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Abstract We argue that, while Milanković variations in solar radiation undoubt-
edly have a major influence on the timing of the Quaternary ice ages, they are partly
incidental to their underlying causes. Based on observations of the significance of
CO2, we propose a conceptually simple (but complicated in detail) energy balance
type model which has the ability to explain the underlying oscillatory nature of ice
ages. We are led to develop a model which combines ice sheet growth and atmospheric
energy balance with ocean carbon balance. In order to provide results which mimic
the basic features of the observations, we develop novel hypotheses as follows. The
succession of the most recent ice ages can be explained as being due to an oscillation
due to the interaction of the growing northern hemisphere ice sheets and proglacial
lakes which form as they migrate south. The CO2 signal which faithfully follows the
proxy temperature signal can then be explained as being due to a combination of
thermally activated ocean biomass production, which enables the rapid CO2 rise at
glacial terminations, and enhanced glacial carbonate weathering through the exposure
of continental shelves, which enables CO2 to passively follow the subsequent glacial
cooling cycle. Milanković variations provide for modulations of the amplitude and
periods of the resulting signals.
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8.3 Milanković variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 A critique of the Milanković theory of ice ages

At any timescale beyond the seasonal cycle, the strongest signal in Pleistocene climate
at the global scale is the quasi-regular alternation between glacial periods (ice ages)
and interglacials. The idea that this pattern was driven by variations in the received
solar radiation due to variations in the Earth’s orbit was advanced by Croll (1864,
1875). It was then championed by Milanković (1941), with whose name the theory is
now largely associated. Milanković was able to calculate the solar radiation received
at different latitudes and seasons based on the astronomical parameters (with what in
retrospect can be seen as reasonable accuracy back to about 300 ka before present,
Berger 1988). He then adopted the idea that the main determinant of ice sheet growth
was the insolation (incoming solar radiation) received at high latitudes in the summer
half year. These two advances allowed him to compare theory with the then-prevailing
knowledge of the timing of ice advances in the European Alps, with what appeared to
be success.

Improved knowledge of the timing of glaciation around the world, including the
more integrated picture found in marine sediment cores, showed that his initial proc-
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lamation of success was premature. However, the theory experienced a renaissance
with the revelation by Hays et al. (1976) that the climate of the last half million years,
as recorded in oxygen isotopes in marine sediments, shares its spectral peaks at 100,
41, 23 and 19 ka with those of the Earth’s orbital variations associated with eccentric-
ity, obliquity and precession. This is often seen as a verification of what has become
known as Milanković theory. However, in reality it appears to be a much more limited
confirmation that the astronomical cycles play a role in pacing the observed climate
variations: the paper by Hays et al. (1976) specifically used the word “pacemaker” in its
title, and explicitly pointed out that the dominance of the 100 ka cycle in their records
required a nonlinear relationship between forcing and climate at this period. There are
a number of problems with the theory as originally formulated by Milanković, and
with many of its looser variants that may more generally be termed as astronomical
theory, and we discuss these below.

Most obviously, it is clear that other major climatic effects must have been operative,
in order that the Pleistocene ice ages begin at all. The late Pliocene was exceptionally
warm, despite having the same solar variations occurring. Some other, presumably
internal, factor must have changed, such that the same external forcing led to repeti-
tive glaciations in one case, and to a persistent lack of northern hemisphere glaciation
in the other. Similarly, the dominant period of Earth’s climate changed from 40 ka in
the period before about 1 Ma ago to 100 ka in the last 500 ka or more, again despite
rather similar astronomical forcing. More particularly, while this dominant ice age
period of 100 ka over the last 500 ka is associated with the frequency of eccentricity
variations, the amplitude of the forcing is tiny. If ice ages are fundamentally due to
the Milanković forcing, then some resonant response to this forcing seems necessary
to provide the ice sheet response which is observed. However, if this is true, then it
already tells us that the internal dynamics of the Earth’s climate has a large part to play
in the mechanism of ice age occurrence. As indicated by Le Treut and Ghil (1983) and
Tziperman et al. (2006), this essentially suggests that the solar radiation variation may
provide a nonlinear tuning mechanism for what is essentially an internal oscillation.

The situation does not improve in the earlier part of the Pleistocene: the dominant
forcing of the solar radiation at a given latitude is associated with the precession of the
equinoxes, with a period around 20 ka, but this seems inconsistent with the early Pleis-
tocene periodicity of 40 ka; differing mechanisms have been put forward to account
for this discrepancy (Huybers 2006; Raymo et al. 2006); the latter of these proposes
that both the Antarctic Ice Sheet and the Northern Hemisphere ice sheets may respond
at precessional frequencies, but that their effects cancel out in the observational record.

A more direct critique of Milanković theory comes from an assessment of its per-
formance against data in the time domain. For example, efforts have been made to
correlate the time series of the 65◦ N radiation variation with the timings of ice age ter-
minations (Kawamura et al. 2007; Cheng et al. 2009). However, Parrenin and Paillard
(2003) draw attention to the difficulties of the theory, and in particular point out incon-
sistencies with the times of sea level rise and times of maximum solar insolation. We
restrict ourselves to the last four glacial cycles, and use the insolation curve of mid-
summer (June 21) insolation at 65◦ north, a popular and close relation to the summer
half-year insolation curves calculated by Milanković. Then (Fig. 1) it is possible to
find rises in insolation that match the major warmings seen in the record of benthic
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Fig. 1 Benthic oxygen isotopes (Lisiecki and Raymo 2005) and an insolation curve for 65◦ north on June
21st (Laskar et al. 2004) for the last 450 ka

oxygen isotopes (a modern version of the curve used by Hays et al. 1976). But there are
numerous other rises in insolation, as large or larger than these, which caused no such
change. Milanković theory, without substantial elaboration, simply has no predictive
power.

The basic implicit model of the Milanković theory, never explicitly stated, is that
the climate responds in a linear fashion to the solar radiation forcing. If it does not,
then the spectral resemblance has no meaning. But if the response is linear, how can
we explain the nonlinear form of the basic ice age cycle, with slow decline of the
temperature, followed by relatively rapid rise at ice age termination? This in itself
tells us that, at the least, the climate responds nonlinearly to the forcing.

A final issue is that it is difficult to sustain the Milanković notion that it is summer
solar insolation at 65◦ N which drives the ice age climate. Wolff et al. (2009) are
among a number of authors who point out that the sequence of events in the last and
previous terminations was that the southern hemisphere warmed considerably before
either major changes in high latitude northern climate, or a very significant rise in sea
level (and loss of ice volume), kicked in; along with other authors, they also suggest
that the millennial scale variability in climate, which is pervasive in the last glacial
period, plays a central role in glacial terminations, an aspect that is not even considered
in Milanković theory.

Hysteresis

Almost entirely absent in discussions of the Milanković forcings are why they cause
what appears to be a relaxational oscillation between cold and warm states. The sem-
inal papers of Budyko (1969) and Sellers (1969) are key in this context, because they
propose that the transition to an ice age climate occurs through an imposed forcing
due to solar radiation. Through the concept of ice-albedo feedback, they show that a
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hysteretic switch between glacial and inter-glacial periods can be explained due to the
inter-dependence of ice cover and atmospheric temperature. However, this explana-
tion of ice ages has a conceptual difficulty. Typically, such hysteretic switches involve
sudden jumps between cold and warm states, and vice versa. There is a long cold state
followed by a long warm state. Evidently, this is not the case in ice ages. It is actually
quite difficult to conceive of a way in which oscillations can occur, where there is a
slow cooling followed by a sudden warming. Essentially, it seems we would need (at
least) two slow variables and one fast one, and this already suggests a more complicated
picture than the Budyko-Sellers one. An alternative is an autocatalytic reaction model
which can provide explanations of spiking in glycolysis, for example Goldbeter (1996).

A simpler alternative allows for the asymmetry in the growth of ice sheets and their
decay. The growth of an ice sheet towards equilibrium occurs on a time scale which
is controlled by the slow viscous flow of the ice, typical time scales for which lie
in the range 104–105 years. On the other hand, wastage of ice sheets can be a much
faster process, because the removal of meltwater is essentially instantaneous, and the
formation of pro-glacial lakes only enhances the wastage by enabling calving.

Carbon

One of the striking results that emerged from the Antarctic ice core analysis (Petit et al.
1999) was the essential identity of the carbon dioxide signal with the proxy temper-
ature signal (Fig. 2). There is seemingly an important lesson to be learned from this.
It is that carbon plays a fundamental rôle in the ice age oscillations, and may indeed be

Fig. 2 Proxy temperature measurements from deep sea sediments (top), Antarctic ice core (bottom), and
the CO2 variation derived from the same Antarctic ice core
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the driver for ice ages. This is consistent with a prevailing viewpoint that on a longer
time scale, it is the CO2 in the atmosphere which controls global temperatures.

At first sight, it seems reasonable that CO2 and temperature T would follow each
other closely. After all, we expect global atmospheric temperature to be a function of
CO2 partial pressure pCO2 because of the greenhouse effect. But T depends on other
quantities also, in particular radiation balance implies

T = T (pCO2 , a), (1.1)

where a is the planetary albedo. One might also suppose that T depends on the primary
greenhouse gas H2O, but the water vapour in the atmosphere and the consequent cloud-
iness itself depend directly on temperature, so that there is no independent effect.

If, for example, ice age oscillations occurred because of the insolation-driven
switches between the different Budyko-Sellers states, there would be no need for
CO2 to vary at all: the oscillations would occur because of the dependence of albedo
on ice cover and thus temperature. This is something of an oversimplification be-
cause of the ‘solubility pump’, which arises due to the fact that the solubility of CO2
decreases as temperature increases. Thus during an ice age, the increased solubility
drives the atmospheric CO2 lower. However, it is not generally considered that this
variation is sufficient to explain the observed variation of CO2, which would need a
change of global average temperature of some 15◦ K, about two or three times that
which is thought to have occurred. In fact this effect is offset by the fact that solubility
decreases with increasing salinity (which occurs because of sea level lowering), which
makes its importance even less. The fact that T and CO2 are essentially identical there-
fore tells us directly that the oscillations in carbon are not directly a consequence of
the oscillations in temperature, and must therefore form an integral constituent of the
oscillation mechanism. Since there is no direct effect of solar radiation variations on
CO2, we see that these provide a modulative, but not causative, effect.

In this paper, we suggest a simple model which might provide a basic mechanism
for self-sustained oscillations with a 100 ka timescale. Such suggestions are not new;
for example, Toggweiler (2008) has suggested a dominant role in the 100 ka cycle for
oceanic carbon, and the model which we suggest incorporates carbon as a fundamen-
tal controlling variable. A similar approach, both in ethos and in some of the detail,
can be found in the papers by Saltzman and Maasch (1988), Maasch and Saltzman
(1990), and Saltzman and Maasch (1991). In these papers, the authors follow the same
philosophical line as that advanced here, namely that the principal driver of the ice
age oscillations is to be sought in a model which portrays self-sustained oscillations,
and that these are modulated by the Milanković variations. The essential difference
between Saltzman and Maasch’s work and that presented here is that their eventual
portrayal of the dynamics of the Earth’s climate system does not involve the details
of the constituent processes in a specific way. A similar approach has been taken by
Ghil and co-workers (Källén et al. 1979; Ghil and Le Treut 1981; Le Treut and Ghil
1983), although their models do not consider the role of carbon.

The last and most thorough exposition of Saltzman’s theory is in his voluminous
book on the subject (Saltzman 2002). There is very little in the present paper which
is not covered, often in detail, in Saltzman’s work, and it is worth emphasising the
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slightly different flavour which we import. An example will suffice. In his chapter
10, he deals in detail with the carbon cycle, mirroring our presentation below. For
example, our buffering relation (3.37) below transiently connects to Saltzman’s equa-
tion (10.9). Even our putatively novel introductions of thermally activated biomass
and phosphate limited growth are included (on page 186 and page 189, respectively).
Having discussed these and a number of other ingredients, Saltzman steps back. On
page 191, he assumes (in (10.27) and then (10.28)) an essentially arbitrary functional
form for the air-sea CO2 exchange flux. On the following page, he states that it is
‘beyond our capabilities’ to properly constrain these terms, but suggests that ‘it is of
great value to pursue the development of more detailed models’. It is our conceit that
this is the intent of the present work.

2 Background and outline

The present paper is so long, and its logic so involved, that we here outline our thesis,
our goals, and the logic that has driven the paper to its conclusion. In addition, we
preface each of the following Sects. 3 to 8 with preambular summaries.

Our thesis is based on the data presented in Figs. 1 and 2. We take the first to
show that the Milanković variation of solar insolation provides a modulative, but not
causative, effect on ice age occurrence, at least over the last million years. Ice age
periodicity is thus the result of an internal oscillation, and the second figure suggests
that, since atmospheric carbon mirrors the ice age temperature variation, carbon may
act as the driver for this periodicity.

We thus begin our campaign by constructing a model for the variation of atmo-
spheric carbon dioxide. This is done in Sect. 3. In keeping with our efforts to devise
the simplest possible theory, our model is a box model. Its essential constituent variable
is the atmospheric CO2 partial pressure, which is produced by volcanic outgassing (and
more recently by human agency), and removed by aerial dissolution in rain droplets,
precipitation, rock weathering via dissolution, and runoff to the ocean. In addition,
CO2 dissolves directly in the ocean, and so its atmospheric partial pressure is tied
to that in the ocean, which is however buffered by the presence of carbonate and
bicarbonate ions. In turn, the concentrations of these are coupled to ocean calcium
concentrations, because oceanic plankton such as coccolithophores use calcium and
carbonate to form their shells. The uptake rate of carbonate thus involves the ocean
biomass, and in addition the concentration of whatever is rate-limiting for biomass
growth, which we take to be phosphorus. Our ‘simple’ model for carbon thus leads to
a complicated nonlinear model involving eight separate chemical reactants (hydrogen
ion in addition to those alluded to above).

Despite its complexity, we are able to describe analytically the behaviour of the
solutions. The oceanic carbon system model is stable. In addition, we use the model
to provide an explanation of Cenozoic planetary cooling, and to illustrate the possibly
dire consequences of anthropogenic global warming beyond the century time scale
which is the focus of most climate prediction models.

Section 4 adds two ingredients to the carbon system. Planetary temperature is deter-
mined by a global energy balance which depends on the greenhouse effect of CO2, and
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the reflected short wave radiation due to varying ice cover (and thus albedo). This raises
the necessity to provide an ice sheet growth model, and the simplest such model repre-
senting growth of land-terminating ice sheets is presented, providing another ordinary
differential equation for the ice sheet extent, which has a hysteretic but non-oscillatory
behaviour as the planetary temperature varies.

The carbon, temperature and ice models are all in practice interconnected, and thus
in Sect. 5 we combine them. This allows us first to provide a quantitative explanation
for the cooling of the planet since the Eocene, and the successive growth of the Antarc-
tic, Greenland and Laurentide ice sheets; but still there are no oscillations. Milanković
variations can drive oscillations, but they are sinusoidal and of too short period.

The following Sect. 6 then attacks the specific question of how to produce self-
sustaining 100 ka oscillations, and in addition rapid glacial terminations. The key to
our investigation is the observation that glacial terminations occur in 10 ka. There
needs to be something explicit in the model which allows ice sheet wastage to be
more rapid than accumulation. We hypothesis that the mechanism is due to the for-
mation of proglacial lakes, which allow rapid wastage through iceberg calving and
melting. As it turns out, this idea is not all new, being considered by Pollard (1982),
with a similar purpose. However, our approach is somewhat different. If proglacial
lakes provide a mechanism to allow rapid melting, then it is necessary to include in
the model an explicit evolution equation for the proglacial lake volume, and this is
done. Surprisingly, and without hunting, the coupled ice sheet/proglacial lake model
produces self-sustained oscillations, of the correct period and sawtooth form.

At this stage, we have been led far from our initial hypothesis that carbon drives ice
age oscillations: carbon is irrelevant! Of course, because carbon is coupled to the ice
sheet model, the ice sheet/proglacial lake oscillations do cause oscillations in carbon;
but, mainly because the response time is slow (being controlled by the oceans), these
oscillations are most unlike the observations. Thus, in Sect. 7, we undertake a detective
chase for mechanisms which might cause the observed carbon behaviour. Because we
have retained an analytic understanding of the behaviour of the model, we are able in
effect to deduce what mechanism must operate to produce the observations.

One possibility, ocean salinity alteration due to sea level lowering, is examined but
found wanting. A second mechanism involves the differing weathering rates during
ice ages, which might have allowed slight changes in ocean salinity with consequent
significant change in carbon, but this also does not work. Next, we realise that in
order to find rapid CO2 increase during termination, a rapid response time scale is
necessary, and this can be provided by the ocean phosphate time scale. This leads us
to propose that as the temperature rises, ocean biomass responds rapidly, leading to a
rapid drawdown of oceanic carbonate, and consequent rise in atmospheric CO2.

Having finally found the rapid carbon rise mechanism, we proceed in Sect. 8 to
provide numerical solutions. Our aim is to reproduce eight specific features of the
solutions: rapid terminations, rapid CO2 rise, correct CO2 jump, maximum ice extent
of ∼4,000 km, present day ocean carbonate and bicarbonate levels, slow glacial CO2
decline, temperature fluctuations of ∼5 K, and 100 ka periodicity. Immediately we
find that CO2 fails to follow the ice sheet extent down during interglacials, and we
resort to a further enhancement, again based on an analytic understanding of the model.
This assumes enhanced carbonate weathering during ice ages, due presumably to the
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exposure of continental shelves; this is also a known hypothesis—the coral reef hypoth-
esis (Berger 1982), and our analysis indicates that even a mild increase is able to force
the CO2 to follow the temperature down during glacial periods. With this on board,
a non-exhaustive search using mild adjustment of twelve parameters is able to satisfy
our eight constraints.

Finally, we add a representation of Milanković variations to the model. As we might
now expect, the oscillations become somewhat irregular, although not as much as the
data indicates, which may be due in the latter to the occurrence of Dansgaard–Oeschger
events. The final discussion and conclusions draw together the outcomes of the study.

3 A simple model of ocean carbon

Preamble

In this section, we begin the task of constructing the simplest model which will even-
tually provide a possible explanation of the rough form of the Pleistocene ice age
oscillations. We assume that CO2 is a fundamental variable, and thus our model will
essentially be a CO2 balance model, as suggested by Toggweiler (2008). A number of
subsidiary variables are involved in this model. In sequence of introduction, they are
oceanic CO2, ocean carbonate CO2−

3 , bicarbonate HCO−
3 , ocean acidity via H+, and

then oceanic calcium Ca2+ and calcium carbonate CaCO3, and finally ocean biomass
and its rate limiting nutrient, taken to be phosphate. The result is a series of ordinary
differential equations describing the concentrations of these substances in the world’s
oceans. We conclude the section with two illustrative applications, one concerning
planetary cooling since the Eocene, and the other the future consequences of global
warming.

3.1 The carbon cycle

Carbon dioxide is produced from volcanoes and by weathering of organic carbon,
the latter of which has in effect dramatically increased since the Industrial Revolu-
tion, by human agency. Atmospheric CO2 is removed, largely by dissolving in the
ocean, but an important amount is also lost through its dissolution in water drop-
lets, and subsequent precipitation. Precipitation on land causes dissolution and thus
weathering of rocks, from which a number of ionic species are delivered to the ocean,
notably sodium, magnesium, calcium, potassium, chloride, sulphate and bicarbonate.
The different ions have different residence times, and for all except bicarbonate and
calcium these are very long, at 107 years, because they ‘leak’ very slowly from the
ocean (for example, sodium and chloride are removed in evaporite beds). As a conse-
quence, these ‘conservative’ or leakage ions provide an almost constant background
(negative) charge, which is compensated by the net positive charge of the calcium
and (bi-)carbonate ions, along with the acidity H+. The net negative charge of the
conservative ions is given by

L− = −[Na+] − 2[Mg2+] − [K+] + [Cl−] + 2[SO2−
4 ], (3.1)
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and currently has the value (Emerson and Hedges 2008, table 2.3)

L− ≈ 1.74 × 10−2 mol kg−1. (3.2)

Carbon enters the ocean as dissolved CO2 from the atmosphere, or as bicarbonate
ion HCO−

3 through river flow, but in the ocean the carbon rapidly becomes partitioned
to an equilibrium (buffered) between those two forms and also carbonate ion CO2−

3 ,
by means of the reactions

(H2O)+ CO2

k1
�
k−1

HCO−
3 + H+,

HCO−
3

k2
�
k−2

CO2−
3 + H+.

(3.3)

Water is not a limiting reactant, and so is not included in the reaction rates given below.
The sum of the concentrations (denoted with square brackets) of the three species is
called the dissolved inorganic carbon (DIC), and denoted C :

C = [CO2] + [
HCO−

3

] +
[
CO2−

3

]
. (3.4)

Carbon is added to the ocean through a river flux of bicarbonate, which is formed
through the typical net reaction

CaSiO3 + 2CO2 + H2O → 2HCO−
3 + Ca2+ + SiO2, (3.5)

the important ingredients of which for the present purpose are

C → HCO−
3 + 1

2 Ca2+, (3.6)

that is to say one mole of atmospheric derived carbon produces one mole of bicar-
bonate and half a mole of calcium, which flow to the ocean. Weathering of carbonate
rocks has the same effect, through the reaction

CaCO3 + CO2 + H2O → 2HCO−
3 + Ca2+. (3.7)

The story with calcium in the ocean is a little complicated. We need to keep track
of it, because it lends a significant positive charge to the ocean, and thus dynamically
affects the balance of the other ions, since the ocean as a whole is charge neutral.
The calcium ions which flow into the ocean find themselves in a supersaturated (with
respect to carbonate) upper layer. They thus have a proclivity to precipitate, although
the supersaturation is not sufficient for them to do this via homogeneous nucleation.
However, calcium also forms (organic) calcium carbonate through its uptake by cocco-
lithophores, foraminifera and coral reefs, and we can suppose that these (particularly
reefs) also act as nucleation sites for the encrusted growth of inorganic calcium car-
bonate.
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The solubility increases with pressure, and thus depth, and is such that, in the deeper
parts of the ocean, redissolution of sinking dead skeletal biomass occurs, while in the
shallower ocean (on the shelves, or near mid-ocean ridges) a calcite ‘snow’ rains down
on the benthic sediments. Even there, some bacterial action causes further breakdown,
but there is overall a net burial rate of the CaCO3 from the ocean.

In the present day, and ever since the development of plankton with hard shells in the
Triassic, much of the precipitation in the upper ocean is effected by planktonic uptake,
and the sinking towards the deep ocean is caused by the deaths and settling of these
organisms. The story is further complicated by the existence of continental shelves, on
which dissolution cannot occur, and where an additional sink due to the growth of coral
reefs occurs. As the ice sheets grow to their maximum extent, the shelves are exposed,
and the resultant exposure of the carbonate rocks is liable to cause an enhancement
of the weathering rate, and thus of delivery of carbon to the ocean. This enhancement
is itself compensated by the reduced effectiveness of chemical weathering because of
lower temperatures and CO2, and the two effects may roughly balance (Foster and
Vance 2006), or lead to a net increase in weathering rate (Munhoven 2002).

The growth of organic calcium carbonate can be represented by the reaction

Ca2+ + HCO−
3 � CaCO3 + H+, (3.8)

which is normally compounded with (3.3)1. The forward reaction represents the uptake
of calcium and bicarbonate by plankton, while the backward reaction represents the
dissolution of calcite in the deep ocean or by respiration dissolution induced by ben-
thic bacteria. In addition, we suppose that precipitation and dissolution of inorganic
CaCO3 will occur via the reaction

Ca2+ + CO2−
3 � CaCO3. (3.9)

From the reactions in (3.3), we can write the net carbon buffering reaction rates as

R1 = k1 [CO2] − k−1
[
HCO−

3

] [
H+]

,

R2 = k2
[
HCO−

3

] − k−2

[
CO2−

3

] [
H+]

.
(3.10)

These are straightforward, but the prescription of the calcium carbonate formation
rates in (3.8) and (3.9) is open to elaboration. The law of mass action is not applied to
(3.8) as it stands, because neither calcium nor carbon is rate-limiting for the growth
of plankton. It is most probable that it is phosphorus which is rate-limiting, and we
assume this.

Uptake of phosphorus P by biomass is represented through the reaction

PB + P
k3→ 2PB, (3.11)

which represents cell growth by mitosis. P is phosphorus in solution (as phosphate ion,
partitioned between PO3−

4 , HPO2−
4 , and H2PO−

4 ), while PB is phosphorus in biomass.
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When organisms die, the phosphate of the organic matter is remineralised through the
back reaction

PB
k−3→ P. (3.12)

The law of mass action applied to (3.11) and (3.12) implies that rate of formation
of biophosphorus is

r3 = k3[PB][P] − k−3[PB], (3.13)

and this is also the rate of loss of phosphate ion from sea water. To calculate the net
formation rate of CaCO3, we use the fact that biomass contains the elements carbon,
phosphorus and so on in fixed proportions, called Redfield ratios. The C:P ratio in
organic soft tissue is 106:1, while the C:P:Ca ratio in the total deposited organic mate-
rial (including skeletal tissue) is 131:1:26 (Broecker and Peng 1982). Evidently the
ratio of the skeletal CaCO3 to soft tissue organic carbon has a ratio of about one to
four, and the relevant uptake ratio of carbon/phosphorus and calcium/phosphorus into
skeletal CaCO3 is R ≈ 26. Thus the net rate of formation of organic skeletal CaCO3
is given by

R3 = Rr3. (3.14)

Phosphorus is rate limiting because the flux of P to the ocean is so small. If burial of
skeletal tissue were the only way of removing calcium from the ocean, calcium levels
would build up because the calcium flux to the ocean is greater than 26 times the P
flux. Eventually, the ocean becomes supersaturated (as it is except at great depth), and
the excess is removed via precipitation through the reaction (3.9). We assume that the
rate of precipitation is given by

R4 = k4

([
Ca2+] [

CO2−
3

]
− Kcp

)n
(3.15)

(Ridgwell and Zeebe 2005), where k4, Kcp and n are constants. (A similar expression
applies in conditions of dissolution.)

Before writing the conservation laws for the ionic species in the ocean, we con-
sider the balance of atmospheric CO2. We denote the volcanic (or anthropogenic) CO2
source to be V , with units of kgCO2 year−1, and we denote the weathering rate, mea-
sured by the removal of CO2 in the reaction (3.5), as W , measured in units of kgCO2
m−2 year−1. In addition, there is a flux of CO2 to the ocean equal to hCO2(p − ps),
where p is atmospheric partial pressure of CO2, and ps is its value at the ocean surface.
The transport coefficient represents the turbulent diffusivity of the atmosphere, and
has units of kgCO2 Pa−1 year−1. The surface pressure ps is related to the dissolved
ocean CO2 concentration by Henry’s law:

ps = [CO2]
K H

. (3.16)
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The conservation law for atmospheric CO2 mass mCO2 is thus

ṁCO2 = V − AL W − hCO2(p − ps), (3.17)

where AL is total land surface area. We base our choice of weathering rate on the
formula given by Walker et al. (1981):

W = W0

(
p

p0

)μ
exp

[
T − T0

�Tc

]
. (3.18)

The choice of parameters corresponds to present day weathering rates, and increases
with T and p, as is realistic.

To relate mCO2 to the CO2 partial pressure p, we use Dalton’s law, which states
that

p

pa
= mCO2 Ma

MCO2 ma
, (3.19)

where Ma is the molecular weight of air, MCO2 is the molecular weight of CO2, and
ma is the mass of the atmosphere, related to the atmospheric pressure pa by

pa = mag

AE
, (3.20)

where AE is Earth’s surface area. From these it follows that (3.17) takes the form

AE

Mag
ṗ = V − AL W − hCO2(p − ps)

MCO2

, (3.21)

with the units of each side now being moles per year. Finally, if moc = ρH2OVoc is the
mass of the ocean, then (3.21) can be written in the form

AE

Magmoc
ṗ = v − A∗W − h(p − ps), (3.22)

where we define

A∗ = AL

moc MCO2

, h = hCO2

moc MCO2

, v = V

moc MCO2

. (3.23)

The units of (3.22) are now M year−1, where 1 M = 1 mole kg−1 is the standard
concentration unit for oceanic ionic species.

In terms of the reactions defined in (3.10), we can now write down the equations
for the concentrations of the chemical species. The units of concentration are M, and
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reaction-conservation laws for the reactants are

˙[CO2] = −R1 + h(p − ps),

˙[CO2−
3 ] = R2 − R4,

˙[HCO−
3 ] = R1 − R2 − R3 + A∗W,

˙[H+] = R1 + R2 + R3,

˙[Ca2+] = −R3 − R4 + 1
2 A∗W,

˙[CaCO3] = R3 + R4 − B[CaCO3],
˙[P] = −r3 + ρA∗W,

˙[PB] = r3 − B[PB],

(3.24)

where we take account of the fact that the weathering reaction loses A∗W moles per
year of atmospheric carbon, and each such mole produces an oceanic influx of one
mole of bicarbonate and half a mole of calcium. The burial coefficient B is taken to
be the inverse of the residence time tC of carbon in the ocean,

B = 1

tC
, (3.25)

and ρ is the molar ratio of P to C weathering rates.
In writing (3.24), we have tacitly assumed that the ocean volume is constant. At

the last glacial maximum, sea level was lower than today’s by about 120 m; since
the mean ocean depth is about 3,700 m, this represents a change of about 3 %, and it
seems that the volume change can be neglected at leading order. We assume this for
the moment, but will return to the issue later.

Simplification

The reactions of the bicarbonate buffering system are fast, occurring in minutes. More
specifically, the time scale for CO2 adjustment is k−1

1 ∼ 30 s, and that for HCO−
3 is

k−1
2 ∼ 0.017 s, where these values are given by Zeebe and Wolf-Gladrow (2001, p.

110: note that k2 = kH+
−5 in their table). This implies that the coefficients in the terms

R1 and R2 are large, and consequently the equations in which those terms appear
rapidly approach a quasi-equilibrium in which, approximately, R1 = R2 = 0, whence

[HCO−
3 ] = K1Y

X
, [CO2−

3 ] = K2[HCO−
3 ]

X
= K1 K2Y

X2 , (3.26)

where we write

X = [H+], Y = [CO2], (3.27)

123

Author's personal copy



Int J Geomath

and the equilibrium constants Ki are defined by

K1 = k1

k−1
, K2 = k2

k−2
. (3.28)

Now, the first four equations in (3.24) are all approximated by the two equilibria in
(3.26). The missing two equations are found by taking suitable linear combinations of
the equations to eliminate R1 and R2. In particular, defining the dissolved inorganic
carbon C via (3.4), and the net positive charge L+ of the active ions (calcium and
carbon species) as

L+ = [H+] + 2[Ca2+] − [HCO−
3 ] − 2[CO2−

3 ], (3.29)

then from (3.24) we have the exact equations

Ċ = h(p − ps)+ A∗W − R3 − R4,

L̇+ = 0,
(3.30)

whence we may take

L+ = L−, (3.31)

corresponding to charge neutrality.1

In terms of C , (3.26) implies

Y

[
1 + K1

X
+ K1 K2

X2

]
= C, (3.32)

and then from (3.31), after a little algebra, we obtain the equation for X = [H+] in
the form

X − K1(X + 2K2)C

X2 + K1 X + K1 K2
= L− − 2Z , (3.33)

where we define

Z = [Ca2+]. (3.34)

It is useful to take advantage of the observed values of the variables in Table 1 to
simplify this expression. We see that X � K1, and equality only occurs for pH = 5.9,

1 In a more complete discussion, we might also consider the charge of the various phosphate ions, but the
concentrations are so small that this makes no effective difference.
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Table 1 Present estimates of the
equilibrium constants Ki and the
ionic species concentrations in
units of M (1 M = 1 mole kg−1)
(Emerson and Hedges 2008)

C is dissolved inorganic carbon,
and L− is net negative charge
equivalent of the conservative
ions (see (3.1))

Species/constant Typical value (M)

[Ca2+] = Z 1.03 × 10−2

[CO2] = Y 0.8 × 10−5

[CO2−
3 ] ≈ S 0.24 × 10−3

[H+] = X 0.63 × 10−8

[HCO−
3 ] ≈ Q 1.7 × 10−3

[P] 3 × 10−6

K1 1.4 × 10−6

K2 1.1 × 10−9

C 2.0 × 10−3

L− 1.74 × 10−2

a strongly acid ocean. Assuming pH >∼ 7 (present day ocean values are ≈8.2), then
X � K1, and the solution of (3.33) is approximately

[H+] = X ≈ K2 Q

S
, (3.35)

where we define

S = 2Z − L− − C, Q = L− + 2C − 2Z . (3.36)

Both quantities are necessarily positive; present estimates are that both are of order
10−3 M. With the same approximation, we have

[CO2] = Y = K2 Q2

K1S
, (3.37)

and also, noting that X � Y � Z ,

[CO2−
3 ] ≈ S, [HCO−

3 ] ≈ Q, (3.38)

which give more precise estimates for S and Q.

3.2 The ocean-atmosphere model

Combining the equations (3.13), (3.14), (3.15), (3.16), (3.22), (3.24)5,6, (3.30)1, (3.37)
and (3.38), and defining also

N = [CaCO3], P = [P], (3.39)
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we obtain the equations

AE

Magmoc
ṗ = −A∗W + v − h(p − ps),

Ċ = h(p − ps)+ A∗W − R3 − R4,

Ż = 1
2 A∗W − R3 − R4,

Ṅ = R3 + R4 − B N ,

R Ṗ = −R3 + ρR A∗W,

R ṖB = R3 − B R PB,

(3.40)

where also

ps ≈ K2 Q2

K1 K H S
, R3 = (k3 P − k−3)R PB, R4 ≈ k4

(
Z S − Kcp

)n
,

Q = L− + 2C − 2Z , S = 2Z − L− − C. (3.41)

It is easy to show from these equations that if S, Q > 0, as they must be, then they
remain so, whatever the size (or sign) of L−.

In addition, we suppose that the solubility K H and bioreaction rate k3 will depend
on temperature, and this suggests that we define a dimensionless solubility κH and
dimensionless bioreaction rate κ3 by writing

K H = K 0
HκH , κH = exp [−bH (T − T0)] ,

k3 = k0
3κ3, κ3 = exp [b3(T − T0)] ,

(3.42)

where K 0
H is a scale for the CO2 solubility coefficient, and k0

3 is a scale for the biore-
action rate. This allows us to study the effect of the solubility pump, in which κH is
a decreasing function of temperature, and also, in due course, the effect of thermally
enhanced bioproductivity, in which κ3 is an increasing function of T . The dependence
of biomass on temperature via the coefficient b3 will turn out to be crucial in produc-
ing the CO2 record, but our initial discussion will ignore it (reflecting the historical
evolution of our study).

The values of the constants in the model are give in Table 2. The choice of some
of these values is explained below. The carbon buffering rates k−1 and k−2 are given
in terms of k−1

1 , k−1
2 , and the ratios Ki . The estimate of b3 is based on a doubling

of bioactivity every ten degrees. The value of h is computed by assuming that the
present interfacial flux, around 2 GtC year−1, corresponding to a volumetric rate of
increase in the ocean of 1.2 × 10−7 M year−1, arises from a difference �p between
present day (2000) p ≈ 37 Pa (Emerson and Hedges 2008, table 11.1), and pre-indus-
trial (<1800) p ≈ 28 Pa; thus h�p = 1.2 × 10−7 M year−1, whence the value in
Table 2.
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Table 2 Values of the constants in the model

Symbol Meaning Typical value

A∗ Weathering scale coefficient 0.25 × 10−5 M m2 kg−1

AE Planetary surface area 5.1 × 1014 m2

AL Land surface area 1.5 × 1014 m2

B Carbon burial rate 10−5 year−1

bH Carbon solubility exponent 0.029 K−1

b3 Bioactivity exponent 0.069 K−1

g Acceleration due to gravity 9.81 m s−2

h Interfacial transport coefficient 1.3 × 10−8 M Pa−1 year−1

k−1
1 CO2 reaction time 30 s

k−1
2 HCO−

3 reaction time 0.017 s

k0
3 Biomass calcium uptake rate 51 M−1 year−1

k4 CaCO3 precipitation coefficient 2.1 × 10−3 M−(2n−1) year−1

k−3 CaCO3 dissolution rate 1.4 × 10−4 year−1

K 0
H Henry’s law coefficient 4.5 × 10−7 M Pa−1

Kcp CaCO3 solubility coefficient 0.5 × 10−6 M2

moc Ocean mass 1.38 × 1021 kg

Ma Molecular weight of air 2.88 × 10−2 kg mole−1

MCO2 Molecular weight of CO2 4.4 × 10−2 kg mole−1

n CaCO3 solubility exponent 1

p0 Atmosphere CO2 scale 28 Pa

R Redfield calcium ratio 26

tC Oceanic carbon residence time 105 year

T0 Reference temperature 288 K

v Scaled CO2 production rate 0.5 × 10−8 M year−1

V CO2 production rate 3 × 1011 kg year−1

Voc Ocean volume 1.35 × 1018 m3

W0 Weathering scale 4 × 10−3 kg CO2 m−2 year−1

�Tc Weathering temperature scale 13 K

μ Weathering exponent 0.3

ρ P:C weathering ratio 0.4 × 10−2

ρH2O Density of sea water 1.025 × 103 kg m−3

We define a molar concentration as 1 M = 1 mole kg−1

To progress further, we non-dimensionalise the equations. Over time scales less
than 10 My, we may take L− to be constant. The non-dimensionalisation is a little
subtle, because we note from Table 1 that Q and S are a good deal smaller than L−
and Z . Therefore we consider first the steady state of the system, in order to find the
best choice of scales.
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We anticipate that the time derivative term for p is small, and the interfacial transfer
term is large. Then generally, p ≈ ps while also h(p − ps)+ A∗W ≈ v, so that

Ċ ≈ v − R3 − R4. (3.43)

In the steady state, we thus have

R3 + R4 = v = 1
2 A∗W = B N , R3 = ρR A∗W = B R PB, (3.44)

and thus

R3 = 2ρRv, PB = 2ρv

B
. (3.45)

Net calcite precipitation occurs (R4 > 0) if ρR < 1
2 , consistent with the values in

Table 2. The weathering term is discussed further below, but it depends on p as well
as temperature, and we may suppose that we can choose the value of p = p0 to
ensure that v = 1

2 A∗W . A value of p0 = 28 Pa is implied by the assumption that
pre-industrial weathering was approximately in balance with volcanic output. (Later
we shall find that a larger value seems more appropriate.) Since also p ≈ ps , this
implies that

Q2

S
≈ K1 K H p0

K2
≈ 1.2 × 10−2 M (3.46)

(which it is). In addition, we have

N = v

B
(3.47)

in a steady state.
Equilibrium of the C equation requires

R3 + R4 = (k3 P − k−3)R PB + k4(Z S − Kcp)
n = v, (3.48)

while that of the P equation requires

R4 = k4(Z S − Kcp)
n = v − R3 = (1 − 2ρR)v. (3.49)

The terms k3 P R PB + k4(Z S − Kcp)
n, k−3 R PB, v represent, respectively, biomass

uptake of calcium, dissolution of organic calcium carbonate, and burial, and are thought
presently to have ratios of 4:3:1 (Zeebe and Westbroek 2003). This suggests k−3 ≈
3B

2ρR
= 1.4 × 10−4 year−1, and using present day values of [P] ∼ 3 × 10−6 M, we

find k3 ≈ 51 M−1 year−1.
In the upper ocean, the supersaturation is approximately Z S

Kcp
≈ 4.8, from which it

follows that we can estimate Kcp ≈ 0.5 × 10−6 M2. Present day P input to the oceans

123

Author's personal copy



Int J Geomath

is estimated as 1.7 × 109 kg year−1, corresponding to 0.4 × 10−10 M year−1, and
since v ≈ 0.5 × 10−8 M year−1, this suggests ρ = 0.4 × 10−2. Finally, equality in
(3.49) implies (taking n = 1) that k4 ≈ 2.1 × 10−3 M−1 year−1.

The discussion above suggests that we write the model equations (3.40) in terms
of Q ≈ [HCO−

3 ] and S ≈ [CO2−
3 ]; from (3.41) and (3.40), we then have

AE

Magmoc
ṗ = −A∗W + v − h(p − ps),

Q̇ = 2h(p − ps)+ A∗W,

Ṡ = −h(p − ps)− R3 − R4,

Ṅ = R3 + R4 − B N ,

R Ṗ = −R3 + ρR A∗W,

R ṖB = R3 − B R PB .

(3.50)

Now we scale the variables by writing

N ∼ v

B
, Q ∼ Q0, S ∼ S0, R3 = 2k−3ρRv

B
ub, R4 = vu p,

P ∼ k−3

k0
3

, PB ∼ 2ρv

B
, t ∼ 1

B
, p ∼ ps ∼ p0, W =W0w, T =T0 +�Tcθ,

(3.51)

where

S0 = 2v

k4L−
, Q0 =

(
2K1 K 0

H p0v

k4L−K2

)1/2

. (3.52)

The non-dimensional forms of the equations are (we retain the same symbols for
the dimensionless variables)

ε ṗ = 1 −�w −�(p − ps),

ηQ̇ = 2�(p − ps)+�w,

ν Ṡ = −βub − u p −�(p − ps),

Ṅ = βub + u p − N ,

ζ Ṗ = −ub + γ�w

β
,

2γ ṖB = βub − 2γ PB,

(3.53)
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where

ps = Q2

κH S
, κH = exp(−bθ),

ub = (κ3 P − 1)PB, κ3 = exp(b′θ),
u p = S(1 + δ1 Q + δ2S)−�,

w = pμeθ ,

(3.54)

and the dimensionless parameters are defined by

� = A∗W0

v
, η = B Q0

v
, ν = BS0

v
, � = hp0

v
,

β = 2ρRk−3

B
, δ1 = Q0

L−
, δ2 = 2S0

L−
, ε = AE p0 B

Magmocv
, (3.55)

b = bH�Tc, b′ = b3�T, ζ = B2

2ρk3v
, γ = ρR, � = k4 Kcp

v
.

Using these estimates, we calculate values of Q0 and S0 as defined in (3.52) to be

Q0 = 1.8 × 10−3 M, S0 = 0.27 × 10−3 M. (3.56)

The residence time scale for carbon (thus C) is taken as 105 year (Emerson and Hedges
2008). From (3.40)3, this suggests a residence time for calcium of ∼ 1

k4 S0
= L−

2v , which
with these estimates is 1.7 My, comparable to Emerson and Hedges’ estimate of 1.2
My.

Now we use these values to estimate the size of the dimensionless parameters. They
are

� ∼ 2, η ∼ 3.6, ν ∼ 0.54, � ∼ 70.2,

ε ∼ 0.07, δ1 ∼ 0.1, δ2 ∼ 0.03, β ∼ 3, (3.57)

b ∼ 0.38, b′ ∼ 0.9, ζ ∼ 0.05, γ ∼ 0.1, � ∼ 0.21.

The fact that� 	 1 tells us that as far as atmospheric CO2 is concerned, it adjusts

rapidly, on a dimensionless time scale t ∼ ε

�
, to a quasi-steady state in which p ≈ ps ,

and more precisely

�(p − ps) ≈ 1 −�w; (3.58)

the dimensional time scale over which this relaxation occurs is

tCO2 = AE

Magmoch
≈ 100 year. (3.59)
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Next, P reaches quasi-equilibrium rapidly on a time scale of O(ζ ). In this
equilibrium,

βub ≈ γ�w, P ≈ 1

κ3

(
1 + γ�w

βPB

)
; (3.60)

the dimensional time scale over which P relaxes is

tP = B

2ρk3v
≈ 5,000 year. (3.61)

We note from (3.54) that

u p ≈ S −�. (3.62)

On time scales longer than tP we can use (3.58) and (3.60), and write (3.53) in the
approximate form

ηQ̇ = 2 −�w,

ν Ṡ = �(1 − γ )w − (1 −�)− S,

Ṅ = γ�w + S −� − N ,

ṖB = 1
2�w − PB .

(3.63)

In our estimates, γ < 1, and this is necessary since γ = ρR; if γ > 1, it implies
that P is not rate limiting, and the reaction rates would be necessarily different.

Solutions of (3.63) tend to a steady state, which can be described as follows. We
will take the CO2 solubility to be constant, i.e., κH = 1 (the effect of its variation with
temperature will be studied later). Also for the moment we take κ3 = 1. On a time scale
t ∼ ν, corresponding to 50,000 years, S (carbonate ion) relaxes to a quasi-equilibrium

in which, since w ∼ pμ ∼
(

Q2

S

)μ
,

�(1 − γ )

(
Q2

S

)μ
− S = 1 −�. (3.64)

The left-hand side is a monotonically decreasing function of S, and it follows that S
tends to a unique positive value which depends on Q such that S(Q) is monotonically
increasing. For small Q,

S ≈
{
�(1 − γ )

1 −�

}1/μ

Q2, w ≈
{

1 −�

�(1 − γ )

}
, (3.65)

while for large Q

S ≈ {�(1 − γ )} 1
μ+1 Q

2μ
μ+1 , w ≈ S. (3.66)
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The weathering rate w is thus an increasing function of Q, so that on the longer time
scale t = O(η), Q relaxes to equilibrium, and the whole system is at steady state, in
which

�w = 2, N = 1, S = 1 +� − 2γ. (3.67)

In the absence of any ice-related feedback, this simple model suggests that the
carbon/calcium buffering system responds stably to alterations in weathering rate.
Figure 3 shows these successive relaxations of the model using the parameters given
in Tables 1 and 2.

3.3 An application to post-Eocene cooling

We can explain the cooling of the planet since the Eocene by supposing that the uplift
of the Himalayas has caused an amplification of the specific weathering rate (the
parameter W0), and thus �. Alternatively, the closure of the Tethys Ocean and the
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Fig. 3 Relaxation of atmospheric p = pCO2 , S ≈ [CO2−
3 ], N = [CaCO3] and Q ≈ [HCO−

3 ] over a
range of different time scales. Concentration units are mM, while those for atmospheric CO2 are Pa. Time
is measured in ka (103 year). Note the different time scales for the four variables. The initial values chosen
were p = 0 Pa, S = 0.5 mM, N = 0.2 mM, Q = 1 mM, P = 1 µM and PB = 0.1 µM. Note that the
apparent equilibria for p, S and N are only interim values; the final steady states at 2 Ma are p ≈ 28 Pa,
S ≈ 0.24 mM, Q ≈ 1.94 mM and N ≈ 0.5 mM. P (not shown) grows for 170 ka, during which time
biomass is absent, then PB grows on a time scale of 30 ka and P declines, with their final equilibria being
P ≈ 2.94µM, PB ≈ 4 µM
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consequent decreasing subduction and then arc volcanism of the carbonate-rich con-
tinental shelves has led to a decline in volcanic carbon production v, which also (see
(3.55)) causes an increase in �. In fact these two processes are related consequences
of the same tectonic collision. If � has increased since the Eocene, then in order to
retain the balance in (3.67), CO2 pressure must be reduced, and this causes cooling.
In turn, (3.37) implies that Q2/S has decreased.

It may also be reasonable to suppose that increased weathering has caused increased
production of positive conservative ions, and in this case L− has decreased since the
Eocene. Consequently, (3.52) implies that the carbonate ion S has increased. It then
follows from (3.35) that [H+] has decreased, i.e., ocean acidity has decreased. It is
less obvious in what way bicarbonate Q has changed, since in (3.52) both p0 and L−
have decreased.

3.4 An application to global warming

As a parenthetical remark, note that the current anthropogenic release of CO2 has
the effect of increasing the value of v in the model. This has the confusing effect of
changing all the scales, so it is easier to see what happens by consulting the dimen-
sional equations (3.50). If we take the anthropogenic value to be vA (and currently
vA ≈ 70v), then on a time scale of tCO2 = 100 year, p relaxes to the approximate
dimensional value

p ≈ ps + vA

h
= p0

(
1 + vA

�v

)
, (3.68)

if ps = p0 pre-industrially. Taking vA = 70v gives an equilibrated atmospheric p of
56 Pa, or about 560 ppmv. This is (apparently: wait) the good news. The bad news
is that this may be comparable to the level at which the continent wide Antarctic Ice
Sheet became established 34 My ago (Pagani et al. 2011) suggest a threshold for onset
around 800 ppm). If that is the case, and bearing in mind the hysteretic response to
climate, then we may already be in a situation where the major ice sheets are beginning
to change dramatically. The recent observations of Pine Island Glacier retreat and the
speed-up of Jakobshavn Isbrae are noteworthy in this context. If these observations
represent the signature of an initial collapse of the ice sheets, then, given that the last
ice age raised sea level by 120 m in 10 ky, we might expect the present approximate
equivalent of 66 m of sea level held in Greenland and Antarctica to last about 5 ky,
leading to sea level rising at a metre per century.

Consulting (3.50), the ocean carbonate ion starts to drop rapidly; approximately,

Ṡ = −vA. (3.69)

In a time of order

tA = S

vA
≈ 700 year, (3.70)
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the carbonate ion approaches zero, by which time the ocean has become undersaturated
with carbonate. Simultaneously, bicarbonate increases rapidly:

Q̇ ≈ 2vA. (3.71)

The carbon buffering system causes drastic increase in ocean acidity (see (3.35)), and
dissolved CO2 (see (3.37)), which leaks into the atmosphere, causing massive further
rise in temperature. To see what happens after this we return to (3.33). Defining

A = 2Z − L−, (3.72)

we see from (3.33) and (3.26) that for X ∼ K1, when C > A, we have

[H+] ∼ K1(C − A)

A
, [CO2] ∼ C − A,

[CO2−
3 ] ∼ K2 A2

K1(C − A)
, [HCO−

3 ] ≈ A;
(3.73)

thus in fact carbonate continues to decrease while total DIC increases, but the carbon
fills up the dissolved CO2 reservoir, with the bicarbonate being unaffected, due to the
increasing acidity of the oceans.

There appears to be nothing to stop this process so long as there is no sink in the
ocean. Biomass burial will finish as extinction proceeds, and because the carbonate
remains undersaturated, no removal can occur in the ocean. The atmospheric CO2
would rise inexorably, perhaps until the oceans boil, and the planet begins its long
transformation into a Venusian world. This slightly gloomy prognosis must of course
be qualified: it is only a consequence of this particular model. One may suppose that
total carbon stocks are finite, and the carbonate run down is not maintained; the model
assumes a well-mixed ocean, but in fact the mixing itself takes thousands of years,
which will alleviate the process. A worse prospect is that increased storminess leads
to massive increase of water vapour in the atmosphere, and this can lead to a runaway
greenhouse effect.

The elephant in the room is the carbon in the ocean, which will cause unprecedented
rise in atmospheric CO2 levels on time scales of centuries. But once the carbonate
alkalinity changes in this way, it will take much longer for recovery to occur should
production cease; this idea is not new, and has been proposed by Archer et al. (1997).

4 Climate and ice sheet models

Preamble

In the previous section, we constructed a simple box model of the carbon cycle. In this
section, we first use a simple energy balance model to relate the planetary temperature
to the atmospheric CO2 partial pressure and the ice albedo (reflectivity) of the (north-
ern hemisphere) ice sheets. The time scale is so short that temperature is then related
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algebraically to CO2 and ice volume. Secondly, we devise a simple model of plastic
ice sheet flow which allows a model for ice sheet extent to be written as an ordinary
(though complicated) differential equation, which exhibits a hysteretic response to
changing temperatures.

4.1 A simple climate model

The simple ocean model is now augmented by an energy balance model for the Earth
surface temperature T , together with a prognostic equation for ice sheet extent l. We
begin with the energy balance equation. Figure 4 shows a typical breakdown of the
radiative balance in the Earth’s atmosphere, see for example Fowler (2011, p. 70). The
numbers indicate the fraction of the incoming short wave radiation which is reflected,
absorbed or transmitted in the atmosphere. If Qs denotes the short wave radiation
from the sun, then 1

4 Qs is the average value received at the surface. A fraction f of
this is absorbed by the atmosphere, and a fraction a (the albedo) is reflected back into
space; the remaining 1 − a − f reaches the Earth’s surface.

The long wave radiation budget is parcelled up as follows. An amount q+
s is radi-

ated upwards from the surface and is absorbed by the atmosphere, while an amount
q+

d from the surface is radiated to space. The atmosphere absorbs the fraction f from
incoming short wave radiation as well as q+

s from the surface, a fraction 0.3 from
latent and sensible heat, and emits q+

a upwards to space, and q−
a downwards to the

surface. Sensible and latent heat fluxes may be described by effective heat transport
coefficients at the surface. If TL is the mean land surface temperature and TS the mean
sea surface temperature, then we suppose the mean (mostly sensible) heat flux from
the land is hL(TL − T ), while that (mostly latent) from the sea is hoc(TS − T ). We
can then write an energy balance model for the Earth’s atmosphere as

maca Ṫ = AE [ 1
4 f Qs − qa] + {hoc Aoc(TS − T )+ hL AL(TL − T )}, (4.1)

1 − a − f
q

q

q

+

+

+
d

s

a

_
qa

incoming

absorbed

sensible

direct

1.0
0.65 0.05

0.1

0.04 0.06 0.2

short wave long wave

0.2
latent

planetary albedo a = 0.3

f = 0.2

scattering
via

atmosphere cloud

0.25 0.25

1.1 0.95

Fig. 4 Radiative energy balance for the Earth’s atmosphere
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where ma is the mass of the atmosphere, ca is the specific heat of air, AE , Aoc and AL

represent Earth, ocean and land surface areas, and

qa = q−
a + q+

a − q+
s (4.2)

is the net radiative loss from the atmosphere. Note that qa corresponds to a fraction
0.5 of the total incoming short wave radiation.

The mean land and sea temperatures are determined by energy balances at the
surface, which take the respective forms

1
4 (1 − a − f )Qs − hL(TL − T )− qs = G,
1
4 (1 − a − f )Qs − hoc(TS − T )− qs = G,

(4.3)

where G is the mean geothermal heat flux, and

qs = q+
s − q−

a + q+
d (4.4)

is the net radiative flux from the surface, corresponding to 0.2 of the short wave input.
The equations in (4.3) act as boundary conditions for the Earth internal temperature
and the ocean internal temperature. In particular, we can also write an energy balance
equation similar to (4.1) for the mean ocean temperature, but do not do so here.

The geothermal heat flux is small and can be neglected. Substituting (4.3) into (4.1)
then leads to the energy balance equation in the form

maca Ṫ

AE
= 1

4 (1 − a)Qs − q, (4.5)

where

q = qa + qs . (4.6)

The radiative fluxes qa and qs are determined by a radiative heat transfer calculation in
the atmosphere, which gives them, in principle, in terms of the surface temperature. In
the absence of an atmosphere, we would have black body radiation qs = σT 4, qa = 0,
thus q = σT 4, where σ is the Stefan-Boltzmann constant, and we assume that the
effect of the atmosphere is to alter this by introduction of a greenhouse coefficient
� > 0, such that

q = σe−�T 4, (4.7)

so that

cṪ = 1
4 Qs(1 − a)− σe−�T 4, (4.8)
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where

c = maca

AE
(4.9)

is a measure of atmospheric thermal capacity. Values of the parameters are given in
Table 3, and it is easy to show that the response time of T is very fast: around nine
days for (4.8). Therefore we can suppose that this equation is in equilibrium, and for
relatively small temperature perturbations �T corresponding to perturbations �p in
atmospheric CO2 and �I in ice extent, we have

�T ≈
T

4

[
�p�p − aI

1 − a
�I

]

1 + T

4

{
aT

1 − a
− �T

} . (4.10)

In this equation we assume that planetary albedo a is a function of I (via the ice-albedo
effect) and T (through the cloud albedo effect, the magnitude of which depends on
water vapour and thus temperature), and we assume that the greenhouse coefficient �
is a function of p (via the greenhouse effect of CO2) and T (via the greenhouse effect
of clouds and water vapour, again due to T ).

All of the partial derivatives �p, �T , aT and aI should be positive. The terms in
the denominator reflect the conflicting and uncertain feedback effects of clouds on the
temperature. Present estimates (based on a doubling of CO2) suggest that

1
4 T�p p0 ∼ 1.2 K, 1 + 1

4 T

{
aT

1 − a
− �T

}
∼ 0.44 (4.11)

(Houghton 2009, p. 30), although the dependence on p is more nearly logarithmic
(Houghton 2009, p. 46), so that the CO2 part of (4.10) may be better represented as

Table 3 Values of additional constants in the climate model

Symbol Meaning Typical assumed value

a Planetary albedo 0.3

c Thermal capacity 107 J m−2 K−1

ca Specific heat of air 103 J kg−1 K−1

ma Mass of atmosphere 0.52 × 1019 kg

Qs (total) Solar insolation 1370 W m−2

γ0 CO2 coefficient 4.65 × 10−4

� Greenhouse coefficient see (4.8)

θI Ice albedo temperature rise scale 5 K

θp CO2 temperature rise scale 4.3 K

σ Stefan–Boltzmann constant 5.67 × 10−8 W m−2 K−4

123

Author's personal copy



Int J Geomath

�Tp = θp ln

(
γ0 + p

p0

)
, (4.12)

where with the values in (4.11), θp = 4.3 K. The small coefficient γ0 is inserted
in order that when p = 0, the temperature reverts to its value in the absence of an
atmosphere, which is 255 K. This corresponds to �Tp = −33 K, whence we deduce
γ0 ≈ 4.65 × 10−4. In practice we can therefore neglect γ0, and this we now do
(although the term is retained in the numerical code used to solve the model).

It is not easy to estimate the dependence of albedo on ice sheet extent. a must be an
increasing function of I . At last glacial maximum, the northern hemisphere ice sheets
reached a latitude in North America of some 45◦ N. A cap of ice cover (sea and land)
reaching to this latitude covers 0.15 of the Earth’s surface area as opposed to a present
day coverage (to 70◦ N) of 0.03 and if we suppose that the excess fractional cover of
0.12 had an albedo of 0.8 rather than 0.3, then the change of planetary albedo would
have been ≈ 0.06, and multiplying this by T

4(1−a) gives a temperature change of about
6.2 K. Including the enhancement factor due to clouds and water vapour multiplies this
by 2.25, suggesting a temperature due to ice cover of �TI ≈ 13.9 K. This, however,
is an extreme estimate, because sea ice would have had some seasonal variability,
and additionally it is likely that the atmosphere would have been less cloudy, thus
possibly reducing the enhancement factor (although by its nature it should encom-
pass this possibility). At the opposite extreme, if we suppose that the albedo only
changed over the northern ice sheets, of area 2 × 1013 m2 and at an average latitude
of some 60◦ N, then the corresponding change of albedo is only 0.01. Multiplication
by T

4(1−a) gives a temperature change of 1.03 K, which with enhancement would be
2.3 K.

Combining the two effects of ice and CO2, we assume that temperature is related
to p and I by

T − T0 = θp ln

(
γ0 + p

p0

)
− θI I, (4.13)

where we take I to be a dimensionless measure of maximum ice extent. Typical values
of θp and θI are given in Table 3, where in general 2 K <∼ θI <∼ 16 K; we prefer a
value of the order of 5 K, since this is an estimate of the actual cooling during the
last ice age. We make this equation dimensionless as in (3.51), and this leads to the
dimensionless form of the temperature as

θ = λ ln p − κ I, (4.14)

where we have put γ0 = 0, and

λ = θp

�Tc
, κ = θI

�Tc
. (4.15)

Typical values are thus λ ∼ 0.33 and κ ∼ 0.38.
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4.2 Nucleation and growth of ice sheets

Our model for ice sheet growth is necessarily a simple one. It is essentially that due to
Weertman (1976), and is described in detail below. Similar models have been suggested
by, for example, Oerlemans (1980, 1981), MacAyeal (1979), Källén et al. (1979) and
Saltzman (2002), and provide for similar bistability.

A cartoon representing Weertman’s model is shown in Fig. 5. Weertman considered
an ice sheet resting on an isostatically depressed bed. The elevation of the ice above
the initial ground surface is h, and the ice depth is then 3

2 h, assuming rock to be three
times denser than ice. The northern ice margin is at the (Arctic) ocean, where it forms
an ice shelf, and wastage occurs through oceanic melting or iceberg calving. The ice
sheet is taken as two-dimensional, with x representing the coordinate southwards from
its origin at the northern ice margin. To describe the flow, Weertman assumes plastic
flow with a yield stress τ , as a reasonable simplification for the more accurate Glen’s
law. This being the case, and assuming an active (moving) ice mass, the elevation h
satisfies

3
2ρi gh|h′| = τ, (4.16)

and it follows that if the southern margin is at x = l, then

h = {di min(x, l − x)}1/2 , (4.17)

where

di = 4τ

3ρi g
≈ 4 m, (4.18)

corresponding to the assumption that τ ≈ 0.3 bar. This value is less than Weert-
man’s choice in the range 7–14 m, and is made here to represent the idea that the ice
sheet depth {di l/2}1/2 should be of the order of 2,800 m for an ice sheet of extent
l = 4,000 km. This value is itself intermediate between present day Antarctic depth,
and assumed lower elevations of the Laurentide Ice Sheet due to its bed of low yield
stress sediments. We take the snowline to be at an elevation h0 + sx and s is positive.

hocean

x x

h  + sx

e

0

Fig. 5 Cartoon of the growth of the northern hemisphere ice sheets southwards from the Arctic Ocean.
The snowline elevation increases towards the south, and divides regions of net accumulation from regions
of net ablation
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Typically we will suppose h0 > 0. In this case, the ice-free state will be stable, but
a finite depth ice sheet can also exist, as indicated in Fig. 5. For the situation shown,
where xe, the value of x where the snowline intersects the ice surface, is on the south-
facing slope (i.e., 1

2 l < xe < l), the rate of change of ice volume in the southern lobe
is given by

d

dt

l∫

1
2 l

{di (l − x)}1/2 dx = ai (xe − 1
2 l)− mi (l − xe), (4.19)

in which ai is mean accumulation rate and mi is mean melt rate, and xe is determined
by

h0 + sxe = {di (l − xe)}1/2. (4.20)

It is convenient to write the resulting ordinary differential equation for l in terms
of dimensionless variables, which we initially do by writing

l = di L

s2 , J = sh0

di
, xe = l(1 − ξ), t ∼ tg, (4.21)

where we define the ice sheet growth time scale tg as

tg = di

sai
. (4.22)

The ice sheet extent then satisfies the dimensionless equation

L̇ = √
2L[1 − 2(1 + α)ξ ], 0 < ξ < 1

2 , (4.23)

ξ is given by

Lξ + √
Lξ = J + L , (4.24)

and α by

α = α+ = mi

ai
. (4.25)

We append the suffix ‘+’ because later we will consider α as a variable.
Steady state solutions are given by L = 0 (if J > 0), and

√
L = 1

2

√
L∗

[

1 ±
{

1 − J

J ∗

}1/2
]

, (4.26)
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where

J ∗ = ξ∗

4(1 − ξ∗)
, L∗ = ξ∗

(1 − ξ∗)2
, ξ∗ = 1

2(1 + α+)
; (4.27)

it is now natural to finally define

L = L∗ I, J = J ∗ H, ti = tg
√

L∗, (4.28)

thus

l = li I, H = sh0

di J ∗ , (4.29)

where

li = di L∗

s2 , (4.30)

and then (4.26) gives the steady states of I as

√
I = 1

2

[
1 ± {1 − H}1/2

]
, (4.31)

as shown in Fig. 6. The form of the evolution equation for I is described below,
following further discussion.

The values of the constants in the ice sheet model, and estimates of their assumed
values, are given in Table 4. The solar radiation variation indicated in Fig. 1 represents
a 10 % amplitude variation in received solar radiation at 65◦ N; according to energy
balance in (4.8), this corresponds to a surface temperature variation of

�T ≈ T�Qs

4Qs
≈ 7.2 K, (4.32)

Fig. 6 Hysteresis in the steady
state ice sheet extent as the
elevation of the snowline at the
northern margin varies. I (H) is
determined by (4.31)

 0

 1

 2

-2 -1  0  1  2

I

H
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Table 4 Values of additional
constants in the ice sheet model

Symbol Meaning Typical assumed value

ai Mean ice accumulation rate 0.1 m year−1

di Yield depth 4 m

h0 Snowline elevation amplitude 1,200 m

H Elevation parameter ∼ 3

li Ice extent scale 3.8 × 103 km

J∗ Scale for J 0.05

L∗ Scale for L 0.24

mi Mean ice melt rate 0.2 m year−1

s Snowline slope 0.5 × 10−3

ti Ice sheet time scale 40 ka

α+ Melt rate in advance 2

�A Atmospheric lapse rate 6 K km−1

�Qs/Qs Milanković variation at 65◦ N 0.1

ρi Ice density 0.92 × 103 kg m−3

which itself corresponds to a snowline elevation change of 1,200 m, assuming an
adiabatic lapse rate of �A = 6 K km−1. We use this as our estimate for h0, as it
represents the expected Milanković variation in the model.2 Weertman uses as an
estimate α+ = 2.75, for which we find ξ∗ ≈ 0.13, J ∗ ≈ 0.04, L∗ ≈ 0.18. The
resulting values of li , ti and H , using the Weertman-based estimate of α+ = 2.75, are
li = 2,900 km and H ≈ 3.75. If we use an accumulation rate of ai = 0.5 m year−1,
(Weertman used 1.2 m year−1), we find ti = 6 ka. These values are not that unreason-
able, if we associate the time scale with the decay time of ice sheets. Here we choose
the slightly different value α+ = 2, which leads to values ξ∗ ≈ 0.17, J ∗ = 0.05
and L∗ = 0.24, and thus H = 3 and li = 3,800 km. However, it is arguable that
although ai = 0.5 m year−1 may be appropriate for present day Greenland, it is less
likely for the Laurentide, where the accumulation rate may be more desert-like, as for
present day Antarctica. If we take an accumulation rate of ai = 0.1 m year−1, this
gives ti = 40,000 year. (The value for ai = 0.5 m year−1 is ti = 8,000 year.)

As shown in Fig. 6, the steady state solution exhibits hysteresis as H varies. The
upper and lower branches are stable, and the intermediate one is unstable. Time-
dependent evolution of the ice sheet extent is given by (4.23) and (4.24); solving for ξ ,
we have

ξ = 1 +
1
2 + J − ( 1

4 + J + L
)1/2

L
, (4.33)

2 Note that we have taken Qs in (4.32) to be the local received radiation, rather than the total given in
Table 3. This is because it is the local received radiation which affects the local ground mean temperature,
and thus the local snowline elevation, despite the fact that global average temperature is not affected.
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and thus the dimensionless volume

VL =
√

2

3
L3/2 (4.34)

satisfies the equation (with time scaled with tg)

V̇L = −(1 + 2α)L − 2(1 + α)
{

1
2 + J − ( 1

4 + J + L
)1/2

}
. (4.35)

Some modification of (4.23) is necessary when ξ /∈ (0, 1
2 ). In particular, (4.33)

makes no sense when L approaches 0, since it implies that ξ > 1, whereas its deriva-
tion assumes ξ < 1

2 . It is geometrically obvious that for sufficiently large ice sheets,
ξ > 1

2 , and the whole southern part of the ice sheet is melting. In this case, the ice is
stagnant and we simply put ξ = 1

2 in (4.23). This is a rough but reasonable approxi-
mation since the now dead ice is no longer moving, and the margin is not constrained
by the plastic flow assumption.

A similar consideration applies when ξ reaches 1
2 for small L , providing J > 0; at

that point the whole ice sheet is below the snowline, and we can again replace ξ by
1
2 . Both cases can be covered by replacing ξ by min(ξ, 1

2 ) if J > 0, and thus (4.35)
becomes

V̇L = max
[
(1 + α)

{
(1 + 4J + 4L)1/2 − (1 + 2J )

}
− (1 + 2α)L ,−αL

]
. (4.36)

However, if J < 0 and L = 0, then an ice sheet will begin to grow spontaneously,

i.e., L̇ > 0. The rate of change of the dimensional volume
√

2λ
3 l3/2 when h0 < 0 and

l < −h0
s is −h0ai

s , and dimensionlessly this leads to

V̇L = −J, (4.37)

if L < −J, while for L > −J , (4.36) still applies. Finally, we can write a uniform
definition of V̇L in the form

V̇L = max
[
H(z)

{
(1 + α)

[
(1 + 4z)1/2 − (1 + 2z)

]
+ z

}
− J,−αL

]
, (4.38)

where H(z) is the Heaviside step function, and z = J + L . For the corresponding
expression for the dimensionless ice volume

VI =
√

2

3
I 3/2, (4.39)

we use (4.28), so that, in terms now of the time scale ti , (4.38) becomes

V̇I = f (I, H, α), (4.40)
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Fig. 7 The form of V̇I as a
function of I given by (4.40), for
values α = 2 and H = −1
(upper), H = 0.9 (middle) and
H = 2 (lower)
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where we define

f (I, H, α)=max

[
H(Z) {(1 + α)

[
(1 + 4Z)1/2 − (1 + 2Z)

] + Z
} − J ∗ H

L∗ ,−α I

]

,

(4.41)

in which

Z = J ∗ H + L∗ I. (4.42)

Figure 7 shows the form of V̇I as a function of I on the three distinct parts of Fig. 6,
i.e., where there is only a stable ice sheet, where there is bistability, and where there
is no ice sheet. Because J ∗ and L∗ are small (because α is large), we can approximate
(4.41) by expanding for small Z , which yields the result

V̇I = max
[
H(ζ )

{
ζ − m∗ζ 2

}
− k∗H,−α I

]
, (4.43)

where

ζ = I + k∗H, k∗ = 1
4 (1 − ξ∗), m∗ = 2L∗(1 + α). (4.44)

This can be used instead of (4.40), and it explicitly shows that ice sheet growth occurs
on a time scale of ti .

5 Combined ice and carbon model

Preamble

We now combine the ocean carbon model with the ice sheet model and the energy bal-
ance model. This leads to a set of eight dimensionless ordinary differential equations,
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together with five constitutive relations. By asymptotic reduction, we show that the
model is effectively reduced to just two equations, for ice extent and carbonate ion.
The system maintains its hysteretic states, but there are no self sustained oscillations.

5.1 The full dimensionless model

The nonlinear dependence of VI on I in (4.40) causes an awkwardness in the ice
volume equation as I → 0 which we remove by simply taking VI = I . The combined
model is thus, from (3.53), (4.14) and (4.40),

ε ṗ = 1 −�w −�(p − ps),

ηQ̇ = 2�(p − ps)+�w,

ν Ṡ = −βub − u p −�(p − ps),

Ṅ = βub + u p − N ,

ζ Ṗ = −ub + γ�w

β
,

ṖB = βub

2γ
− PB,

ω İ = f (I, H, α),

(5.1)

where f (I, H, α) is given by (4.41), and because the time scale is now 1/B rather
than ti , we can define

ω = Bti ; (5.2)

for ti = 40 ka, we then have ω ∼ 0.4. Additionally, we have the auxiliary functions
from (3.54) and (4.14):

θ = λ ln p − κ I,

ps = Q2ebθ

S
,

ub = (Peb′θ − 1)PB ,

u p = S(1 + δ1 Q + δ2S)−�,

w = pμeθ ,

(5.3)

Before providing numerical solutions of the model, we discuss what we expect to
find. Evidently I will tend to a steady state which depends on the parameter H . H
was defined in (4.29), and is proportional to h0, the snowline elevation in the north-
ern hemisphere at the notional Arctic land-ocean boundary. If �A ∼ 6 K km−1 is
the adiabatic lapse rate of the atmosphere, then a change of �T to the mean atmo-
spheric temperature leads to a change of �T/�A to h0. In dimensionless terms, the
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corresponding change in H due to a change in θ is

�H = φ�θ, (5.4)

where

φ = s�Tc

di J ∗�A
∼ 4.1. (5.5)

Next, Milanković variation of radiation causes a similar variation in H . We already
used the expected local variation of solar radiation Qs to estimate the corresponding
surface temperature change. The corresponding change in H due to a change�Qs to
locally received solar radiation Qs is (cf. (4.32))

�H = ψqM (t), (5.6)

where

ψ = sT0�Qs

4di J ∗Qs�A
∼ 2.3, (5.7)

as already found; here qM (t) is the local received solar radiation Milanković variation
at 65◦ N, normalised to be O(1) in amplitude. Putting these two together, we can write

H = H0 + φθ + ψqM , (5.8)

where the baseline value H0 indicates the current interglacial value, which we take to
be positive. The values of the dimensionless parameters are given in Table 5.

5.2 The onset of ice ages

The behaviour of the carbon system has been described in Sect. 3. On a 100 year time
scale p relaxes to a quasi-equilibrium; on a 5,000 year time scale ocean phosphate
equilibrates; then on a 40 ka time scale, carbonate ion S relaxes to a quasi-equilib-
rium which depends on bicarbonate Q; finally, on a 300 ka time scale, bicarbonate Q
relaxes to its equilibrium in which �w = 2. At this point, N = 1 and S ≈ 1, and in
pre-glacial times, when we may take I = 0, we have

Q =
(

2

�

) 1−λb
2(λ+μ)

, (5.9)

and the temperature is

θ = λ

μ+ λ
ln

(
2

�

)
. (5.10)
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Table 5 Default values of the
dimensionless parameters in the
combined ice and carbon model

Symbol Meaning Default value

b Solubility parameter 0.38

b′ Bioproduction parameter 0.9

α Melt rate 2

β CaCO3 production 3.2

γ Redfield parameter 0.1

δ1 Reaction parameter 0.09

δ2 Reaction parameter 0.023

ε pCO2 rate 0.07

η HCO−
3 rate 3.1

ζ Phosphorus rate 0.05

κ Ice albedo parameter 0.38

λ Greenhouse coefficient 0.33

� CO2 interfacial transport 70.2

μ Weathering exponent 0.3

ν CO2−
3 rate 0.4

� Calcite precipitation parameter 0.21

φ Snowline sensitivity 4.1

ψ Milanković coefficient 2.3

ω Ice sheet rate 0.4

� Weathering 2

Explicitly, then, we may explain the cooling since the Eocene as being due to a con-
tinuous rise in�. As stated earlier, this implies either a secular (decreasing) change in
volcanism, or an increase of weathering rate, or both, since the Eocene. This explana-
tion requires that weathering continues to increase, presumably associated with mean
Himalayan elevation increase. The consequent possible change in ionic concentration
L− apparently has no direct effect on the temperature. Decreasing volcanic produc-
tion may be associated with decreasing subduction associated with the closure of the
Tethys Ocean (Caldeira 1992).

Let us now consider the effect of this slow change of θ on the growth of the Pleis-
tocene ice sheets, ignoring for the moment the effect of Milanković variations. As
separate land masses, we can imagine that the growth of the Antarctic Ice sheet at
∼40 Ma and that of Greenland at ∼3 Ma followed the same basic pattern.3 Indeed, we
can suppose that the present sequence of glacials and interglacials represents a staging
post in the formation of a permanent Laurentide Ice Sheet: all due to India!

As θ decreases, so also does H , and when H becomes negative, there is a transition
to a permanent ice sheet. However, the resultant cooling lowers the weathering rate,
so that there is a consequent feedback on the ice sheet evolution. To understand this,

3 Pollard and DeConto (2005) persuasively suggest that the sudden cooling at 34 Ma is associated with
the hysteretic transition from three regional ice caps in Antarctica to a continent wide ice sheet; Antarctic
glaciation would thus have been initiated before 34 Ma.
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Fig. 8 The nullclines for the
I –S system. The İ = 0 nullcline
is the graph of (4.31), as shown
in Fig. 6, while the Ṡ = 0
nullcline is determined from
(5.14) together with (5.12)3 and
(5.8), using � = 2, κ = 0.38,
γ = 0.2, μ = 0.3, � =
0.21, b = 0.38, λ = 0.33, φ =
4.1, ψ = 0 and H0 = 0.5
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we need to understand the dynamics of the coupled S–I system, and this can be done
by an understanding of the phase plane, whose behaviour is controlled by the location
of the nullclines.

First we consider the dynamics of the carbon system. From (5.1) and (5.3), putting
ε = ζ = δ1 = δ2 = 0, we derive the equation for S in the form

ν Ṡ = (1 − γ )�w − S − (1 −�). (5.11)

From the definitions of θ, p and w, we find (allowing b > 0)

θ = λ

1 − λb
ln

Q2

S
− κ

1 − λb
I,

ln p = 1

1 − λb
ln

Q2

S
− κb

1 − λb
I, (5.12)

lnw = μ+ λ

1 − λb
ln

Q2

S
− κ(1 + μb)

1 − λb
I.

(5.13)

This indicates that S decreases as H increases. Essentially the I nullcline is shown as
the equilibrium in Fig. 6, where S increases as H decreases.

To this we need to add the S nullcline, which from (5.11) is found from solving

(1 − γ )�w = 1 +� + S. (5.14)

Figure 8 shows the nullcline pairs corresponding to the parameter values in Table 5.
The figure illustrates the nullclines for H0 = 0.5. The intersection of the nullclines
defines three steady states, of which the upper and lower ones are stable, and the inter-
mediate one is unstable, and this is the case for −0.4 <∼ H0 <∼ 1. As H0 increases, the
S nullcline moves to the right. For H0 >∼ 1, only the ice-free solution exists, and it is
stable, while for H0 <∼ − 0.4, the only solution corresponds to a stable permanent ice
sheet.
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Fig. 9 Solution of the ice sheet
growth model with a
pseudo-Milanković forcing
given by (5.15). Parameters as in
the tables, with h0 = 200 m.
The initial ice extent is taken as
I = 1,000 km
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The Milanković variation to H is of order ψ = 2.3, and thus when H0 ∼ O(1), H
will vary back and forth between conditions of stable massive ice sheets and ice-free
conditions. If the variation was slow, then we would see oscillatory solutions in which
I grows slowly, before H increases and I decreases. If the Milanković variations were
slow, then indeed, in this theory, they would drive the sequence of ice ages.

However, the principal fluctuation of solar insolation appears to be too rapid for
this to occur. Essentially, the effect of the Milanković variations is to provide a small
scale fluctuation about the prevailing steady state. Figure 9 shows the result of forcing
the ice sheet/carbon model with a pseudo-Milanković forcing of the form

qM = a1 cosω1t + a2 cosω2t, (5.15)

where we choose a1 = 0.8 and a2 = 0.4, and the frequencies ω1 and ω2 correspond to
periods of 23 and 41 ka. As expected, the solutions are as described above. These may
provide a blueprint for the oscillations during the Pliocene, but they do not account
for the more recent 100 ka oscillations in the Pleistocene.

Apart from the short period, one feature of this solution which does not resemble
the 100 ka oscillations is the observation that recent glacial terminations are rapid.
There is nothing as yet in the model which describes this. We might expect this to
have a dramatic effect on the dynamics, since when H >∼ 1, it allows for sudden ice
sheet collapse. We now consider this.

6 Proglacial lake formation

Preamble

As Milanković forcing does not produce any kind of realistic oscillations, we now
focus on the issue of rapid termination. In order to produce this, we propose that
rapid wastage can occur by iceberg calving into proglacial lakes, as suggested by Pol-
lard (1982). We propose a model for the evolution of proglacial lake volume, driven
by ice wastage and forefield runoff, and we show that the ice sheet/proglacial lake
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model spontaneously oscillates, with a period of the correct order. The carbon cycle
is irrelevant to this oscillation.

6.1 Glacial retreat

One of the hallmarks of the oscillations shown in Figs. 1 or 2 is their relaxational
sawtooth character. Arguably any model of ice age climate must be able to explain
this. In the model as presently written in (4.23), there is nothing to distinguish time
scales for growth and decay of ice sheets. We must then ask, what is the physical
process which allows ice sheets to grow over a 100 ka time scale, but to completely
melt away in 10 ka?

We consider the mechanism to be the following. When an ice sheet is advancing or
stationary, the surface meltwater at the margin will flow (on the surface or at the bed
via moulins) to the front, where it is able to run off in pro-glacial streams. However, if
an ice sheet retreats, then pro-glacial lakes can form in the isostatic depression formed
by the ice sheet; and indeed the formation of such lakes is well-known (e.g., Murton
et al. 2010). The presence of pro-glacial lakes allows for wastage by calving, and this
can allow more rapid shrinkage than plain melting; indeed this is the reason that tide-
water glaciers such as Columbia Glacier undergo rapid retreat: a similar mechanism
has been postulated as a potential cause for the collapse of the West Antarctic Ice
Sheet, and indeed the present rapid retreat of outlet glaciers such as the Pine Island
Glacier suggests that this retreat is already under way.

In order to model this dependence of wastage on growth and retreat, we could
generalise (4.40) to the form

V̇I = f [I, H, α( İ )], (6.1)

where for example

α = α+, İ ≥ 0,

α = α−, İ < 0,

and we would choose α− > α+ to reflect the increased rate of wastage during retreat.
More generally, α should be a continuous function which changes rapidly from α−
to α+. If the melting time for the ice sheet is about 10 ka, then the melt rate time
scale should be about a third of this, and since the time scale for melting is ti/α−, this
suggests α− = 14 if ti = 40 ka. The consequent value of mean melt rate is m− = 1.4
m year−1 for an accumulation rate of 0.1 m year−1.

A modelling issue now arises. Clearly (6.1) defines İ implicitly. Equally clearly,
it does not define it uniquely if we assume (6.2). For example, Fig. 10 shows V̇I at
H = −1 for the two cases in which V̇I ≥ 0 and V̇I < 0; clearly, there is a range of
values 1 <∼ I <∼ 1.5 where both states are possible. Interestingly, Fig. 10 suggests the
possibility of an excitable excursion. If the stable steady state at I ≈ 1.5 is perturbed
through a climatic warming, melting is initiated, V̇I jumps to the lower state, and I
decreases towards I ≈ 1, where it will jump back to the upper curve, and thus finally
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Fig. 10 V̇I as a function of I
for values H = −1 and α = 2
(upper) and α = 4 (lower),
representing conditions where
V̇I ≥ 0 and V̇I < 0,
respectively. The arrows
indicate a hysteretic transition
between the two curves

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

.
I

V

I

= 2α

= 4α

return to the upper steady state. This is reminiscent of Fig. 1, which we might then
interpret as representing a trajectory which continually approaches a steady state at
δ18O = 5, but is frequently excited towards a quasi-steady state at δ18O = 3.

6.2 The proglacial lake equation

The ambivalence of (6.1) as exhibited by the multiplicity evident in Fig. 10 necessitates
the existence of a subsidiary variable which accommodates the transition between the
two curves. Evidently this variable can be taken to be proglacial lake volume VK , and
a suitable model for its evolution is

V̇K = l pmi lξ − RK , (6.2)

where the first term on the right is the rate of production of glacial meltwater, and the
second is the runoff in proglacial streams. The constant l p is the ice sheet perimeter,
and the dimensionless quantity ξ , introduced in (4.21), must be replaced by 0 if ξ < 0,
and by 1

2 if ξ > 1
2 . More specifically, we replace

ξ −→ min{H(Z)ξ, 1
2 }, (6.3)

where H(Z) is the Heaviside step function, and Z is defined in (4.42). ξ is defined in
(4.33), from which we have

L∗ I ξ = 1
2 + Z − ( 1

4 + Z)1/2. (6.4)

We make the model dimensionless by writing

t ∼ 1

B
, VK = V 0

K v, RK = R0
K r (6.5)
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(note that v is distinct from its earlier usage as the volcanic carbon input), whence we
have

δv̇ = M∗�(I, H)α(v)− r(v), (6.6)

where we define

� = I

L∗ min{H(Z)ξ, 1
2 }, (6.7)

and the parameters are defined by

δ = BV 0
K

R0
K

, M∗ = l pai di L∗2

s2 R0
K

. (6.8)

We have assumed that the melt rate mi is an (increasing) function of lake volume, so
that α is a function of v.

In the normal case where 0 < ξ < 1
2 , we can approximate � by expanding (6.4)

for small Z . The result is

� ≈ (I + k∗H)2, (6.9)

where k∗ = J∗
L∗ was defined in (4.44); this explains the reason for including L∗ in the

definition of �. More generally,

� ≈ I min

[
H{I + k∗ H} (I + k∗H)2

I
,

1

2L∗

]
, (6.10)

and is a non-negative increasing function of I .
To estimate the parameters, we conceive of a stream network spaced at intervals of

20 km (based on typical Laurentide or Fennoscandian esker spacing, Boulton et al.
2009; Shreve 1985) having discharges of 50 m3 s−1 (Wingham et al. 2006). Over
an assumed perimeter of l p = 4,000 km, this yields R0

K = 3 × 1011 m3 year−1.
The proglacial lake volume is taken to be a value representative of the high stand of
Lake Agassiz during the last ice age (Leverington et al. 2000), thus V 0

K = 20,000
km3. With these choices, we find M∗ ≈ 1.23, δ ≈ 0.7 × 10−3. It is not surprising
that M∗ = O(1), since in a steady state melt and runoff must balance. Table 6 gives
the typical values of the dimensional and dimensionless parameters introduced in the
present section.

As mentioned, we supposeα = α+ when v = 0. Although calving rates are not well
constrained, it seems that they increase with water depth (Cuffey and Paterson 2010,
p. 123), so that we suppose that α is an increasing function of v. On the other hand,
runoff r is largely determined by the geometry of the outlet stream systems. We expect
it to increase as v increases, due to the occurrence of new ‘overflow’ points. However,
we also expect that there will be some threshold value, where flooding occurs and the
lake drains to the sea (Murton et al. 2010), and we identify this with the value of V 0

K .
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Table 6 Values of additional
constants in the proglacial lake
model

Symbol Meaning Typical assumed value

l p Ice sheet perimeter 4,000 km

m− Ice wastage rate in retreat 2 m year−1

M∗ Melt rate parameter 1.27

R0
K Proglacial stream runoff 3 × 1011 m3 year−1

V 0
K Proglacial lake volume 20,000 km3

α− Melt rate in retreat 20

δ Proglacial lake filling parameter 0.7 × 10−3

In addition, the rise in sea level of 120 m in 10,000 years at the last glacial termination
suggests a meltwater flux of 4.3 × 1012 m3 year−1, some 14 times larger than our
normal glacial runoff scale. We choose our runoff and melt functions to allow for this
possibility.

It is clear that, depending on the choice of α and r , hysteresis can occur, as shown
in Fig. 11. In practice v̇(0) < 0 at sufficiently low �, so that in that case the lake
drains to zero volume in finite time. It is numerically convenient to alter the behaviour
at v = 0 so that v̇ = 0 there, and we do this in Fig. 11 by multiplying the right-hand
side of (6.6), let us say g, by 1 − {1 − H(g)} exp{−100v}, where H is the Heaviside
step function. The expressions for α and r are taken as

α = α− − (α− − α+)e−4v, r = exp

[
0.03

1 − v

]
. (6.11)

Figure 12 shows the solutions for ice extent and lake volume corresponding to the
same parameter values used in Fig. 9, except that we remove the Milanković forcing,
qM = 0. We take m− = 2 m year−1, so that α− = 20. Self-sustained oscillations
occur, and these now have an appropriate sawtooth character, as well as a long period
unrelated to any forcing (of which there is none).

Fig. 11 Plots of (6.6) for
parameters M∗ = 1 and
� = 0.1, 0.3 and 1, representing
conditions of increasing ice
volume. The assumed forms for
α and r are given in (6.11), with
α− = 4, α+ = 2. In order to
accommodate v̇ ≥ 0 at v = 0,
the right-hand side of (6.11) has
been multiplied by
1 − {1 − H(v̇)} exp{−100v},
where H(·) is the Heaviside step
function

-4

-2

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1

.

Ξ = 1

Ξ = 0.3

Ξ = 0.1

vδ

v

123

Author's personal copy



Int J Geomath

Fig. 12 Numerical solution of
the combined ice/carbon/lake
model using the parameter
values in the tables, except that
h0 = 400 m (also b3 = 0)
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The mechanism of these oscillations is fairly readily explained with reference to
Figs. 8 and 11. Essentially, we take α = α+ if v = 0 and α = α− if v > 0. From
Fig. 11, we have that v > 0, thus α = α− if � > �+, where

�+ = 1

M∗α+
, (6.12)

while v = 0 for � < �−, where

�− = 1

M∗α−
; (6.13)

between these two values, either state is possible. Figure 13 indicates the resultant
dynamics. The blue (online) curve labelled S is the S nullcline, the red (online) curve
labelled I is the I nullcline when v = 0, i.e., α = α+; the green (online) curve labelled
S− is the corresponding nullcline for v > 0, when α = α−: it (the green curve) is
given by

√
I = 1

2

√
l−

[

1 ±
(

1 − H

j−

)1/2
]

, (6.14)
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Fig. 13 Effect of lake volume hysteresis on ice sheet dynamics. Trajectories below the lower lilac curve
labelled ξ− move upwards, as indicated by the red arrows, until they reach the upper lilac curve, labelled
�+, at which point they switch to the downwards moving branch of trajectories, indicated by the green
arrows. Conversely, trajectories above�+ move downwards (green arrows) until they reach�−, when they
switch to the up (red) trajectories. The up trajectories are approaching the (inaccessible) fixed point at (a),
while the down trajectories are approaching the fixed point at (b). In this way a self-sustaining oscillation
is maintained (colour figure online)

where

j− = 1 + 2α+
1 + 2α−

, l− =
(

1 + α−
1 + α+

)
j2−; (6.15)

we use values α+ = 2, α− = 10, for which j− = 0.24, l− = 0.015. For v = 0, trajec-
tories migrate upwards towards the ice sheet state, but then reach a threshold where
lake volume increases, and trajectories switch to the green (downward) ones trying to
reach the ice-free state. In this way the self-sustaining oscillation is maintained.

7 Rapid CO2 rise

Preamble

The necessity to have a model in which glacial terminations occur rapidly has led us
to propose an explicit model for proglacial lake growth, and this now produces ice
sheet oscillations of the desired form. However, we have come a long way from our
starting point, which was the idea that carbon was likely to be a driver for ice ages.
Now we find that, because carbon is coupled to the ice sheet model, it also oscillates,
but the oscillations are completely unlike the observations. Therefore we need to find
a mechanism which can explain the rapid CO2 rise, and this section examines various
possibilities in turn.

The first is the dilution effect, whereby raising of sea level at terminations causes a
decrease in ocean salinity. Because the negative conservative ion concentration L− of
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17.4 mM is about seventy times larger than the CO2 controlling carbonate concentra-
tion of 0.24 mM, it seems plausible that small changes in L− could have a significant
effect; but we find that change in ocean volume is insufficient to support the change.

Next, we consider the effects of altered weathering rates by consideration of a
much more detailed discussion of weathering, involving dissolution of silicate, car-
bonate and feldspar, as well as other species. This eventually leads to a modified
carbonate ion equation in which the weathering coefficient � (now written as one of
several,�S) depends on ice volume through sea level induced exposure of continental
shelf carbonates. However, there is still no mechanism to induce rapid CO2 rise on
termination.

Finally, we realise that the key is to find an ingredient of the model with a built in
rapid time scale, and this ingredient is phosphorus and thus biomass; and the mecha-
nism which is able to induce the necessary rapid rise is the temperature dependence
of biomass growth.

7.1 Continental shelf exposure

It is clear from Fig. 2 that pCO2 follows δ18O relatively closely. In the model, at least
at the moment, this is not the case. The temperature oscillates in a way fairly similar
to the ice, but the oscillation of CO2 is much more regular. This is because, according
to (5.12)2, p ∼ 1

S , and according to (5.11) (given the definition of w in (5.12)3), S
changes on a time scale of O(1). Worse, since the equilibrium of (5.11) has S as a
decreasing function of I , it follows that as I increases during an ice age, S decreases
and thus p increases, in stark contrast to the data.

Something is missing from the model. One effect of the growth of continental ice
sheets is that the sea level drops. In the last ice age, sea level was 120 m lower, and
thus large areas of continental shelf were exposed. There are several consequences of
this, all of which might seem to provide some relevant modification to the model.

Firstly, a significant portion of the marine biomass which acts as the agent for
calcium and carbonate extraction and burial is removed. This suggests that the burial
coefficient B may reasonably be taken as a decreasing function of I . Secondly, the
exposure of the carbonate-rich sediments of the shelves is liable to increase the rate
of physical weathering, which would suggest that W0, and thus also �, should be
an increasing function of ice extent I . Finally, the decrease in ocean volume leads
to a change in the concentration of the ionic species. Because the volume change is
relatively small, so also are the concentration changes, but the effect is important in
its alteration of the conservative negative ion, because this has a concentration much
greater than the CO2-controlling carbonate ion.

Because burial does not directly affect the carbonate ion, variation of B will not
have much effect on the results. If the physical weathering rate parameter� increases
sufficiently rapidly with I , then we can see from (5.12) that the equilibrium S of
(5.11) will be an increasing function of I , which can potentially alleviate the incorrect
phasing of CO2 with ice volume.

However, what is crucial is that the CO2 should change rapidly with ice volume
at termination. The direct physical effect which might cause this is the re-dilution of
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the world’s ocean, and this suggests that it could be the third effect alluded to above
which is the missing essential ingredient. We now reconsider the ocean chemistry
model, except that now we allow for the variation in ocean volume Voc.

In dimensional terms, ocean volume is determined by

ρwVoc + ρi VI = ρwV 0
oc, (7.1)

where VI is ice sheet volume, and V 0
oc is a reference value. Conservation of negative

conservative ionic species is therefore prescribed by

L−Voc = L0−V 0
oc, (7.2)

and thus

L− = L0−
(

1 − ρi VI

ρwV 0
oc

)−1

≈ L0− + ρi VI L0−
ρwV 0

oc
, (7.3)

since the change of ocean volume is relatively small. Note that (cf. (4.19)) the ice
volume is given by

VI = 2l p

l∫

1/2l

{di (l − x)}1/2 dx, (7.4)

and thus

VI = V 0
I V ∗

I , (7.5)

where we define

V 0
I = d1/2

i l pl3/2
i (7.6)

and (cf. (4.39))

V ∗
I =

√
2

3
I 3/2. (7.7)

We then have

L− ≈ L0− + δ3L0−V ∗
I , (7.8)

where

δ3 = ρi V 0
I

ρwV 0
oc
. (7.9)
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The ocean equations in (3.40) are modified, allowing for the variation of Voc as
above, to

˙(VocC) = Voc[h(p − ps)+ A∗W − R3 − R4],
˙(Voc Z) = Voc[ 1

2 A∗W − R3 − R4],
˙(Voc N ) = Voc[R3 + R4 − B N ],

R ˙(Voc P) = Voc[−R3 + ρR A∗W ],
R ˙(Voc PB) = Voc[R3 − B R PB],

(7.10)

and using (7.8), these can be written in the form

Ċ ≈ ri V̇I C + h(p − ps)+ A∗W − R3 − R4,

Ż ≈ ri V̇I Z + 1
2 A∗W − R3 − R4,

Ṅ ≈ ri V̇I N + R3 + R4 − B N ,

R Ṗ ≈ ri V̇I P − R3 + ρR A∗W,

R ṖB ≈ ri V̇I PB + R3 − B R PB,

(7.11)

where

ri = ρi

ρwV 0
oc
. (7.12)

The equations for C and Z are replaced by those for Q and S, defined as in (3.41) by

Q = L− + 2C − 2Z , S = 2Z − L− − C. (7.13)

Using (7.3), this leads, after some algebra, to the two modified equations for Q and S
in the form

Q̇ = ri

[
Q − ri L0−VI

]
V̇I + 2h(p − ps)+ A∗W,

Ṡ = ri

[
S + ri L0−VI

]
V̇I − h(p − ps)− R3 − R4.

(7.14)

These differ from those in (3.50) by the presence of the terms in V̇I , and it is precisely
these terms which might allow rapid change in S and Q during deglaciation. We can
see from (7.14) that as VI decreases, S does as well, allowing for pCO2 to rise; although
we have yet to ascertain whether the effect is significant.
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The equations are non-dimensionalised as in (3.51) and (7.5), and this leads to the
modification to (3.53) as

ηQ̇ = χω
[
δ1 Q − δ3V ∗

I

]
V̇ ∗

I + 2�(p − ps)+�w,

ν Ṡ = χω
[ 1

2δ2S + δ3V ∗
I

]
V̇ ∗

I − βub − u p −�(p − ps),

Ṅ − δ3V̇ ∗
I N = βub + u p − N ,

ζ(Ṗ − δ3V̇ ∗
I P) = −ub + γ�w

β
,

2γ (ṖB − δ3V̇ ∗
I PB) = βub − 2γ PB, (7.15)

where δ3 was defined in (7.9), and

χ = ρi V 0
I L0−

ρwV 0
ocvti

. (7.16)

Using the values in Tables 1, 2 and 3, we find

δ3 ≈ 0.041, χ ≈ 3.55. (7.17)

The values of other extra parameters introduced are given in Table 7.

Analysis of the dilution model

Now we analyse how the solutions of this model should behave. As before, on a time
scale t ∼ ε, p relaxes to equilibrium,

�(p − ps) = 1 −�w, (7.18)

while on a time scale t ∼ ζ, P relaxes to the approximate equilibrium

βub = γ�w, (7.19)

Table 7 Values of additional
constants in the ocean dilution
model

Symbol Meaning Typical assumed value

L0− Negative conservative ions 17.4 mM

V 0
I Ice sheet volume scale 0.6 × 1017 m3

V 0
oc Ocean volume scale 1.35 × 1018 m3

δ3 Ice volume parameter 0.041

ρw Water density 103 kg m−3

χ Ocean dilution 3.55
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while also

u p ≈ S −�. (7.20)

Q varies on the longer time scale t ∼ η, and thus is relatively constant. The effective
model to be solved thus consists of the equations for carbonate ion, ice sheet extent
and proglacial lake volume:

ν Ṡ = (1 − γ )�w − (1 −� + S)+ χ
[ 1

2δ2S + δ3 I
]

f,

ω İ = f [I, H, α(v)],
δv̇ = M∗�α(v)− r(v),

(7.21)

where, as in (5.1), we have identified V̇I = İ , and (4.41) defines f (I, H, α). In
practice, we also have (6.9):

� ≈ (I + k∗H)2, (7.22)

and the approximation of (4.43) to allow for variable α is, over most of the range
of I ,

f ≈ I − m∗(I + k∗ H)2, (7.23)

where

m∗ = (α+ + 1){1 + α(v)}
(α+ + 1

2 )
2

. (7.24)

Let us suppose that initially v = 0 and we take H < 1, essentially as in Fig. 13.
I grows on a time scale t ∼ ω towards an equilibrium at

I = I+ ≈ 1

m∗+
, m∗+ =

(
α+ + 1

α+ + 1
2

)2

= O(1). (7.25)

Since χδ3 is small, the S nullcline in Fig. 13 is only shifted a little. As I grows, �
increases; when � reaches �+, where

�+ = 1

M∗α+
, (7.26)

then v jumps rapidly to a positive equilibrium where α = α−, and f jumps to the
value

f ≈ I − m∗−(I + k∗ H)2, (7.27)
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where

m∗− = (α+ + 1)(α− + 1)}
(α+ + 1

2 )
2

∼ α−
α+

	 1. (7.28)

Thus in this termination phase, I decreases on a time scale t ∼ ω

m∗−
� 1, until v

drops to zero again, which is when � ≈ �−, where

�− = 1

M∗α−
. (7.29)

The carbonate ion is a fairly passive player in this, but we can see from (7.21)1 that

if the termination time scale t ∼ ω

m∗−
is sufficiently short, then

ν Ṡ ≈ χω
[ 1

2δ2S + δ3 I
]

İ . (7.30)

The variation of S with I can be solved exactly, but since δ2 and δ3 are small, we have
directly

S ≈ S+ + δ3S+ I + δ2
3

δ2
I 2, (7.31)

and similarly

Q ≈ Q+ + δ3 Q+ I − δ2
3

2δ1
I 2, (7.32)

where Q+ and S+ are constants, and we use the fact that

δ3 = χωδ1

η
= χωδ2

2ν
. (7.33)

The potential for a rapid drawdown of carbonate ion lies in the quadratic term in
(7.32), since although the volume change parameter δ3 is small, the small reaction
parameter δ2 is also. Unfortunately, the values in Table 5 indicate that the latter is not
small enough. The combined effect of the changes in Q and S lead to a relative rise in
pCO2 of about 0.05, corresponding to about 9 ppmv, about a tenth of what is observed.
These results suggest that the variation in ocean volume is not a significant effect, and
we therefore henceforth ignore it.

7.2 River chemistry

Since the ocean dilution effect is not large enough to produce the necessary jump
down in carbonate ion at termination, we must consider other possibilities. One clue
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as to where to look comes from an inspection of river chemistry. Measurement of
ionic concentration in rivers (e.g., Emerson and Hedges 2008, table 2.1) shows that
the source term of conservative ions to the ocean is such that far from our assumption
that L̇− = 0, which follows from (3.30)2, L− is presently decreasing in such a way
that it would reach L− = 0 in 3.5 My. It is generally thought that variation of these
conservative ions occurs, if at all, on a much longer time scale, and it seems unlikely
that this rate of decrease is anything other than temporary.

The implication of this is that the rate of weathering changes as the ice sheets grow,
in such a way that L̇− > 0 during ice ages, with a mean rate of change of zero. We
therefore return to a more detailed discussion of weathering. While the reactions (3.5)
and (3.10) do indeed occur, they carry the latent and incorrect implication that L− is
constant. To allow for a more complete discussion, we must consider ways in which
the other conservative ions are produced.

Of course there are many other weathering reactions which involve carbon but not
calcium; for example the pyroxenes replace Ca in (3.5) with Mg or Na or other ions.
We now consider an elaborated set of weathering reactions given by

CaSiO3 + 2CO2 + H2O −→ 2HCO−
3 + Ca2+ + SiO2,

MgSiO3 + 2CO2 + H2O −→ 2HCO−
3 + Mg2+ + SiO2,

CaCO3 + CO2 + H2O −→ 2HCO−
3 + Ca2+,

FeS2 + 15
4 O2 + 7

2 H2O −→ 2SO2−
4 + Fe(OH)s

3 + 4H+,

NaCl −→ Na+ + Cl−,

2KAlSi3Os
8 + CO2 + 11H2O −→ Al2Si2O5(OH)s

4 + 2K+ + 2HCO−
3 + 4H4SiO4,

CaSO4 −→ Ca2+ + SO2−
4 , (7.34)

which represent respectively weathering of wollastonite, enstatite (Mg replaces Ca)
and carbonate; oxidation of pyrite, dissolution of halite, formation of kaolinite from
K-feldspar, and dissolution of gypsum. There are many other reactions one could add,
and we do not mean to imply that these are the most important, but they will serve the
purpose of our discussion.

The essence of the reactions is given by

Ca
rW→ 1

2 Ca2+ + HCO−
3 ,

Ca
rE→ 1

2 Mg2+ + HCO−
3 ,

Ca
rC→ Ca2+ + 2HCO−

3 ,

rF→ SO2−
4 + 2H+, (7.35)

rH→ Na+ + Cl−,
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Ca
rK→ K+ + HCO−

3 ,

rG→ Ca2+ + SO2−
4 ,

in which Ca denotes atmospheric carbon, and the coefficients r j denote the reaction
rates. The left-hand sides of the fourth, fifth and seventh reactions are empty because
no atmospheric carbon is used in them. These reactions then provide the source terms
for the oceanic concentrations of the ionic species, in the form

˙[HCO−
3 ] = rW + rE + 2rC + rK ,

˙[H+] = 2rF ,

˙[Ca2+] = 1
2rW + rC + rG,

˙[Mg2+] = 1
2rE ,

˙[Na+] = rH ,

˙[K+] = rK ,

˙[SO2−
4 ] = rF + rG,

˙[Cl−] = rH ,

˙[CO2
a] = −(rW + rE + rC + rK ),

(7.36)

where the units of the concentrations are M. These source terms must be added to the
other terms in (3.24), and very small removal terms representing precipitation of the
conservative ions can be included, but are ignored here. Denoting L− by (3.1) and L+
by (3.29), it follows that

L̇− = 2rF + 2rG − rE − rK , (7.37)

and is no longer necessarily constant.
Values of these rate constants can be estimated from the observed concentrations

of river ion concentrations, as given for example by Emerson and Hedges (2008, table
2.1) or Krauskopf and Bird (1995, table 12.4). It should be borne in mind that these
estimates are based on the particular set of reactions which are considered. The esti-
mates use the fact that the source of an ion of river concentration ci (units M) to the
ocean is ciroc, where roc = 3.5 × 1013 m3 year−1 is the net river flow to the oceans.
This gives the source in units of M m3 year−1, and to convert to M year−1, (as in
(7.36)), we divide by the ocean volume Voc. Defining oceanic residence time

toc = Voc

roc
= 0.39 × 105 year, (7.38)
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(7.36) leads to the estimates

toc[rW + rE + 2rC + rK ] = cHCO−
3
,

toc[rF + rG] = cSO2−
4
,

tocrH = cCl− ,

toc[rC + 1
2rW + rG] = cCa2+ ,

tocrE = cMg2+ ,

tocrH = cNa+ ,

tocrK = cK+ ,

(7.39)

from which we can also deduce

toc[rC + 1
2rW ] = 1

2

(
cHCO−

3
− cMg2+ − cK+

)
,

tocrG = cCa2+ − 1
2

(
cHCO−

3
− cMg2+ − cK+

)
,

tocrF = cSO2−
4

− cCa2+ + 1
2

(
cHCO−

3
− cMg2+ − cK+

)
.

(7.40)

Note that consistency in (7.39) requires cNa+ = cCl− , which is not exactly true.
Of course this is because Na+ is produced by other reactions, whose inclusion would
allow such consistency. Our purpose is not to try and make these reaction rates precise,
and so we will tolerate this slight inconsistency. Values of the river concentrations are
given in Table 8, together with the derived estimates for the reaction rates.

The equations equivalent to (3.24) are now

˙[CO2] = −R1 + h(p − ps),

˙[CO2−
3 ] = R2 − R4,

˙[HCO−
3 ] = R1 − R2 − R3 + rE + rK + 2rC + rW ,

˙[H+] = R1 + R2 + R3 + 2rF ,

˙[Ca2+] = −R3 − R4 + rC + 1
2rW + rG,

˙[CaCO3] = R3 + R4 − B[CaCO3],
˙[P] = −R3 + RrP ,

˙[PB] = R3 − B[PB],

(7.41)

where rP is the supply rate of phosphorus, determined in Table 8 by means of the
average river concentration. In addition (7.37) determines L−.

The only thing that now changes in the simplification of the model is that the reac-
tive source terms are slightly different; other than that, the discussion proceeds as
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Table 8 Values of world average river and glacial stream concentrations and the consequent reaction rates
of (7.35)

Symbol Meaning River Glacial Ocean

cHCO−
3

Bicarbonate 0.96 0.85 2.0

c
SO2−

4
Sulphate 0.11 0.08 28.2

cCl− Chloride 0.22 0.16 545.9

cCa2+ Calcium 0.37 0.34 10.3

cMg2+ Magnesium 0.17 0.14 52.8

cNa+ Sodium 0.26 0.22 469.1

cK+ Potassium 0.07 0.03 10.2

cP Phosphorus 1.3 × 10−3 ∼ 3 × 10−3 2.2 × 10−3

tocrH Halite rate 0.22–0.26 0.16–0.22

tocrE Enstatite rate 0.17 0.14

tocrK K-feldspar rate 0.07 0.03

toc

[
rC + 1

2 rW

]
Carbonate/wollastonite rate 0.27 0.34

tocrG Gypsum rate 0.105 0

tocrF Pyrite rate 0.01 0.08

tocrP Phosphorus rate 1.3 × 10−3 1.3 × 10−3

Also given are the oceanic concentrations. All units are in mM. River and ocean values from Emerson and
Hedges (2008), glacial values from Tranter (2006). P data from Jahnke (1992) and Hodson (2006))

before. From (7.37) and (7.41), we have

L̇− = 2rF + 2rG − rE − rK ,

Ċ = h(p − ps)− R3 − R4 + rE + rK + 2rC + rW ,

Ż = −R3 − R4 + rC + 1
2rW + rG,

(7.42)

and thus from (3.36),

Q̇ = 2h(p − ps)+ 2rF + 2rC + rE + rK + rW ,

Ṡ = −h(p − ps)− R3 − R4 − 2rF .
(7.43)

Equivalently, the atmospheric CO2 equation is, following (3.50),

AE

Magmoc
ṗ = v − h(p − ps)− (rW + rE + rC + rK ), (7.44)

Non-dimensionalisation proceeds as in (3.51). The reaction rates r j will generally
have different temperature and pCO2 dependences, but we assume they are all propor-
tional to the weathering function w. We define concentrations cQ , cA, cS, c−, c+ and
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cP by the relations

toc[rW + rE + rK − 2rF ] = cQw,

toc[rW + rE + rK + rC ] = cAw,

toc[rW + rE + rK + rC − 2rF ] = cSw,

2toc[rF + rG] = c−w,
toc[rE + rK ] = c+w,

tocrP = cPw,

(7.45)

and note from the values in Table 8 that present day estimates are, taking w = 1,

cQ ∼ 0.58, cA ∼ 0.78, cS ∼ 0.76,

c− ∼ 0.23, c+ ∼ 0.42, cP ∼ 1.3 × 10−3,
(7.46)

with units being mM, and assuming arbitrarily that rC = rW .
The non-dimensional equations which are modified from those in (3.53) are

ε ṗ = 1 −�(p − ps)−�Aw,

ηQ̇ = 2�(p − ps)+ (2�A −�Q)w,

ν Ṡ = −βub − u p −�(p − ps)− (�A −�S)w,

ζ Ṗ = −ub + γ�Sw

β
,

(7.47)

where

� j = c j

vtoc
, (7.48)

and the parameter ρ in (3.51) and (3.55) is now defined explicitly as

ρ = cP

cS
∼ 1.7 × 10−3, (7.49)

about half the previously used value; thus also γ ∼ 0.04. To these we must also add
the dimensionless

L̇− = δ2

2ν
(�− −�+)w, (7.50)

where we have scaled L− with its present day value L0−. Since vtoc ≈ 0.19 mM,
estimates of � j are

�Q ≈ 3.05, �A ≈ 4.1, �S ≈ 4, �− ≈ 1.2, �+ ≈ 2.2. (7.51)

Our earlier estimate of �Q = 2 is regained by having v one and a half times larger.
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Because L− is approximately constant, we can take the definition of u p as before.
Now letting δ1, δ2 be small and taking the limits ε, ζ → 0, we derive the approximate
equations

ηQ̇ = 2 −�Qw,

ν Ṡ = (1 − γ )�Sw − (1 −� + S),
(7.52)

as in (3.63).
Consulting (7.45), we see that presently �− < �+: weathering of pyrite and gyp-

sum is less than that of enstatite and feldspar. We presume (because of (7.50)) that
this was not so in the past, which leads us to suppose that in general the weathering
coefficients � j are functions of I . During glacial periods, the former shelf carbonate
rocks are exposed, and we might expect rC to increase; in addition, the advance of the
ice over these sediments might enhance the solute flux via the increased erosion which
occurs. Table 8 shows that typical subglacially derived runoff delivers slightly lower
fluxes than subaerial rivers. Of relevance to the change of carbonate is the aggregated
concentration cS . For rivers this is 0.58 mM, while for glacial streams it is 0.45 mM.
From (7.52), we see that a change in the value of �S cannot lead to a rapid decline in
S, which is what is needed to elevate pCO2 . �S would have to become negative and
large, which is only possible if the pyrite reduction rate rF increases enormously. The
seemingly more likely possibility of increased carbonate weathering actually increases
�S , leading to an increase of carbonate and lower pCO2 . We return to this idea later.

The rise of CO2 from 180 to 280 ppmv at the end of the recent ice ages corresponds
to a change of� ln p = 0.44. Inspecting (5.12) and using the numerical values of the
parameters in Table 5, we see that (if we take �I = −1), 0.16 of this is due to ice
albedo, and the remainder must be due to rapid change of S. The change required is
� ln S = 0.39, corresponding to a drop by a factor 0.68, or dimensionally a change
from 0.36 mM to the present 0.24 mM. Thus we are not seeking a large change in S.
However, the only way in which this change can occur rapidly, in terms of our model
as represented in (7.52), is if the parameter ν is small. More specifically, we see from
(3.55) and (3.52) that the dimensional time scale tS over which S changes is given by

tS = 2

k4L−
, (7.53)

and is presently about 54 ka, using the value of k4 in Table 2.
Of course our estimate of these rate constants was partially based on an assumption

that the ocean concentrations were in an approximate steady state; which is evidently
not the case, as discussed above. However, in order for ν to be sufficiently small to
accommodate a rapid change of S, we would need an increase of k4 of around 20.
On the other hand, the scales for S (and Q) seem appropriate, which would suggest
that we compensate by increasing the volcanic output v by a similar amount, and this
seems even less likely.

It seems we are forced to conclude that unless the ice-albedo effect is much larger
than seems plausible, rapid post-glacial change of atmospheric CO2 must be due to
some other effect which has yet to be considered in the model. There are two which
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spring to mind. Firstly, terrestrial biomass provides a major sink for CO2, and of course
it varies rapidly in response to ice cover. However, we might suppose that warmer tem-
peratures cause larger terrestrial biomass and thus increased removal of CO2 from the
atmosphere, which would appear to work in the wrong direction. Secondly, the melt-
water from the melting ice sheets is relatively fresh and thus provides a buoyant, less
salty surface layer on the world’s ocean, and it is this which is in equilibrium with the
atmosphere. Thus in principle we might cause a rapid change in CO2 simply by reduc-
ing the carbonate ion of this surface layer, or equivalently by increasing the negative
conservative ion concentration. The time scale for ocean mixing is about a thousand
years, and so it seems that the freshening of the mixed layer is unlikely to provide a
solution, unless the freshening can turn off the formation of deep water, as suggested
by Ganopolski and Rahmstorf (2001) in their theory of Dansgaard–Oeschger events.

7.3 Bioproduction

Although examination of both ocean mixing and terrestrial biomass warrant further
study, there is another effect which has the possibility of allowing the sudden drop in
carbonate that we seek. The clue lies in the equation for P uptake, because the response
time tP of oceanic phosphorus given in (3.61) is of the order of the termination time.
In fact with the adjusted value of ρ in (7.49), we have tP ∼ 12 ka.

Now we consider the effect of the parameter b′ = b3�T > 0, defined in (3.55), in
(3.54). The equations for P , PB and S (with ε, δ1, δ2 → 0) are, from (7.47), (3.53)
and (3.54),

ζ Ṗ = −
(

Peb′θ − 1
)

PB + γ�Sw

β
,

ṖB = β

2γ

(
Peb′θ − 1

)
PB, (7.54)

ν Ṡ = −β
(

Peb′θ − 1
)

PB − (1 −�)− S +�Sw.

(7.55)

Recall our present estimates (with the adjusted value of ρ)

ζ ∼ 0.12, b′ ∼ 0.9, γ ∼ 0.04, β ∼ 1.3,
ν ∼ 0.54, � ∼ 0.21, �S ∼ 4.

(7.56)

From these we have

β

2γ
∼ 16.3,

γ�S

β
∼ 0.12. (7.57)

Thus, approximately, we have during termination

ṖB ≈ β

2γ
ub, ζ Ṗ ≈ −ub, ν Ṡ ≈ −βub, (7.58)
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where

ub =
(

Peb′θ − 1
)

PB . (7.59)

From these it follows that P satisfies

Ṗ ≈ β

2γ

(
Peb′θ − 1

)
(P − C), (7.60)

where C is constant, and thus P hunts its equilibrium e−b′θ on a termination time scale

tT = 2γ

βB
= 1

k−3
∼ 7,000 year. (7.61)

As P and thus PB adjust to their new postglacial equilibrium, S follows passively.
According to (7.58), the change in S during termination is

�S ≈ βζ

ν
�(e−b′θ ) ≈ −βζb′

ν
�θ, (7.62)

and taking �θ = 1, this is �S ≈ −0.26. As discussed above, we must have �S ≈
−0.44 (corresponding to the drop from 0.36 to 0.24 mM), and this can be effected if
b′ = 1.5, corresponding to a doubling of bioproductivity every 6 K, rather than the
10 K we assumed earlier.

8 Numerical results

Preamble

Having apparently assembled the ingredients to reproduce the observational data, we
now begin the task of aligning the model with the data. On the assumption that the
basic behaviour of the solutions has the right structure, this is a matter of adjusting
some of the loosely constrained parameters in order to provide a cosmetically pleasing
fit to the observations.

There is, however, yet another obstacle to overcome. Although thermally activated
biomass production can produce the sharp rising limb of the CO2 curve, the descending
limb wanders away from that of temperature. The reason can be understood in terms
of the nullcline of the carbonate equation (7.52), and the remedy consists of wrestling
this nullcline round so that S does not follow the ice volume down during glacials.
This is effected by having the carbonate weathering rate being increased when the
continental shelves are exposed, as already suggested in Sect. 7. With this adjustment,
it is not too difficult to find reasonable parameter values that provide a satisfactory fit
to the data.

Finally, we add a time-dependent forcing resembling Milanković variation. As we
might expect, this produces relatively small, higher frequency jitters on top of the basic
oscillation, causing its period and amplitude to vary irregularly.
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Fig. 14 Reading each row from the left, and from the top down, the figure shows plots of I, S, p, Q, T and
lake volume VK , all in the indicated dimensional units, in terms of time t measured in ka, using the ‘used’
parameters in Table 9

8.1 Numerical method

In our numerical model, we solve the four equations in (7.47), together with the fourth,
sixth and seventh equations in (5.1), and also equation (6.6), using the subsidiary rela-
tions defined in (5.3). We use a fourth order Runge Kutta method, and the code is
written in Fortran. In the simulations shown in Fig. 14, we have used a different runoff
function defined by

r = exp
[
exp {10(v − 1)}] , (8.1)
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not for any reason other than a mistaken concern that the function in (6.11) might be
a cause of numerical instability. In fact, the primary cause of numerical breakdown
appears to be the use of the maximum and Heaviside functions in (4.41), whose lack
of smoothness can be expected to cause problems for the fourth order Runge Kutta
method. In practice, we use approximating functions

fHeav(z) = 1
2

{
1 + tanh

(
z

d1

)}
,

fmax(x, y) = 1
2

[
x + y + d2 log

{
2 cosh

(
x − y

d2

)}]
,

(8.2)

where the values of the positive parameters d1 and d2 should be small; in practice, val-
ues of d1 = d2 = 0.25 are needed for numerical stability. The various other functions
f, �, α are as defined earlier.

The parameters used in obtaining Fig. 14 are given in Table 9. It is worth outlining
our approach to obtaining the graphs in this figure, as we now enter the murky realm
of curve-fitting. We begin with the default parameters as defined in the earlier tables.
The ice accumulation rate ai is based on an Antarctic value, with little particular
reason; the same applies to the melt rate mi , but as discussed earlier, the value of the
melt rate when the ice is retreating must be larger in order that the termination can
be rapid. Experimentation with increasing values indicates that potentially the value
m− = 6 m year−1 provides a useful value about which other experiments can be
conducted. For this value, we find that glacial terminations do occur rapidly, and the
period is of the right order, but the carbonate and bicarbonate concentrations are too
high.

Table 9 Default values of the parameters as given in Tables 2, 3, 4 and 6 and equation (7.46), see also
equation (8.4), together with the values used in producing Fig. 14

Parameter Default Used

B (year−1) 10−5 0.3 × 10−5

b3 (K−1) 0.069 0.15

cQ (mM) 0.58 0.72

cS (mM) 0.76 0.44

di (m) 4 3

h0 (m) 1,200 400

k4 (M−1 year−1) 2.1 × 10−3 1.8 × 10−3

m− (m year−1) 2 7

p0 (Pa) 28 40

T0 (K) 288 291

θI (K) 5 3

κS 0 0.5
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There now follows a needle in haystack search for an appropriate parameter set.
In conducting these numerical experiments, we have found that the nature of the
oscillatory solutions which are obtained is quite sensitive to the precise values of
the parameters. Since we have a huge number of reasonably adjustable parameters,
a methodical search requires more than the effort exhibited here; however, as with
all curve-fitting exercises, the effort becomes wasteful if pursued to extremes. On
the other hand, scientists are loathe to believe any theoretical exercise unless it fits
observations very closely.

In our experiments, we have aimed to fit the rapid terminations and the associated
rapid rise in pCO2 from ∼18 to ∼28 Pa, as well as the general levels of maximum ice
extent, present CO2−

3 and HCO−
3 levels, temperature fluctuation, and 100 ka period.

This is of course an awkward and perhaps fruitless problem. In order to fit eight
different categories of observation, we may expect to adjust at least eight different
parameters. In fact we have adjusted twelve, largely by iteration and using our under-
standing of their effect on the likely behaviour of the model. We now trace the particular
route to the choice in Table 9.

Increased m− enables the rapid terminations, but to get them as short as 10 ka is
difficult. To this end we reduced the calcium carbonate burial rate, which has the effect
of reducing the dimensionless time constantω, but in reality this is of little importance.

8.2 Enhanced carbonate weathering

The principal problem is that although there is a jump in CO2 at termination, it is not
large enough; worse, the CO2 fluctuates during the ice age and does not follow the
ice volume. Consideration of the I –S phase plane, and specifically the S nullcline of
(7.52)2, shows (using (5.12)3) that during an ice age S migrates towards a decreasing
function of I . More specifically, this is

{
(1 − γ )�S

1 −� + S

}(1−λb) ( Q2

S

)(μ+λ)
= exp[κ(1 + μb)I ]. (8.3)

Since p is inversely proportional to S, and we need p to decline with I , we see that
we need S to increase uniformly as I decreases, and this is disabled by the relatively
rapid approach of S towards the S nullcline, which causes S first to rise and then fall.

One way round this is to increase the carbonate time scale tS = 2
k4 L− , which implies

reducing k4. This does not work effectively, and moreover has the consequent nega-
tive result that the carbonate and bicarbonate scales S0 and Q0 are increased. Since,
from (7.52), Q at equilibrium is a decreasing function of �Q and thus cQ , while S at
equilibrium is an increasing function of cS , this suggests that the size of Q and S can
be adjusted by altering these concentrations.

Nevertheless, the p profile refuses to fall into line. We can increase the jump in p at
termination by increasing the biomass production rate dependence on temperature b3,
as discussed following (7.54), but in order to get a reasonable S (and thus p) profile,
we really need to shift the S nullcline so that S does not decrease with I . The way we
propose to do this is to introduce an ice volume dependence of the weathering rate
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�S , so that in particular

�S = �0
S exp(κS I ). (8.4)

What would cause such an amplification? We already know that weathering rates
must have varied over an ice age, so the proposition of (8.4) is not all that controversial.
The principal difference between glacials and interglacials is that during interglacials,
the continental shelves are inundated, and shallow marine carbonate burial ensues.
During a glacial period, sea level retreat exposes these soft carbonates, and we might
expect that carbonate erosion rates would increase. Consulting (7.45), we see that
increased carbonate runoff rC increases cA and cS , and hence �A and �S , of which
only the latter is important. The choice of κS = 0.5 in Table 9 represents an increase
of carbonate weathering by a factor of 1.65 at glacial maximum.

The inclusion of κS > 0 has an immediate effect: the CO2 profile becomes as
required. Because of this immediate success, we have not explored the effect of chang-
ing ice volume dependence of other weathering coefficients, or even of trying different
values of κS .

Essentially, the choice of non-zero b3 and κS provide the key ingredients which
allow both a rapid jump in CO2 and also the slow decline during the glacial period.
Without both of these effects, it is difficult in this model to find solutions resembling
the data.

Having found the necessary ingredients to produce the shape, it remains to adjust
the scale: the range of p from 18 to 28 Pa; the range of T from 283 to 288 K; the
post-glacial values of S ∼ 0.24 mM and Q ∼ 1.7 mM; the maximum ice extent of
I ∼ 4,000 km; and the period of ∼ 100 ka. Finding these values is largely a cosmetic
exercise, and can be done by adjusting the loosely constrained parameters p0, T0, θI

and di , and also the input concentrations cQ and cS . Ideally, we would adjust these
to produce a more precise fit, but that is essentially an academic exercise with no
scientific purpose.

8.3 Milanković variations

Finally we turn to a consideration of the possible effects of Milanković fluctuations.
We will not deal in detail with this, because a whole new raft of issues confront us: we
will defer a detailed discussion to future work. However, we can outline what these
issues are.

In our model, we represent Milanković variation through its effect on the Arctic
Ocean snowline elevation, which translates to the dimensionless parameter H . Time-
dependent fluctuations are represented by the function qM in (5.8), which we take to
be given by the (dimensionless) function

qM = a1 cosω1t + a2 cosω2t, (8.5)
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where the dimensionless frequencies ωi are given by

ωi = 2π

B Pi
, (8.6)

and where Pi are the dimensional periods of the forcing (we take P1 = 23 ka and
P2 = 41 ka). This causes the S nullcline in Fig. 8 to oscillate back and forth rela-
tively rapidly, and the effect of this is to cause fairly small amplitude higher frequency
oscillations in the variables, together with fluctuations in the peak values. On the other
hand, the data in Fig. 2 suggests that the peaks are relatively uniform, and we can
accommodate this by modifying the definition of the normal ice melting rate mi , and
thus the parameter α+. The reason for doing this is that as the ice sheet increases in
extent, it migrates south, where the summer melting will increase. We model this by
taking α+ as an increasing function of I , and in our simulations, we choose

α+ = α0+ exp
[
eαM (I−1) − 1

]
(8.7)

in (6.11). The point is that, from (6.12), proglacial lakes form and the ice age terminates
when

�α+(I ) ≈ (I + k∗H)2α+(I ) ≈ 1

M∗ (8.8)

(see (6.9)), and if α+ increases abruptly near I = 1, then termination will occur
near this value, providing M∗ < 1. Since with the default parameters of Fig. 14,
M∗ = 0.922, we have reduced l p to 2,000 km to enable this. We might equally have
increased the runoff scale R0

K .
Figure 15 shows the result of a computation which shows these general effects,

and this figure can be directly compared to Fig. 2. We see variability in amplitude and
period, as well as occasionally interrupted terminations (e.g., at age 95 ka). On the
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Fig. 15 Solution for ice extent (plotted as −I ) and CO2 as functions of age (with present day being at
t = 2,000 ka); the same parameters as in Fig. 14 are used, but with the pseudo-Milanković forcing qM (see
(5.8)) given by (8.5), with a1 = 0.8, P1 = 23 ka, a2 = 0.5, P2 = 41 ka, and the values of αM = 3 (see
(8.7)) and l p = 2 × 106 m
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negative side, the fluctuations are relatively small, a consequence of their relatively
high frequency.

Of course, Fig. 15 has none of the high frequency variability indicated by the obser-
vations, and this is perhaps unsurprising, as there is apparently no high frequency
oscillation mechanism in our model. Some of the high frequency components of the
data may be associated with the occurrence of Dansgaard–Oeschger events, whose
explanation may lie in altered patterns of North Atlantic circulation (Ganopolski and
Rahmstorf 2001) due to variation of freshwater input. Evatt et al. (2006) have sug-
gested that the source of such freshwater might be subglacial lake floods, but equally
we might suppose proglacial lake floods. A nice way of having an aborted termina-
tion is to build proglacial lakes which then suddenly drain, and this seems to be an
avenue worth exploring in the future. Indeed, it seems that if disturbance of the ocean
circulation by fresh water explains millennial climate shifts, then the only possible
mechanism is through massive floods from huge melting events, with consequent sea
level rise, and such variations in sea level have been suggested by Siddall et al. (2003).

9 Discussion

The model that we have eventually derived and solved is given from (7.47), (5.1)4,6,7,
(6.6) and (5.3) by the dimensionless set

ε ṗ = 1 −�(p − ps)−�Aw,

ηQ̇ = 2�(p − ps)+ (2�A −�Q)w,

ν Ṡ = −βub − u p −�(p − ps)− (�A −�S)w,

ζ Ṗ = −ub + γ�Sw

β
,

Ṅ = βub + u p − N ,

ṖB = βub

2γ
− PB,

ω İ = f (I, H, α),

δv̇ = M∗�(I, H)α(v)− r(v),

(9.1)

where

θ = λ ln p − κ I,

ps = Q2ebθ

S
,

ub = (Peb′θ − 1)PB ,

u p = S(1 + δ1 Q + δ2S)−�,

w = pμeθ ,

(9.2)
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and we have painted a clear picture of the solutions. The ice sheet/proglacial lake
sub-model for I and v has spontaneous periodic oscillations, and it is these which
cause the succession of ice ages. Carbon is a passive player, and is controlled by the
enslavement of the ocean carbonate ion to the ice volume. The apparent following by
CO2 of the temperature signal is due to thermally activated growth of oceanic biomass,
together with enhanced carbonate weathering of exposed continental shelves. At least,
in the model. Whether these conclusions apply in reality remains to be seen.

Our vision of the paleoclimate, as interpreted within the confines of the admittedly
simple model we have proposed, is as follows. We hypothesise that the long term
climate of the planet is controlled by ice cover and by CO2, which itself is determined
by bicarbonate Q and carbonate ions S in the ocean, as given in (5.12). In the model
we have presented, ice cover itself depends hysteretically on H , and thus temperature,
and thus ocean carbon. From (5.12), we have

θ = λ

μ+ λ
lnw − μκ I

μ+ λ
, (9.3)

and the weathering term w is determined, on a time scale of ∼ 1 Ma, by (7.52), i.e.,

w = 2

�Q
. (9.4)

In the absence of ice, the planet cools in the Eocene by increase of �Q . Consulting
(7.38) and (7.48), we see that this implies increasing precipitation and thus runoff,
decreasing volcanic production of CO2, or else increasing weathering, particularly of
silicates (according to (7.34) and (7.45)); or, of course, all three.

As the planet cools, H decreases, and first Antarctica, then Greenland, then the
Laurentide ice sheets grow hysteretically. Antarctica and Greenland are both bounded
by ocean, but the Laurentide is bounded to the south by land. Both the land and the
southerly latitude allow melting to form proglacial lakes, whose presence, we suppose,
hugely enhances the wastage rates, and allows the ice sheet to wither before it can
reach its desired steady state. One might wonder, why does the disappearing ice sheet
jump across the Nares Strait but not cause the Greenland Ice Sheet to vanish also, since
it is at much lower latitude than Ellesmere Island? The answer to this is presumably
that the collapse of the Labrador Sea ice shelf/sea ice allows for precipitation over
Greenland to be significantly higher than when the Laurentide is present, and so the
ice sheet is maintained.

As the planet cools, the benthic δ18O signal changes from a 40 ka periodicity to an
approximate 100 ka one, some 1 Ma ago. It is fairly easy to see how this should come
about. When an ice sheet is stable, as we suppose the Antarctic and Greenland ice
sheets to be, then modulation of them by a quasi-periodic input will cause a similar
quasi-periodic output, as in Fig. 9. However, if the Laurentide Ice Sheet is intrinsically
oscillatory, then the modulations will cause wobbles and fluctuations, as in Fig. 15.

Much has been made of the apparent lead of CO2 by Antarctic T at glacial ter-
minations, with a response interval of several hundred years. Our main view is that
worry about such details is inappropriate if the basic oscillation mechanism is not
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understood, but having said that, it is also the case in our model results. For example,
in Fig. 15, the glacial maximum at age 211,670 yr (the first we looked at) is followed
by a CO2 minimum at age 211,300 yr, an interval of 370 years. This detail is not
of significance, however, and perhaps not even of relevance. Recently, Shakun et al.
(2012) have suggested that CO2 trails global average temperature, and that the mis-
match between Antarctic and global temperatures is due to ocean transport between
the hemispheres—which is of course not considered within the present model.

10 Conclusions

We have sequentially developed the conceptually simplest model we can imagine in
order to try and explain the observations of ice volume and CO2 during the Pleistocene
ice ages. Our ideas, derived with some degree of effort, are nevertheless neither revo-
lutionary nor even novel. Almost all the ingredients have been mooted before in some
form. The novelty of our approach is that we avoid out-and-out simulation, and have
relentlessly endeavoured to understand the model behaviour, and use this understand-
ing to introduce additional mechanisms when necessary to explain the observations.
This sort of approach is unconventional, but, we would argue, of great intrinsic merit.

The model involves a description of ice-albedo feedback, the CO2 greenhouse
effect, carbon buffering in the ocean, and as a consequence, also P–limited biomass
production. In seeking mechanisms to account for rapid CO2 rise and rapid termina-
tions, we have been led to propose that enhanced wastage by proglacial lakes and the
temperature dependence of oceanic biomass growth are essential ingredients in the
model if it is to explain the behaviour which is seen. This does not necessarily mean
that these effects are as important in reality as we contend they must be in the model.
Many other mechanisms and processes have been ignored by us. For example, we have
been led to hypothesis a reasonably strong dependence of ocean biomass growth on
temperature, because, within this model, there seems little alternative mechanism to
produce rapid postglacial CO2 rise. This does not in any way preclude other putative
mechanisms, but we do not know what they might be.

We emphasise that we have at every stage introduced new complications because
the data has driven us to do so. If these mechanisms are incorrect, then others must take
their place. Despite this, there are many constituent parts of the Earth system which
may be of fundamental importance. An obvious example is that of the dynamics of
the oceans, and ocean temperature and salinity; these were important constituents of
Saltzman’s (2002) investigations. Another is the rôle of terrestrial biomass, which must
be strongly affected during ice ages, and which plays a central part in the dynamics
of atmospheric carbon. We do not deny the importance of these, simply we have not
yet been led to include them; we may need to do this in the future.

Apart from mechanism, the other obvious shortcoming in a simple model like this
is the lack of spatial variability, both in the vertical (mixed layer versus deep ocean)
and the horizontal (poleward energy transport in the energy balance model). It is not
obvious on long time scales whether either of these will be significant, but they are
clearly a matter for investigation.
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Despite these reservations, the effort we have expended leads us to promote our
vision of planetary paleoclimate robustly. Models must explain data, but equally, data
is provided by systems which obey physical laws, which are described by models. It
is not easy to derive models which will reasonably produce the data of Figs. 1 and 2.
Within the limited confines of our box structure, we consider that the key components
of proglacial lake formation, thermally activated biomass production and enhanced
carbonate weathering may also be essentially important in more detailed models.
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