensional
model derived in Fowler et al. (2009) for the flow of gas out of a
pressurised column of rock, in one dimension. Momentum conserva-
tion for the rock gives

ρs 1−ϕð Þwtt ¼ 1−ϕð Þσ z þ Aþ D−F; ðA:1Þ

where w is vertical rock displacement (m), z is the vertical coordinate
(m), ϕ is rock porosity, ρs is rock density (kg/m3), σ is the vertical com-
ponent of stress in the rock (Pa), a t subscriptmeans a time derivative, a
tt subscript means the second time derivative, and a z subscript means
the z-derivative of the variable. Momentum conservation in the gas
gives

ρfϕvt ¼ −ϕpz−A−D; ðA:2Þ

where ρf is gas density, v is gas velocity, and hence vt is gas acceleration.
Stress and strain are related by

1−ϕð Þσ ¼ Ewz−αp; ðA:3Þ

where E is an elastic constant, typically with a value of about 1011 Pa for
rock, and the dimensionless parameter α relates to the deformability of
the pore space and the gas and is presumed of order one. The termA ac-
counts for an added mass effect, and corresponds physically to the con-
cept that moving a piece of rock past gas requires displacing the gas
backwards (Biot, 1956), and can be written

A ¼ 1−ϕð ÞCV Mρf vt−wttð Þ; ðA:4Þ

where CVM is an order one constant relating the added mass density to
the porosity and gas density. The term D has dimensions of pressure
gradient and accounts for the interfacial drag when gas moves past
rock, and when Darcy's law for flow in a porous medium is extended
to Forchheimer's equation to include turbulent flow effects, takes the
form

D ¼
ηfϕ

2

k
v−wtð Þ þ

ρf CFϕ
3

ffiffiffiffiffi
k

p v−wtð Þ v−wtj j; ðA:5Þ

where ηf is the dynamic viscosity of the gas (about 18×10−6 Pa.s), k is
the permeability of the rock (about 10−12 m2), and CF is the dimension-
less Ergun coefficient (about 0.5). Conservation of gas mass gives

ρf ϕ
# $

t
þ ρf ϕv
# $

z
¼ 0; ðA:6Þ

and assuming adiabatic expansion of the gas, we can relate gas pressure
and density as

ρf ¼ ρ0
p
p0

% &1
γ
; ðA:7Þ

where γ is the adiabatic index, with value 1.4 for a diatomic ideal gas
like the nitrogen used in many of the shock tube experiments, and
ρ0≈115 kg.m−3 and p0≈10 MPa are representative values of gas den-
sity and pressure. Wall “friction” due to the glue that temporarily holds
the sample down is expressed as

F ¼
μg w−w0ð Þ

2πRdg
; ðA:8Þ

where μg≈109 Pa is the glue shear modulus, R=1.2 cm is the radius of
the sample, and dg≈0.8 mm is the thickness of the glue.w0(z) is the ini-
tial displacement of the sample, after glueing the sample and pressurising
the chamber. Note that this equation relates shear force and shearing

Fig. 22. The dependence of (dimensional) fragment size zd⁎ on sample length, for typical
values of other parameters, except that porosity takes the values 0.05 (uppermost
curve), 0.4 (middle curve), and 0.9 (lowermost curve).
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Fig. 23. The dependence of fragment size as a fraction of sample length, z⁎ on sample
length, for typical values of other parameters, except that porosity takes the values
0.05 (uppermost curve), 0.4 (middle curve), and 0.9 (lowermost curve).
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displacement at the wall, due to the presence of glue there. Without the
glue, the rock sample simply takes off like a gas-driven projectile when
gas pressure is released. Values of physical constants are summarised in
Table 2, and those properties with significant ranges of values are listed
in Table 1.

The criterion for fracturing of rock is taken to be that the effective
stress (1−ϕ)(σ+p) exceeds a yield stress (1−ϕ)σY, that is, that

σ þ p > σY ; ðA:9Þ

where σY is the tensile strength of the rock sample, with dependence
on porosity removed (that is, for low porosity samples), typically
about 2 MPa.

Initial conditions for these coupled differential and algebraic equa-
tions are zero gas and solid velocities, and some small initial displace-
mentw0(z) due to slowly pressurising the sample, and stress given by
the chamber pressure p0 after charging,

wt ¼ v ¼ 0; −σ ¼ p ¼ p0; t ¼ 0: ðA:10Þ

Boundary conditions are zero displacement and gas flow at the
glued base, and a specified (measured) time-varying gas pressure
pc(t) at the upper surface z= l of the sample as determined by the re-
lease mechanism,

v ¼ w ¼ 0 at z ¼ 0; −σ ¼ p ¼ pc tð Þ at z ¼ l; ðA:11Þ

where pc is taken directly from experimental measurement of gas
pressure in the chamber just above the sample, and is found to
take the form

pc ¼ e−
t
tc ;

where tc is the shock chamber relaxation time, typically about 1 ms.

Appendix B. Nondimensional model equations

The dimensional model equations are rescaled and non-
dimensionalised to variables with a tilde on top, by the transforma-
tions

ρf ¼ ρ0~ρf ; σ ¼ p0 ~σ ; p ¼ p0~p

z ¼ l~z; t ¼ t0~t ; t0 ¼ l
v0

w ¼ "w ~w; "w ¼ p0l
E

; v ¼ v0~v

v0 ¼
ffiffiffiffiffi
k

p
p0

ϕρ0CF l

 !1
2

≈0:85 ms; D ¼ ϕp0
l

% &
~D A ¼ ρ0v

2
0

l

 !
~A

: ðB:1Þ

Note that the time and length-scales chosen correspond to gas veloc-
ities well below the speed of sound in the gas.

The resulting dimensionless equations are

! 1−ϕð Þ ~wtt ¼ 1−ϕð Þ ~σz þ υ
~
A þ ~

D−λ ~w− ~w0

# $
ðB:2Þ

υϕ~p
1
γ~vt ¼ −ϕ~p~z−υ~A−~D ðB:3Þ

1−ϕð Þ ~σ ¼ ~w~z−α~p ðB:4Þ

~A ¼ 1−ϕð ÞCV M ~p
1
γ ~v~t−δ ~w~t~t
' (

ðB:5Þ

~D ¼
~v−δ ~w~t
RepCF

 !

þ ϕ~p
1
γ ~v−δ ~w~t
' (

~v−δ ~w~t

"" "" ðB:6Þ

~p
1
γ

# $
~t
þ ~p

1
γ~v

# $
~z ¼ 0 ðB:7Þ

with dimensionless pressure in the chamber above the sample
satisfying

~pc ¼ exp −a~t
' (

;

and where parameters and values are

! ¼ ρsv
2
0

E
≈1:9( 10−7

; υ ¼ ρ0v
2
0

p0
≈0:8( 10−4

;

λ ¼
μgl

2

2πRdgE
≈0:6; δ ¼ p0

E
≈10−4

;

Rep ¼ ρ0v0
ffiffiffiffiffi
k

p

ηf
≈18; a ¼ t0

tc
≈22;

ðB:8Þ

The usual convention is now to drop the tildes, so that unless oth-
erwise stated, variables are dimensionless from now on.

Appendix B.1. Reduced equations

This complicated system of coupled equations can be reduced to a
simpler system by setting the small parameters , δ, 1 /Rep, and v to
zero, essentially obtaining the leading term in an asymptotic series
expansion in these small parameters.

The resulting dimensionless system, dropping the tilde signs,
using pz ¼ −p

1
γ vj jv (obtained by combining Eqs. (B.3) and (B.6)),

and setting ϕ+α to one for simplicity since it is order one, is

∂p1
γ

∂t ¼ ∂
∂z

p
1
γ

pz

"""""

"""""

1
2

pz

0

@

1

A; ðB:9Þ

wzz ¼ pz þ λw; ðB:10Þ

with initial conditions

w ¼ w0 ¼ 0; wt ¼ v ¼ 0; −σ ¼ p ¼ 1 at t ¼ 0

and boundary conditions

pz ¼ w ¼ 0 at z ¼ 0; p ¼ pc ¼ exp −atð Þ; wz ¼ 0 at z ¼ 1:

That is, pressure obeys the nonlinear diffusion Eq. (B.9), so that
the pressure drop at the sample surface diffuses inwards, and dis-
placement in the rock is then obtained by solving the boundary
value problem Eq. (B.10). Note that the diffusion equation can be
solved independently of rock displacement.

These equations apply right up to the time that the rock first rup-
tures, the time of primary fragmentation. This occurs when the effec-
tive stress exceeds the critical value, p+σ>σY. Noting that α≈1−ϕ,
Eq. (B.4) gives

pþ σ ¼ wz

1−ϕ
:

Hence the criterion for fragmentation can be written in the form

wz > 1−ϕð ÞσY ; ðB:11Þ

where σY is nondimensional tensile strength, approximately 0.2 in
value if p0 is 10 MPa and dimensional tensile strength is 2 MPa.

So the rock fragmentation problem has been reduced to first solv-
ing the nonlinear diffusion problem (Eq. (B.9)) for p, while at the
same time computing w by using the solution p in the boundary-
value problem (Eq. (B.10)). Then at each time, the criterion Eq.
(B.11) is checked, until primary fragmentation occurs.
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Appendix C. Green's function for strain

The Green's function G (z, z0) for solving

wzz−λw ¼ pz

with pz prescribed as a function of z at a given time, and boundary
conditions w(0)=0, wz(1)=0, satisfies

Gzz−λG ¼ δD z−z0ð Þ

where δD is the Dirac delta function, with the usual continuity condi-
tions across the jump at z=z0. G is given by the formula

G z; z0ð Þ ¼ − 1
υD

sinh υzð Þcosh υ 1−z0ð Þð Þ; z≤ z0
sinh υz0ð Þcosh υ 1−zð Þð Þ; z > z0

;

)
ðC:1Þ

where d=cosh υ and υ ¼
ffiffiffi
λ

p
.

Then wz is obtained by the quadrature

wz zð Þ ¼ ∫1
0Gz z; z0ð Þpz z0ð Þdz0;

where the derivative of the Green's function is

Gz z; z0ð Þ ¼ − 1
D

cosh υzð Þcosh υ 1−z0ð Þð Þ; z≤ z0
−sinh υz0ð Þsinh υ 1−zð Þð Þ; z > z0

)
ðC:2Þ

This formula has been tested in Matlab by comparing with a direct
numerical solution to Eq. (B.10) using the routine bvp4c.

Appendix D. Lumped parameter model

The average gas pressure in the rock sample may be approximated
by noting that the gas pressure satisfies

∂p1
γ

∂t ¼ − ∂
∂z vp

1
γ

# $
;

where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−pz
p

1
γ

s
:

We approximate the pressure difference driving gas flow by the aver-
age pressure p̂ minus the surface pressure pc which we set to zero, so
that the pressure gradient is approximated by pz≈−p̂= 0:5ð Þ ¼ −2p̂.
Then

v≈
ffiffiffiffiffiffi
2

p
p

γ−1
2γ :

Our gas diffusion equation becomes, after a further replacement of pz,

∂p̂1
γ

∂t ≈−
ffiffiffiffiffiffi
2

p γ þ 1
γ

% &
p̂

γþ1
2γ :

This integrates to give

p̂≈ 1
c1t þ 1ð Þc2 ; c1≡

γ2−1ffiffiffiffiffiffi
2

p
γ
; c2≡

2γ
γ−1

: ðD:1Þ

Appendix E. Similarity solution

An approximate formula for pore gas pressure, based on solv-
ing Eq. (B.9) for small times, assuming the surface pressure pc

changes relatively slowly, can be obtained in the form of the similar-
ity solution

p≈R ηð Þγ ; η ¼ 1−z
Bt2=3

; ðE:1Þ

where R satisfies the differential equation

Rγ
ffiffiffiffiffiffiffi
R′

p# $′
þ ηR′ ¼ 0; ðE:2Þ

if we choose B=(9γ /4)1/3. The boundary conditions for R are

R 0ð Þ ¼ R0 ¼ p1=γc ; R→1 as η→∞:
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