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ABSTRACT

Plate tectonics on the Earth is a surface manifestation of convection
within the Earth’s mantle, a subject which is as yet improperly
understood, and it has motivated the study of various forms of
buoyancy-driven thermal convection. The early success of the high
Rayleigh number constant viscosity theory was later tempered by
the absence of plate motion when the viscosity is more realistically
strongly temperature dependent, and the process of subduction
represents a continuing principal conundrum in the application of
convection theory to the Earth. A similar problem appears to arise if
the equally strong pressure dependence of viscosity is considered,
since the classical isothermal core convection theory would then
imply a strongly variable viscosity in the convective core, which
is inconsistent with results from post-glacial rebound studies. In
this paper we address the problem of determining the asymptotic
structure of high Rayleigh number convection when the viscosity is
strongly temperature andpressure dependent, i.e. thermobaroviscous.
By a method akin to lid-stripping, we are able to extend numerical
computations to extremely high viscosity contrasts, and we show
that the convective cells take the form of narrow, vertically-oriented
fingers. We are then able to determine the asymptotic structure of
the solution, and it agrees well with the numerical results. Beneath a
stagnant lid, there is a vigorous convection in the upper part of the
cell, and a more sluggish, higher viscosity flow in the lower part of
the cell. We then offer some comments on the possible meaning and
interpretation of these results for planetary mantle convection.
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1. Introduction

Since the final acceptance of the theory of plate tectonics in the 1960s, the study of high
Rayleigh number convection has enjoyed a long history. The plate tectonic motions are
a surface manifestation of underlying convective currents in the (solid) Earth’s mantle,
driven by a combination of radioactive heat release and planetary cooling, and the simplest
model to study thesemotions is that of a Rayleigh–Bénard convection cell of a viscous fluid
at high Rayleigh number. Assessments of the mantle viscosity beneath the relatively rigid
lithosphere indicate a relatively uniform viscosity1 of about 1021 Pa s (Haskell 1935, Cathles

CONTACT A. C. Fowler fowler@maths.ox.ac.uk
1By this we mean that the variation of viscosity in the mantle may be some two or three orders of magnitude, but not 10 or
15.
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 131

1975), and subsequent studies have not essentially altered that conclusion (e.g. Paulson et
al. 2007). In consequence, early studies of mantle convection assumed a constant viscosity,
and both numerical and analytic studies appeared to give a satisfactory explanation for
plate tectonic observations on the Earth (Turcotte and Oxburgh 1967, Moore and Weiss
1973, Roberts 1979, Jarvis and Peltier 1982, Jimenez and Zufiria 1987).

However, it became clear that these results were not so simply applicable as might be
wished, for a number of reasons. While the active plate tectonic style of convection on
Earth resembles these earlier studies, such convection is not seen on the nearest analogues,
Venus andMars, although there is evidence of active tectonics on Venus some 500Ma ago
(Schaber et al. 1992). It turns out that convection on Venus and Mars is more what one
would expect, and the Earth’s active style is anomalous.

The reason for this has to do with the rheology of mantle rocks. It is well known that
the effective viscosity of the Earth is a strong function of temperature, pressure and stress.
The temperature and stress dependence are well documented experimentally; the pressure
dependence is less constrained, but reasonable estimates for all these dependences are
available (Kirby 1983,Karato andWu1993,Yamazaki andKarato 2001). It is a consequence
of the temperature dependence of the viscosity that the cold upper thermal boundary layer,
which is in fact the lithosphere, is extremely viscous, and this causes it to be effectively
rigid and immobile. The resulting form of convection is called stagnant lid convection,
and presumably corresponds to what is seen on Mars and present day Venus. The active
style of tectonics on Earth is generally thought to be a consequence of weakening at high
stresses, due either to stress-dependent viscosity or to plastic yielding (Bercovici 1993,
2003, Fowler 1993b, Tackley 1998, 2000a,b, Fowler and O’Brien 2003).

The boundary layer theory of high Rayleigh number constant viscosity convection was
developed by several authors, notably Turcotte and Oxburgh (1967), Roberts (1979) and
Vynnycky and Masuda (2013), and extended more or less successfully to temperature-
dependent viscosity by Morris and Canright (1984) and Fowler (1985a). A feature of both
sets of analyses is that the rapid convection in the interior of the cell causes the temperature
to be isothermal (and thus, for the temperature-dependent viscosity case, isoviscous). In
seeking to extend the asymptotic theory to the more realistic temperature and pressure
dependent viscosity case (whatwe term the thermobaroviscous case), the theory encounters
a significant problem, however. While rapid convection promotes an isothermal interior,
this generally leads, in a thermobaroviscous fluid, to an interior viscosity which increases
dramatically with depth, a result which is at odds with the observed, relatively constant,
sub-lithospheric viscosity in the mantle. It was pointed out by Sammis et al. (1977) that a
more realistic consideration of mineral properties, together with an adiabatic temperature
gradient, could lead to a relatively constant mantle viscosity, but it was then pointed out by
Fowler (1983) that this led to anomalously low adiabatic temperatures near the core-mantle
boundary (CMB), and the consequent necessity for a very large temperature jump in the
resultant basal thermal boundary layer, something which is not apparently consistent with
the dynamics of strongly variable viscosity convection. It was suggested by Fowler (1993a)
that a resolution of this issue might consist of rapid thermobaroviscous convection taking
the form of a rapidly convecting interior which was isoviscous rather than isothermal.
However, sporadic efforts to elucidate such a structure have since then failed.

When analytic methods fail, one looks to numerical computation to lead the way.
The history of computational studies of variable viscosity convection is an interesting one.
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132 A. C. FOWLER ET AL.

Confrontedwith the goal of computing convective solutions inwhich thepotential viscosity
variations are by factors in the region of 1050, the challenge is to approach such extreme
contrasts sufficiently that the correct asymptotic structure is reached. Very early attempts
foundered on the computational difficulty which extreme viscosity contrasts caused. In
the 1980s, Christensen and his co-workers (Christensen 1984a,b, 1985, Christensen and
Yuen 1984, 1985, Christensen and Harder 1991) were able to compute models with
viscosity contrasts up to about 106. Solomatov and his co-workers were later able to
extend these results up to viscosity contrasts around 1015 (Moresi and Solomatov, 1995,
1998, Solomatov 1996, Reese et al. 1999, Reese and Solomatov 2002). One would naturally
expect that such extreme values attain the structure of the asymptotic limit, and while
this seems to be true for temperature-dependent viscosity, it is not obviously true, as
we shall see, for temperature- and pressure-dependent viscosity. The state of the art in
computational models now is that there is no effort to compute results for more extreme
viscosity contrasts, rather the research effort is devoted to the inclusion of more realistic
physical constraints, for example phase changes, spherical geometry, etc., or to applications
of previously developed models; see for example Orth and Solomatov (2011), Stein and
Hansen (2013), Deschamps et al. (2015).

The situation we have is this. The viscosity of silicate rocks is usually taken as pro-
portional to exp

(
H∗/RT

)
, where the activation enthalpy H∗ = E∗ + pV∗, E∗ is the

activation energy, p is pressure, and V∗ is activation volume. The pressure at the CMB
is 140GPa, so that if V∗ = [V ] cm3 mol−1, then pV∗ = 140[V ] kJmol−1. Similarly,
we write E∗ = [E] kJmol−1. By contrast, for an assumed CMB temperature of 4000K,
RT = 33.2 kJmol−1. Typical values of [E] are in the range 200–500, while estimates of [V ]
range from 2 to 15, and thus p[V ] � 280. It is because E∗ ∼ pV∗ � RT that we know
that pressure dependence of viscosity in the Earth’s mantle is as significant as temperature
dependence. It is this dependence which prompts our study. Despite this, near-adiabatic
temperatures, as one might expect from high Rayleigh number convection, may lead to
viscosity profiles which are consistent with observation (Sammis et al. 1977). Further
discussion of the implications of this is given in section 4.

2. The Boussinesqmodel of convection

We consider two-dimensional convection in a box of depth d, as shown in figure 1; the
width of the box will be specified in due course. The Boussinesq model of convection
assumes that density variation is only important in the buoyancy term of the momentum
equation, so that mass conservation takes the form of the incompressibility condition, and
equally we take the dissipation number

D = αgd
cp

(1)

to be zero, where α is the thermal expansion coefficient, g is the acceleration due to gravity,
and cp is the specific heat. Actually, D = O(1) in the mantle, and the assumption that
D = 0 corresponds to neglecting the adiabatic term in the energy equation. A discussion
of the important effect of a non-zero dissipation number is given in the discussion, section
4. Neglect of D also means that viscous dissipation is neglected, which is mostly a good
approximation. Suitable equations to describe the motion are then
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 133

hot

cold

Figure 1. Schematic representation of boundary layer convection.

ux + wz = 0 , ρ = ρm
[
1 − α(T − Tast)

]
,

px = τ1x + τ3z , pz = τ3x − τ1z − ρg ,
τ1 = ηux , τ3 = η(uz + wx) ,

Tt + uTx + wTz = κ∇2T ,

τ 2 = τ 21 + τ 23 , η = 1
2Aτn−1 exp

[
E∗ + pV∗

RT

]
, (2)

where letter subscripts denote partial derivatives. Here, (u,w) are the components of
velocity, p is pressure, τ1 and τ3 are longitudinal and shear components of the deviatoric
stress,ρ is density,T is temperature, 2τ 2 is the second stress invariant, andη is the viscosity,
assumed here to be a general power law of strain softening type. Other constants in the
model are an asthenospheric temperature Tast, which will be specified in due course, the
thermal diffusivity κ , the rheological rate factorA, the perfect gas constantR, the activation
energy E∗, the activation volume V∗, and the flow law exponent n.

The present model ignores internal heating, so that convection is driven by heating
from below, and we prescribe boundary conditions to be those for free slip and prescribed
temperature:

u = τ3 = 0, Tx = 0 on x = 0, l,
w = τ3 = 0, T = Tb on z = 0,
w = τ3 = 0, T = Ts on z = d; (3)

the depth of the convection cell is d and its width is l.
We define a stream function ψ by

u = −ψz , w = ψx , (4)
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134 A. C. FOWLER ET AL.

and then we make the equations dimensionless by scaling the variables as

ψ ∼ κ , T ∼ Tb, η ∼ ηm, τ , τ1, τ3 ∼ ηmκ

d2
,

t ∼ d2

κ
, x, z ∼ d, p − ρmg(d − z) ∼ ηmκ

d2
, (5)

where ηm has yet to be specified.
This leads to the dimensionless set

px = τ1x + τ3z , pz = τ3x − τ1z + Ra (T − Ta),
τ1 = −2ηψxz , τ3 = η(ψxx − ψzz),

Tt + ψxTz − ψzTx = ∇2T ,

τ 2 = τ 21 + τ 23 , η = Λ

τn−1 exp
[
1 − T + μ(1 − z − T)

εT

]
. (6)

Note that for a clockwise convection cell as shown in figure 1, ψ > 0.
The parameters in (6) are then defined by

Ra = αTbρmgd3

ηmκ
, ε = RTb

E∗ , μ = ρmgdV∗

E∗ ,

Ta = Tast

Tb
, Λ = 1

2Aηnm

(
d2

κ

)n−1

exp
[
E∗ + ρmgdV∗

RTb

]
. (7)

Assumed values for the parameters of the problem are given in table 1, and typical values
of the dimensionless parameters are given in table 2. In this paper, we consider only
Newtonian rheologies, for which n = 1, and then we can chooseΛ = 1, thus defining

ηm = 1
2A

exp
[
E∗ + ρmgdV∗

RTb

]
(8)

as the mantle viscosity at the CMB. The more laborious procedure of choosing Λ when
n �= 1 is discussed by Fowler and O’Brien (2003, Appendix A). The value of Ta is chosen
later, as its determination forms part of the solution.

Before beginning our study, it is worth emphasising its shortcomings, at least as regards
its applicability to the Earth or other terrestrial planets. We have chosen to study steady,
two-dimensional convection in a Cartesian frame; we have ignored internal heating, have
assumed zero isothermal compressibility, ignored the adiabatic temperature rise term,
and we have assumed a stress-independent rheology described by constant activation
energy and volume of a material which undergoes no phase changes. Various quantities,
in particular α andV∗, are assumed constant, and the ramifications of this are discussed in
section 4. Of course, none of these assumptions is valid, but we have made them in order
to obtain a problem whose analysis is tractable.

We comment on twoof these assumptionswhichmaybe thought to be themost relevant.
Firstly, internal heating is thought to be significant in the Earth’s mantle, and it might be
thought that if this is the case, the dynamics of themotion would be quite different. It turns
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 135

Table 1. Parameter values relevant to the Earth. Estimates for the activation volume vary between about
5 and 20 cm3 mol−1; our particular choice here is to give a mantle viscosity ηm similar to that which is
observed. The values of E∗ and V∗ are appropriate for the upper mantle, but lower mantle values may
be lower, as discussed in section 4. Present estimates for Tb are closer to 4000 K, but in any case the
values here are meant to be suggestive rather than absolute.

Symbol Meaning Typical value

A Viscous rate constant 105 MPa−n s−1

d Mantle depth 3000 km
E∗ Activation energy 525 kJmol−1

g Gravitational acceleration 10m s−2

n Flow law exponent 3.5
R Universal gas constant 8.3 Jmol−1 K−1

Tb Basal temperature 3500 K
Ts Surface temperature 300 K
V∗ Activation volume 7 cm3 mol−1

α Thermal expansion coefficient 3 × 10−5 K−1

ηm Mantle viscosity 1.3 × 1021 Pa s
κ Thermal diffusivity 10−6 m2 s−1

ρm Typical mantle density 4 × 103 kgm−3

Table 2. Dimensionless parameter values, using the constants in table 1. The values of Ta and ηa are
computed using (23). Note that the corresponding value of Tast is 1540 K.

Symbol Meaning Typical value

Ra Rayleigh number 3.2 × 107
T0 Dimensionless surface temperature 0.09
Ta Dimensionless asthenosphere temperature 0.44
ε Viscous temperature number 0.055
ηa Dimensionless asthenosphere viscosity 2.8 × 10−3

μ Viscous pressure number 1.6

out, perhaps surprisingly, that this appears at first sight not to be the case. The reasons for
this are discussed thoroughly in section 4.

In our analysis, we will make much of the fact that the viscosity given by (2)9 is a
strong function of temperature and pressure. The activation enthalpy H∗ = E∗ + pV∗
(equivalently, for an isentropic, i.e. adiabatic, flow we may use the Gibbs free energy
G∗ = E∗ + pV∗ − TS) varies with pressure in the mantle, but the variation is not linear,
because the activation volume V∗ decreases with increasing depth. Various studies have
suggested that this decrease, combined with an increasing adiabatic temperature, leads to a
variation of viscosity in the mantle which is not as dramatic as our analysis would suggest.
We offer further discussion of this point in section 4.

3. Temperature and pressure dependent viscosity

In order to obtain simulations relevant to the Earth, extremely high viscosity contrasts are
necessary. The surface to base contrast of viscosity for the parameter values in table 2 is
of the order of 1067, for example. Computations have been done previously for variable
viscosity contrasts up to 1015, but surprisingly, this is not sufficient to establish a clear
asymptotic limit for the flow.
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136 A. C. FOWLER ET AL.

Figure 2. Colour plot (red warm, blue cold) of temperature for a box of width 3ε at values Ra = 107,
μ = 1 and ε = 0.065 and with T0 = 0.1. The top to bottom viscosity contrast for these values is
2.8 × 1053.

Figure 3. Colour plot of dimensionless viscosity (red low, blue high) for the box of figure 2 at the same
parameter values. The calculations were done with viscosity as defined in (9), with a cut-off at η = 106.
The colour scale gives log10 η.

In our more recent attempt to solve the problem, we have been guided by a series
of numerical experiments (Khaleque et al. 2015). These have overcome the difficulties
associated with high viscosity contrasts by means of a trick based on the fact that, like
strongly temperature-dependent viscous convection, most of the viscosity variation occurs
in a stagnant lid, in which the velocity is essentially zero. We can then simulate the sub-
lid convection field accurately by cutting off the dimensionless viscosity at a sufficiently
high value that the lid thickness, which essentially only depends on the interaction of the
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 137

Figure 4. Contours of stream functionψ for the calculations in figure 2.

lid temperature with the underlying convecting flow, is unaffected. In practice a cut-off
at a dimensionless viscosity of 106 was sufficient. The resulting calculations do not yield
accurate values for the stresses in the lid, but they do yield accurate solutions elsewhere.
Further details are described in the thesis of Khaleque (2015).

The essential clue to the problem of strong thermobaroviscous convection is the discov-
ery, in the course of these numerical experiments, that convection in a square cell becomes
untenable at a viscosity contrast of ∼ 1030. Around this value, the convective flow breaks
into three cells, and this revelation led to the idea that the way the flow structure copes with
the increasing pressure dependence of the viscosity is by restricting the cells to have narrow
width. Following this idea, we were able to solve for convective flow in increasingly narrow
cells as the viscosity contrast was increased. Figures 2–4 show an example of a computation
performed using COMSOL Multiphysics (Khaleque et al. 2015) with a viscosity contrast
of order 1053 in a box with an approximate aspect ratio of 1:5; the horizontal coordinate
is stretched to illuminate the flow structure. These figures are discussed further below.
However, while there is clearly a stagnant lid in the cell, it is clear that the convecting part
of the flow is neither isothermal nor isoviscous. Note also the relative increase in viscosity
from the “upper mantle” to the “lower mantle” by a factor ranging from 102 at the left to
106 at the right. Such a result is consistent with observationally derived inferences of upper
mantle/lower mantle viscosity contrast (e.g. Mitrovica and Forte 2004).

3.1. Rescaling for narrow cells

As we choose to ignore the stress dependence of the viscosity, we takeΛ = n = 1 in (6), so
that the model set of equations which we study (and whose solutions are shown in figures
2–4) is

px = τ1x + τ3z , pz = τ3x − τ1z − Ra (Ta − T),
τ1 = −2ηψxz , τ3 = η(ψxx − ψzz),
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138 A. C. FOWLER ET AL.

Tt + ψxTz − ψzTx = ∇2 T ,

η = exp
[
1 − T + μ(1 − z − T)

εT

]
. (9)

Our presumption is that the preferred scale width for the convection cells is ∼ ε, and
this suggests two forms of rescaling.2 We call the first of these the upper core scaling, and
it is given by

x = εX, z = 1 − εZ, t ∼ ε2. (10)

In terms of these, the upper core equations are

pX = τ1X − τ3Z , −pZ = τ3X + τ1Z − εRa (Ta − T),

τ1 = 2η
ε2
ψXZ , τ3 = η

ε2
(ψXX − ψZZ),

Tt + ψZTX − ψXTZ = ∇2T ,

η = exp
[
1 − T + μ(εZ − T)

εT

]
. (11)

Note that the other dimensionless variables have yet to be scaled appropriately.
The lower core scaling is similar, but retains the original z scaling; we will come to it in

due course.
The boundary conditions that are to be applied are

ψ = τ3 = 0, TX = 0 on X = 0, a,
ψ = τ3 = 0, T = 1 on z = 0,
ψ = τ3 = 0, T = T0 on z = 1, (12)

where a = l/εd is the scaled width of the convection cell.
The essence of our discussion follows from the assertion that the flow consists of two

parts, an “upper mantle” flow in which 1 − z ∼ ε, and a “lower mantle” part in which
z ∼ O(1). The upper mantle behaviour is somewhat similar to that of purely temperature-
dependent viscous convection.

3.2. Heat flux

Before beginning, we derive a useful condition on the surface heat flux. In the absence of
convection, the conductive temperature is just

T = 1 − (1 − T0)z, (13)

2More generally, we may take a small aspect ratio ν, and then we find that the choice ν = ε is a distinguished limit for
μ = O(1) which allows exponential decline of the viscosity in the upper part of the convective cell. More generally, we
might have ν = ε/μ, but the simpler choice is sufficient.
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GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 139

and we therefore define the Nusselt number Nu to be the average surface heat flux relative
to this, thus

Nu = 1
(1 − T0)a

∫ a

0

(
− ∂T
∂z

∣∣∣∣
z=1

)
dX = 1

ε(1 − T0)a

∫ a

0

∂T
∂Z

∣∣∣∣
Z=0

dX. (14)

In a steady state (with which we will be mostly concerned), exact integration of (11)5 then
shows that ∫ X=a

X=0
Tdψ − TXdZ + TZdX = εa(1 − T0)Nu, (15)

where the integral is along any curve from X = 0 to X = a.

3.3. Stagnant lid

Our analysis in the upper mantle follows the reasoning of Fowler (1985a) in making an
effort to determine the appropriate scales.

There is a stagnant lid, which we may identify with the lithosphere, in which ψ � 1,
and heat transfer is purely conductive. We denote the lid base by

Z = γ s(X), (16)

and we presume that εγ � 1, so that the lid is thin, relative to the cell depth. A self-
consistent determination of γ is one of the harder parts of this theory, but numerical
solutions suggest that γ ∼ 1, and so we will formally assume

γ = 1. (17)

Later we make some comments on other possibilities. In this case, the aspect ratio of the
lid is O(1), and therefore the temperature in the lid is determined by solving the heat
conduction equation, since thermal advection is negligible. Specifically, we write

T = T0 + (Ta − T0)Θ , (18)

where Ta is the asthenospheric temperature at the base of the lid, which we take to be
constant, as we suppose the base of the lid is essentially determined by an isoviscosity
contour. The problem to solve forΘ is then

∇2Θ = 0,
Θ = 0 on Z = 0,
Θ = 1, ΘZ = G(X) on Z = s,

ΘX = 0 on X = 0, a. (19)

Note that integration over the lid implies from (15) that

Nu = (Ta − T0)

εa(1 − T0)

∫ a

0
(1 + s′2)G(X) dX. (20)
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140 A. C. FOWLER ET AL.

3.4. Asthenosphere

Below the stagnant lid there is a shear layer, in which the temperature switches from its
conductive profile to an adiabatic profile. We term this layer the asthenosphere, which is
its dynamical counterpart in plate tectonic models of mantle convection. It is referred to
by Fowler (1985a) as a delamination layer. In this layer we introduce the scales

T = Ta + εθ , Z = s(X)+ εζ , ψ ∼ 1
ε
, η ∼ ηa = ε8Ra, (21)

where also

ηa = exp
[
1 − (1 + μ)Ta

εTa

]
, (22)

so that

Ta = 1
1 + μ+ ε ln (ε8Ra)

, (23)

which provides the definition of Ta. The choice of scales is made by balancing the terms
in (11) in a similar manner to Fowler (1985a). For the values we mostly use in our
computations, ε = 0.065, μ = 1, Ra = 107, we have Ta ≈ 0.615.

From (22) we find

η = exp
[
μTaZ − θ

Ta(Ta + εθ)

]
≈ exp

[−θ + μTas
T2
a

]
, (24)

and the appropriate scales for the stresses in the shear layer are then

p, τ1, τ3 ∼ ε3Ra. (25)

Using these scales, the governing equations in the asthenosphere are (assuming steady
state)

εpX − s′pζ = ετ1ζ − s′τ1ζ − τ3ζ ,
−pζ = ετ3X − s′τ3ζ + τ1ζ + θ ,
τ1 = 2η

[
εψXζ − s′ψζζ

]
,

τ3 = η
[
ε2ψXX − ε

(
2s′ψXζ + s′′ψζ

) − (1 − s′2)ψζζ
]
,

ψζ θX − ψXθζ = (1 + s′2)θζζ − ε
(
2s′θXζ + s′′θζ

) + ε2θXX ,

η ≈ exp
[
μs
Ta

− θ

T2
a

]
, (26)

with boundary conditions

ψ → 0, θζ ∼ (Ta − T0)G as ζ → −∞,
τ3, θ → 0 as ζ → ∞. (27)
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We put ε = 0; the equations (26) reduce to

−s′pζ = −s′τ1ζ − τ3ζ , −pζ = −s′τ3ζ + τ1ζ + θ ,
τ1 = −2ηs′ψζζ , τ3 = −η(1 − s′2)ψζζ ,

ψζ θX − ψXθζ = (1 + s′2)θζζ ,

η ≈ exp
[
μs
Ta

− θ

T2
a

]
, (28)

which are analogous to those studied by Fowler (1985a), and for which a similarity solution
exists, given by

θ = T2
a g(ξ), ψ = T8

a
(Ta − T0)3

s′

G3(1 + s′2)2
exp

[
−μs
Ta

]
f (ξ),

ξ = (Ta − T0)G(X)ζ
T2
a

, τ3 = T4
a s′(1 − s′2)

(Ta − T0)G(1 + s′2)2
h(ξ), (29)

where
h′ + g = 0, f ′′ = −h eg , g ′′ + Afg ′ = 0, (30)

the boundary conditions are

g(∞) = h(∞) = 0, f (− ∞) = 0, g ′(− ∞) = 1, (31)

and s satisfies
1

G(1 + s′2)

[
s′

G3(1 + s′2)2
exp

(
−μs
Ta

)]′
= β , (32)

where

β = A(Ta − T0)
4

T10
a

. (33)

As explained by Fowler (1985a), the value of A is determined by the solution of (30), and
is given by A = 0.087 (Fowler 2011, p. 509). With Ta = 0.615 and T0 = 0.1 for example,
β = 0.79.

3.5. Lid temperature computation

We now return to the intricate problem of computing the lid temperature. The coupled
system (19) and (32)must generally be solvednumerically. It is a complicated free boundary
problem. If s is known, then it is straightforward to calculate G from (19), and then (32)
provides a second order differential equation for s. This provides the nucleus of an iterative
procedure for the solution. The issue of boundary conditions for s is discussed later.

We solve the coupled system (19) and (32) numerically as follows. We define the
conjugate function

χ = 1
C

∫ (X,Z)

(0,0)

[
ΘZ dX −ΘX dZ

]
, (34)
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142 A. C. FOWLER ET AL.

well-defined since Θ satisfies Laplace’s equation; C is defined by the requirement that
Θ = 1 on Z = s, which implies

C = 1
/∫ s

0
χX dZ. (35)

We define the arc length σ on Z = s, so that

dX
dσ

= cosφ,
ds
dσ

= sin φ, sX = tan φ; (36)

the normal to Z = s is (−sinφ, cosφ), and it follows that χ satisfies

∇2χ = 0,
χ = 0 on X = 0,
χ = 1 on X = a,
χZ = 0 on Z = 0,

χZ − sX χX = 0 on Z = s. (37)

(The constant value of χ at X = a is arbitrary, as can be seen from (34) and (35).)
The free boundary equation (32) to determine s can be written as

d
dσ

[
sX

G3(1 + s2X)2
exp

(
−μs
Ta

)]
= βG sec φ ; (38)

using the boundary condition (37)5, we also have

dχ
dσ

= G
C
sec φ (39)

on Z = s, and thus, using also that

G = CχX
∣∣
s, (40)

integration of (38) yields

sX
(1 + s2X)2

exp
(

−μs
Ta

)
= βD, (41)

where
D = C4χχ 3

X , (42)

and χ and χX are evaluated on Z = s.
The advantage of this formulation is that it cleanly separates the determination of χ and

s, providing a simple way (in principle!) of iterating towards a solution. To be specific, we
would solve (37) for given s to determine χ ; then we solve (41) for s, providing an update,
and then we would iterate the process, on the assumption that the iteration converges. In
practice, the solution is so sensitive that we adopt an alternative strategy.
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Figure 5. Plume formation at the end of the asthenosphere. As indicated, the contours are those of
constant temperature T = 0.58, T = 0.59, T = 0.60, T = 0.61, T = 0.615, T = 0.62 (descending
monotonically), taken from the full numerical solution at Ra = 107, ε = 0.065, μ = 1, with a = 3 (so
the cell is of width 3ε in x). Note that only half of the lid, 1.5 < X < 3, is shown. The dashed isotherm for
T = 0.615 is our preferred contour of the lid base.
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Figure 6. Slope of the T = 0.615 isotherm derived from the computed solution plotted in figure 5.

3.5.1. Boundary conditions
The problem arises through the specification of the boundary conditions for s. Insofar as
we define the lid base Z = s(X) by the isotherm T = Ta, the boundary conditions for s
are that sX = 0 at X = 0 and X = a, since θX = 0 there. The question then arises as
to which isotherm to use in practice. Figure 5 shows a sequence of isotherms within the
asthenosphere, taken from the computation of the steady state solution of (11) with (12),
using parameter values a = 3, ε = 0.065, μ = 1, Ra = 107, which nicely delineate the
formation of a weak plume at the right margin. Particularly, the choice of T = 0.615 as
defining the lid base is actually exactly that defined by (23), and seems an apt choice.

Since χ = 0 at X = 0, we automatically have D = 0 and thus sX = 0 at X = 0. Note
that, because the function w/(1 + w2)2 has a maximum at w = 1/

√
3, and since sX = 0 at

X = 0, the value of sX in (41) that we require (for given D and s, two are possible) is that
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Figure 7. Comparison of the solution of (45) (solid (blue online) curve) with the full numerical dashed
(red online) isotherm T = 0.615, using the value of ν = 0.284 such that sX (0) = 0, s(0) = 1.29 is
the numerically computed value, and sX (2.3) = 1/

√
3; X = 2.3 is the value where the numerically

computed slope reaches the critical value 1/
√
3.

to the left of the maximum, at least for small X, i.e. sX < 1/
√
3, φ < π/6. Similarly, the

prescription of sX = 0 at X = a follows from (37)5, since χZ = 0 at X = a. However, this
leads to an inconsistency in (41). A local expansion of χ near the corner indicates that if
sX = 0 at X = a, then

χ ∼ 1 − α(a − X) near X = a, Z = s, (43)

so that χX �= 0 at X = a. In consequence, D �= 0 in (42), and thus (41) implies sX �= 0 at
X = a. The coupled problem as stated has no solution satisfying sX = 0 at X = a.

However, matters are no better if we suppose sX �= 0 at X = a, as a local expansion for
χ then implies

χ ∼ 1 − αrq sin qλ, (44)

where a − X = r sin λ, and if sX = tanφ, then q = π/(π − 2φ) > 1, and in particular,
χX = 0 at X = a. This is consistent with (37), but again, not with (41). There is apparently
no solution of the combined system (37) and (41) in which the slope of s is finite, and the
only way in which the system can be solved is by supposing that sX → ∞ (thus effectively
q is infinite in (44)), meaning χX → 0, and thus also D. This idea receives corroboration
from the computed isotherm for T = 0.615, whose slope (thus sX) is shown in figure 6.
Apparently, a near blow-up occurs at X ≈ 2.8. In more detail, examination of D suggests
that it approaches zero at almost the same value, which is necessary in (41) if the slope is
to become very large.

The resolution of this conundrum is the following. It is clear that prescription of sX = 0
at X = 0 allows ψ and τ3 defined in the asthenosphere by (29) to be zero, and also θX ,
using the definition of G in (40). However, use of (29) shows that ψ = O(1) as X → a,
and thus a boundary layer is necessary to accommodate the boundary condition for ψ
(and also in fact τ3 and θ). We discuss this corner layer below. For the moment, notice that
it arises because (28) is a singular limit of (26), and thus the lid equation (32) and hence
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(41) should be also. Thus we presume that the appropriate condition for (41) is a matching
condition of some type, but it remains unclear if this is the case.

Further discussion is provided in Appendix A. In essence, we seek a (small) correction
to (41) which is consistent with the behaviour indicated in figure 6. There is no unique way
to do this, but without such a discussion, it is not clear what boundary condition to apply
to (41). Figure 7 shows the solution of the modified equation

νsXX + sX
(1 + s2X)2

exp
(−μs

Ta

)
= βD, (45)

where the boundary conditions are taken to be sX(0) = 0, sX(2.3) = 1/
√
3, where we

have used the value X = 2.3 where the computational solution takes this (critical) value
of the slope, and we have chosen the value of ν = 0.284 so that s(0) = 1.29, which is the
computed value. This procedure is not ideal, but is at least self-consistent. In this way we
avoid the inevitable awkwardness associated with the corner boundary layers, which are
not in fact described by (45) (see Appendix A). Figure 7 shows that the agreement of this
procedure with the actual position of the isotherm is very good.

3.6. Corner layer

We return to the asthenosphere equations (26). It is straightforward to see that the
appropriate rescaling required for X in the corner layer in order to bring ψ down to
zero is to put

Z = s(a)+ εζ , X = a − εY , (46)

and the equations reduce to the full Stokes equations in the form

pY = τ1Y + τ3ζ , pζ = τ3Y − τ1ζ − θ ,
τ1 = −2ηψYζ , τ3 = η(ψYY − ψζζ ), (47)

and η is given by

η ≈ exp
[
− θ

T2
a

+ μs(a)
Ta

]
. (48)

The scaled temperature is determined by

ψYθζ − ψζ θY = ε∇2θ; (49)

thus θ ≈ θ(ψ), and the temperature is advected round the corner. The solution of (47)
enables the passage of ψ and τ3 to zero at the boundary, but the zero heat flux condition
cannot be satisfied, since θY ≈ θ ′(ψ)ψY �= 0 at Y = 0.

3.6.1. Corner plume
There is thus a further layer, which is a weak thermal plume, in which

Y = ε1/2Ỹ , ψ ∼ ε1/2vp(ζ )Ỹ , (50)
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146 A. C. FOWLER ET AL.

vp is the downwards side wall velocity determined from the corner layer solution, and θ
satisfies the approximate equation

vpθζ − v′
pỸθỸ = θỸ Ỹ , (51)

and this enables the satisfaction of the thermal boundary condition.

3.7. Upper core

Emerging downwards from the asthenosphere, f ∼ ζ , where f is the normalised stream
function defined in (29), and it follows that we should rescale ψ ∼ 1/ε, and hence also
p, τ1, τ3 ∼ ε. In terms of the variables in (11), this suggests

τ1, τ3, p ∼ ε4Ra, ψ ∼ 1
ε2

, T = Ta + εθ , η ∼ ηa, (52)

whence the governing equations are those of Stokes flow with a variable viscosity,

pX = τ1X − τ3Z , −pZ = τ3X + τ1Z + θ

ε2
,

τ1 = 2ηψXZ , τ3 = η(ψXX − ψZZ),
ε2θt + ψZθX − ψXθZ = ε2∇2θ ,

η = exp
[
μZ
T

+ 1
ε

(
1
T

− 1
Ta

)]
≈ exp

[
μZ
Ta

− θ

T2
a

]
. (53)

We use this scaled set of equations as the basic reference set henceforth. In conventional
boundary layer theory for temperature-dependent viscous convection, θ = 0 to all orders
of ε, and the same is true here. The reason for this is essentially the same as in the ap-
plication of the Prandtl–Batchelor theorem, where the closed streamlines force a constant
temperature in a steady flow (cf. Fowler 1985b). Although figure 4 suggests that at least
some of the streamlines invade the lower core (and thus are not closed within the upper
core), these are for low values of ψ , and the streamlines having ψ ∼ O(1) are closed.
Taking θ = 0 to all orders of ε, the model reduces to a modified Stokes flow:

pX = τ1X − τ3Z , −pZ = τ3X + τ1Z ,
τ1 = 2ηψXZ , τ3 = η(ψXX − ψZZ),

η = exp
[
μZ
Ta

]
. (54)

3.8. Lower core

In the lower core, which is also the lower mantle, we firstly rescale the upper core vertical
coordinate Z as

z = 1 − εZ. (55)

We then choose a balance of terms in which thermal advection balances conduction and
buoyancy balances shear stress, which itself balances shear strain rate. This scaling is based
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on the apparent computational observation that there is no identifiable plume in the lower
core. In retrospect, we shall find that in fact there is a mild plume of thickness O(ε1/2), and
this in manifested in figure 4, for example, by the mild clustering of streamlines at the left
hand side. However, it is convenient to proceed as we do, since our analysis encompasses
this possibility, and the plume is rather weak (ε1/2 ≈ 0.25 for ε = 0.065). Note, however,
that a consequence of (91), (78) and (66) below is that strictly speaking ψ ∼ ε3/2, rather
than the choice in (56), and other scales are affected similarly. There is no consequent effect
on our analysis, however.

This leads to the lower core rescaling (from (53))

p ∼ 1
ε4

, τ1 ∼ 1
ε
, τ3 ∼ 1

ε2
,

ψ ∼ ε2, η ∼ ηL = 1
ε4

, (56)

and we define (the rescaled)

η = e−Θ ; (57)

some algebra then shows from (53) that if in addition we define

TL(z) = 1 + μ(1 − z)
SL

, SL = 1
Ta

+ ε ln ηL, (58)

then exactly

Θ = SL
ε

(
1 − TL

T

)
, (59)

and to leading order we have

T ≈ TL + εTLΘ

SL
. (60)

Note that TL(z) is an isoviscous temperature profile.
Substituting the scalings (55), (56) and (60) into (53), we obtain the rescaled lower core

equations

pX = ε3(τ1X + τ3z),
1
ε
{pz − (TL − Ta)} = τ3X − ε2τ1z + TLΘ

SL
,

τ1 = −2ηψXz , τ3 = η(ψXX − ε2ψzz),
TLΘt

SL
+ ψX

(
1 + εΘ

SL

)
T ′
L + εTL

SL
(ψXΘz − ψzΘX)+ · · ·

= TLΘXX

SL
+ ε2

SL

[
2T ′

LΘz + TLΘzz
] + · · · ,

η = e−Θ , (61)
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148 A. C. FOWLER ET AL.

and here we retain the time derivative for the moment. At leading order we thus have the
system

p = p(z), p′ = TL − Ta + εΠ ′(z),

τ3X = −TLΘ

SL
+Π ′(z), τ3 = ψXXe−Θ ,

TLΘt

SL
+ ψXT ′

L = TLΘXX

SL
, (62)

whereΠ(z) is to be determined. The equations (62) are subject to the boundary conditions

ΘX = τ3 = ψ = 0 on X = 0, a. (63)

Solving these, we have

τ3 = −TL

SL

∫ X

0
Θ dX +Π ′ X, (64)

whence
Π ′ = TL

aSL

∫ a

0
Θ dX, (65)

and if we write
W = μψX

TL
, (66)

(noting that T ′
L = −μ/SL), thenΘ andW satisfy the coupled equations

Θt = ΘXX + W ,
[
e−ΘWX

]
X

= − μ

SL

(
Θ − 1

a

∫ a

0
Θ dX

)
, (67)

subject to
ΘX = WX = 0 on X = 0, a. (68)

All the boundary conditions are satisfied at the side, as in effect the basal plume occupies
the entire width of the cell.

We now consider steady state solutions of this system. EliminatingW , we have

[
ΘXXXe−Θ

]
X

= μ

SL

(
Θ − 1

a

∫ a

0
Θ dX

)
, (69)

with the boundary conditions

ΘX = ΘXXX = 0 on X = 0, a. (70)

To solve this, we define

m(z) = 1
a

∫ a

0
Θ dX, (71)

and we write
Θ = m(z)+Φ , X = ay, (72)

so thatΦ satisfies
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Figure 8. The variation of Φ(0) with λ (upper curve). Also shown is the asymptotic result for small λ,
(87) (dashed).
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Figure 9. Solutions of (73)with (75) for various values of λ.

[
Φyyye−Φ

]
y
= λΦ , (73)

where
λ = μa4em

SL
, (74)

and
Φy = Φyyy = 0 on y = 0, 1. (75)

Note that ∫ 1

0
Φ dy = 0. (76)

Figure 8 shows the variation of the maximum Φ(0) with λ, obtained by numerical
solution of the boundary value problem (73) with (75), and figure 9 shows the solution
of (73) for various values of λ. Figure 8 is consistent with the fact that the steady solution
emerges from Φ = 0 at λ = π4 in a sub-critical pitchfork bifurcation, and is actually
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150 A. C. FOWLER ET AL.

unstable, as is easily ascertained by a weakly nonlinear analysis near λ = π4. Despite this,
the steady solution shows good agreement with the full numerical solution. We comment
further on this in the conclusions. As can be seen in figure 8,Φ(0) becomes large as λ → 0,
and figure 9 shows a sequence of solutions at small λ, whose asymptotic form is described
as follows.

We define the large parameterΛ (≈ Φ(0)) via

λ = Λ3e−Λ, (77)

so thatΛ ∼ ln 1/λ. There is an outer solution where y ∼ O(1) and we put

Φ = Λφ ; (78)

then, assuming φ < 1, we have that φ′′′ = 0 correct to exponentially small terms in Λ, so
that

φ ≈ 1 − 3y + 3
2y

2, (79)

which satisfies the boundary conditions at y = 1 and also the integral constraint (76). Note
that the outer solution is zero at y = 1 − (1/

√
3) ≈ 0.42 independently of λ, as can be

seen in figure 9.
There is a boundary layer near y = 0 where the slope adjusts to zero. We put

y = Y
Λ
, Φ = Λ+ χ , (80)

so that the matching condition to (79) is

χ ∼ −3Y as Y → ∞. (81)

At leading order, χ satisfies [
e−χχ ′′′]′ = 1, (82)

and thus

χ ′′′ = Yeχ ,

χ ′(0) = χ ′′′(0) = 0, χ ′(∞) = −3. (83)

For this, we solve numerically the initial value problem

f ′′′(x) = xef ,
f (0) = f ′(0) = 0, f ′′(0) = −B, (84)

and we choose the unique3 value of B such that f ′′(∞) = 0; this value is B ≈ 1.14, and the
resulting value of

K = −f ′(∞) ≈ 1.69. (85)

3Uniqueness follows from a comparison argument.
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The solution of (83) is then

χ = 4 ln
3
K

+ f
(
3Y
K

)
; (86)

in particular,
Φ(0) = Λ+ χ(0) ≈ Λ+ 2.3. (87)

To complete the lower core solution, we need to choose the value of m(z) in (71).
Equivalently, we need to choose the value of λ in (74). To do this, we use the exact integral
constraint from (15) and (20), which implies

∫ a

0
(TψX + TZ) dX ≈ ε

∫ a

0

(
TL

SL
ΘψX − T ′

L

)
dX

= (Ta − T0)

∫ a

0
(1 + s2X)G(X) dX, (88)

and this reduces, using (36), (37), (39) and (40), to

T2
L

μSL

∫ a

0
Φ2

X dX = C(Ta − T0)

ε
− μa

SL
, (89)

where C is the lid constant given by (35).4

To calculate the integral, let us suppose that λ � 1. From (78) and (79), it follows that

∫ a

0
Φ2

X dX ≈ 3Λ2

a
, (90)

and thusm is chosen in terms of the lid thickness s by requiring

3Λ2T2
L

aμSL
= C(Ta − T0)

ε
− μa

SL
, (91)

assuming λ � 1, which essentially requires m < 0. We see from this that Λ ∼ 1/
√
ε, so

that this assumption is justified. (See the comment following (55).)
We can compare these asymptotic temperature profiles with those computed from the

full numerical simulation. In order to do this we need to estimate m(z). In principle we
can use (91), but this is somewhat circuitous, and it is more direct to use the full numerical
solution in the lower mantle directly. Specifically, we have from (71), (58) and (59) that

Φ(0)−Φ(1) = 1 + μ(1 − z)
ε

(
1
T+

− 1
T−

)
, (92)

where T+ and T− are the dimensionless temperatures at y = 1 and y = 0, respectively.
Since the left hand side is an increasing function of λ, we can use the computed values of
T± to determine λ, and hence (from (74))m, assuming (from (58) and (23))

SL = 1 + μ+ ε ln
(
ε4Ra

)
. (93)

4Note that from (15), Nu = C(Ta − T0)/{εa(1 − T0)}.
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Figure 10. Comparison of full numerical and asymptotic solutions for lower mantle temperature T as a
function of y, at z = 0.2. Details are described in the text.

Equations (59) and (72) then determine T , and as can be seen in figure 10, the agreement
is very good.

An alternative procedure for determining SL directly rather than using (93) is to note
that

m = 1
ε

[
SL − {1 + μ(1 − z)}

(
1
T

)]
, (94)

where the overbar denotes the horizontal average, and hence

Φ(0) = 1 + μ(1 − z)
ε

[(
1
T

)
− 1

T−

]
, Φ(1) = 1 + μ(1 − z)

ε

[(
1
T

)
− 1

T+

]
;
(95)

either can be used to estimate λ and thusm, and then (94) gives an estimate for SL in each
case; in practice we take the average of the two estimates.

3.9. Basal thermal boundary layer

The solutions of the lower core equations (61) satisfy all the boundary conditions at the
sides, but they do not satisfy the basal boundary conditions, which are of the form (in
terms of the lower core scaled variables)

τ3 = ψ = 0, Θ = Θb ≡ ln
(
ε4Ra

)
at z = 0, (96)

where we have used the definition of Ta in (23), and (56), (58) and (59), together with the
basal condition T = 1 at z = 0. The lower core equations are given by (61), and the basal
thermal boundary layer equations are obtained by writing

z = εZ, τ1 ∼ 1
ε
, p =

∫ z

0
(TL − Ta) dz + ε2P, (97)
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which yields the rescaled equations, to leading order,

PX = τ1X + τ3Z , PZ = τ3X − τ1Z + TLΘ

SL
,

τ1 = −2 ηψXZ , τ3 = η(ψXX − ψZZ),
− μψX + TL(ψXΘZ − ψZΘX) = TL∇2Θ ,

η = e−Θ , (98)

wherein we can take

TL ≈ TL(0) = 1 + μ

SL
. (99)

Again, we have the full Stokes equations. The solutions must satisfy the basal boundary
conditions (96), the sidewall boundary conditions (63), and the matching conditions as
Z → ∞ in whichΘ , τ3 and ψ tend to the limits given by (64) and (69).

There seems to be some mild scope for further approximation, since the basal value of
Θ in (96) is “large” if Ra � ε−4. In practice, there is little to be gained, since apparently
computation of the basal boundary layer is not necessary for the determination of the rest
of the solution, and in any case Θb is not typically that large. For our typical values of
ε = 0.065 and Ra = 107, we have Θb ≈ 5.2, although the basal viscosity does then drop
to 0.56 × 10−2 relative to the lower core, as can be seen in figure 3.

Note that integration of the energy equation over the flow domain yields the Nusselt
number relation

−
∫ a

0

∂Θ

∂Z

∣∣∣∣
Z=0

dX = TL

μ

∫ a

0
Θ ′2∞ dX, (100)

whereΘ∞(X) is the solution of (69) and (70).

3.10. Transition zone

It is fairly clear that a transition zone between the upper and lower core is necessary, since
the variables, and specifically the temperature, donotmatch. Because the viscosity increases
exponentially with depth, the stream function in the upper core tends exponentially (and
fairly rapidly) to zero, but the approximations involved in the upper core, specifically the
loss of the conduction term, become invalid whenψ ∼ ε2, and this heralds the occurrence
of a transition zone. Just as in the lower core, this occurs when η ∼ ηL = 1/ε4, but since
η = exp

(
μZ/Ta

)
in the upper core, this tells us that the transition region is accessed by

rescaling Z as

Z = ZL + Y , ZL = Ta

μ
ln

(
1
ε4

)
, (101)

and the other variables are rescaled as

p ∼ τ1 ∼ τ3 ∼ 1
ε2

, ψ ∼ ε2, η ∼ 1
ε4
. (102)

Note that for the computations in figures 2–4, ZL = 6.72, corresponding to z = 0.56.
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L
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UM

LM

BL

L: lid (lithosphere)

A: asthenosphere

UM: upper mantle circulation

LM: lower mantle return flow

BL: core−mantle thermal boundary layer

Figure 11. The principal regions of the convection cell structure, shown with two actual streamlines of
the convective flow shown in figure 4, with the appropriate aspect ratio.

Substituting these new scales into (53), we find

pX = τ1X − τ3Y , −pY = τ3X + τ1Y + θ ,
τ1 = 2ηψXY , τ3 = η(ψXX − ψYY ),

ψYθX − ψXθY = ∇2θ ,
η = e−Θ , (103)

and the relation of θ andΘ is given approximately by

θ ≈ μTaY + T2
aΘ. (104)

The equations (103) are the full Stokes equations, together with the full temperature
equation. Of principal interest is the transition in the temperature, where apparent match-
ing conditions should be

θ → 0 as Y → − ∞,
θ ∼ μTaY + T2

aΘ1(X) as Y → ∞, (105)

whereΘ1(X) is the value ofΘ in the lower core when z → 1. AnOseen-like simplification
comes from the fact that (since SL ≈ 1/Ta) ψ ≈ −(1/μTa)θX in the lower core (and
is independent of Y as z → 1). If we use this for the vertical advection term, then the
equation for θ is simply [

1 − θY

μTa

]
θXX + θYY = 0, (106)

together with the matching conditions in (105), and a solution of this seems feasible.
Figure 11 shows a cartoon of the principal regions of the convective structure of the cell,

for an approximately one to five aspect ratio cell, such as we have used in our illustrations
here. Below the stagnant lid, the asthenosphere is a relatively rapid shear flow which drives
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an approximately isothermal circulation in the upper mantle, also called the upper core.
The lowermantle or lower core below this is an approximately vertical return flow inwhich
there is a mild excess of buoyancy in an upwelling plume. The basal boundary layer is only
thin relative to the total depth; it is comparable in thickness to the width of the cell. Other
regions we have alluded to are not depicted here, notably corner layers at each end of the
asthenosphere, and a transition zone between upper and lower mantle.

4. Discussion

In this discussion, we summarise what we have done and what we have not yet done,
and we comment on extensions of the model to make it more sensibly relevant to the
Earth’s mantle; in the conclusions we will discuss the possible relevance of these results for
convection in the mantle of terrestrial planets.

We believe that we have essentially solved the problem of elucidating the asymptotic
structure of high Rayleigh number convection in a fluid whose viscosity depends expo-
nentially strongly on both temperature and pressure. There are two central obstacles to
establishing the results. The first is practical: computations with viscosity contrasts even as
large as 1015 fail to portray an obvious asymptotic structure, and previous computational
work has failed to progress beyond this. The second obstacle is the fundamental issue of
how a rapidly convecting thermobaroviscous fluid reconciles its tendency to be isothermal
(or more generally, adiabatic) with the necessity to be relatively isoviscous5 (below the
rigid lid). Fowler (1983) suggested that a relatively isoviscous lower mantle could satisfy
constraints associated with dynamics, mantle viscosity estimates, core mantle temperature
estimates, as well as a low viscosity asthenosphere, a vigorous upper mantle flow and a
sluggish lower mantle flow, but he was unable to substantiate these claims by means of an
actual solution.

As we now see, this inability is largely due to the inability to recognise that the way
the flow copes with the necessity to be relatively isoviscous in the lower mantle is by
adopting the form of narrow convection cells. This revelation, due to Khaleque (2015) and
expounded by Khaleque et al. (2015), allowed us to push the computed results to extreme
viscosity contrasts and thereby identify the appropriate asymptotic limits. Even with this
insight, however, the unravelling of the flow structure has been a laborious process.

Figure 12 shows the mid-cell vertical temperature profile from the full numerical
solution, and it can be compared to figure 2 of Fowler (1983), for example. The main
difference between the solution structure suggested there and that found here is that
slightly larger variations in viscosity are admitted in the asymptotic solution. For example,
the jump �T of temperature in the basal boundary layer of figure 12 corresponds to a
dimensional jump of about 700K, while Fowler’s 1983 order of magnitude suggestion was
�T ∼ ε, corresponding to a dimensional jump ∼ εTb ∼ 230K for the values we use here;
associated with the 700K jump is a viscosity decrease (see figure 3) of some two to three
orders of magnitude. The actual value is larger than the earlier estimate because of the
basal thermal boundary condition in (96) involving ln (ε4Ra). Interestingly, this relatively
large jump is similar to that found by Loper (1985), whose work remarkably described
mantle convection as a finger-like flow (in the sense of being essentially a vertical exchange

5By relatively isoviscous, we mean to allow variations of perhaps five orders of magnitude, but not 20.
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T

Figure 12. Themid-cell temperature at X = 1
2a as a function of z (note that the profile is from the surface

towards the base). This is taken from the full numerical solution with a = 3, ε = 0.065, Ra = 107,
μ = 1.

flow). Loper (1985) also asserted the tendency of the medium to become isoviscous. It
seems unlikely that such a large temperature jump could be supported unless the cells are
narrow. To put it the other way round, one expects such a high temperature jump to be
very unstable, and thus to cause the width of convective boundary layers to be narrow.

Our analysis shows that the convective structure consists of a stagnant lid, and a
relatively fast shearing return flow in the upper mantle beneath the lid, whose velocities
for the parameters in figure 4 are of order 3mmy−1; obviously less than plate tectonic
velocities on Earth, but we are not describing the oceanic subduction-driven plate motion.
In the lower mantle there is an essentially vertical return flow with downwards velocities
of order 0.8mmy−1, and upwards (“plume”) velocities of the order of 4mmy−1, which
accelerate in the upper mantle (see figure 4). The relative sluggishness of the lower mantle
apparent in figure 4 is a consequence of the tallness of the convective cells.

In the stagnant lid, the viscosity is enormous, but below this, there is a pronounced
structure. The lowest viscosity is in the upper mantle (down to a dimensional depth of
about 900 km), where it is about two orders of magnitude lower than the basal viscosity,
and then it is higher in the lower mantle, ranging horizontally from the basal viscosity to
a value about four orders of magnitude higher. Supposing as we expect that it is the lower
viscositymaterialwhich controls short termpost-glacial rebound, for example, these results
appear to be consistent with inferred estimates of mantle viscosity.

The temperature shown in figures 2 or 12, for example, is distinctly non-isothermal
below the rigid conductive lid. There is a relatively small isothermal upper core down (in
figure 12) to about z = 0.8, and below this a transition zone in which the temperature
drops, before reaching a profile in the lower mantle which increases linearly with depth;
however, the slope in figure 12 is 0.35, whereas an isoviscous gradient would be a touch
under 0.5. The difference is not large, but enough to cause several orders of magnitude
change in viscosity.

Our principal comparison of the theory with the numerical computation is in the
determination of the lower mantle temperature profile and the position of the base of the
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lithospheric lid. Both of these are excellent, but our analysis of the lid base is certainly
one that warrants further technical examination; and indeed, there are a number of other
lines of enquiry which could be pursued. We have delineated approximating equations in
numerous areas (for example, the upper core, the basal boundary layer) without attempting
to provide a numerical solution. Largely this is because such investigations do not add
significant information to our study, which is already a long one. We think that the most
significant point worthy of further study is the issue of the lid base equation. In particular,
we note that the treatment of the lid base for thermoviscous convection (Fowler 1985a)
was over-simplified, and itself deserves further study. Crucial in our analysis is the idea
that the lid base is self-determining without reference to the flow elsewhere, and this is in
stark contrast to the constant viscosity flow (Roberts 1979). In the thermoviscous case, the
lid thickness (the parameter γ in (16)) was determined by the connection of the buoyant
plume to the asthenospheric shear flow, but in the present case, the buoyancy of the plume
is insignificant in the upper core and the upper core flow is driven by the asthenospheric
shear flow, which itself is driven by the lid slope.

4.1. Adiabatic and internal heating

In our analysis, we have assumed certain parameters to be constant, whereas in reality they
will vary, particularly with pressure and thus depth. We took the dissipation number D
in (1) to be zero, whereas its value is about 1.0 near the surface, and decreases to about
0.2 near the CMB (Ricard 2009), and we neglected internal heating, H . The value of this
is uncertain, but various estimates suggest a value of H ≈ 4 × 10−12 Wkg−1, which if
distributed throughout the mantle would produce about half the observed oceanic heat
flux (Jaupart et al. 2009).

If we include these two terms in the heat equation, then the original dimensional
equation

ρmcp
dT
dt

− αT
dp
dt

= k∇2T + ρH (107)

becomes when non-dimensionalised as in (6) (we omit the time derivative),

ψx(Tz − T ′
ad)− ψzTx = ∇2T + Q, (108)

where we may take the adiabatic temperature

Tad ≈ Ta exp
[∫ 1

z
D dz

]
, (109)

and the dimensionless heating is

Q = ρmHd2

kTb
, (110)

in which k is the thermal conductivity, ρm is the mantle density. Taking values ρm =
4 × 103 kgm−3, k = 4Wm−1 K−1, d = 3000 km, H = 4 × 10−12 Wkg−1, Tb = 4000K
(Jaupart et al. 2009), we get Q ≈ 9, and we write

Q = q
ε
, (111)
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where for a value of ε = 0.055, we would have q ≈ 0.5, so we take q = O(1).
Nowwewish to see what the form of the scaled heat equation becomes in the upper core

and lower core. In the upper core, we proceed first via (10), and then via (52), to obtain

ψZθX − ψX(θZ − DTa) = ε2(∇2θ + q). (112)

The effect of heating is to cause the upper core to be non-isothermal but the potential
temperature θ − DTaZ is constant on (closed) streamlines, and the heat generated leaks
out conductively, as explained by Fowler (1985b).

In the lower core, we proceed from (53) via (55), (56) and (60), and find that the leading
order terms are (in the steady state)

(T ′
L − T ′

ad)ψX = q + TL

SL
ΘXX . (113)

Now there is a divergence. If q �= 0, integration of (113) from X = 0 to X = a shows
that not all the boundary conditions can be satisfied. Thus, although equation (113) is well
scaled, it suggests that a boundary layer must exist, for which the best candidate may be
a thermal plume. We will not pursue this here, other than suggesting that the presence of
internal heating does not seem to have a major effect on our analytic description.

4.2. Activation enthalpy

In our analysis we took the activation energy E∗ and the activation volume V∗ to be
constant, and in particular we used values appropriate for the deformation of olivine in the
upper mantle (e.g. Karato and Wu 1993). It is difficult to assess appropriate values in the
lower mantle, but a consensus has emerged which suggests that both E∗ and V∗ are lower
(Yamazaki and Karato 2001, Ammann et al. 2009, 2010), as well as accommodating the
accepted idea thatV∗ decreases with increasing depth (Sammis et al. 1977). Yamazaki and
Karato suggest that the lack of seismic anisotropy in the lowermantle suggests that diffusion
creep is the relevant creep process, for which estimates of the diffusion coefficients of for
example oxygen and silicon in perovskite MgSiO3 (Ammann et al. 2009) suggest that V∗
is lower, around 2–3 cm3 mol−1. More pertinently, estimates of consequent lower mantle
viscosity profiles using assumed geotherms indicate that viscosity profiles are broadly
consistent with direct inferences from post-glacial rebound and the like (e.g. Ammann et
al. 2010), but Yamazaki and Karato warn that “this conclusion is highly dependent upon
several poorly constrained mineral physics parameters”.

Nevertheless, it is reasonable to suppose that the adiabatic profile Tad in (109) and the
isoviscous profile TL = [1 + μ(1 − z)]/SL are quite close. The issue is, are they precisely
equal? This would be a remarkable coincidence, and if they are not precisely equal, then the
lower core solution proceeds as before, with the modification that the lower core equation
(69) is replaced by

[
ΘXXXe−Θ

]
X

= (T ′
ad − T ′

L)

(
Θ − 1

a

∫ a

0
Θ dX

)
, (114)
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and the solution proceeds exactly as before providing the isoviscous profile is a steeper
function of depth than the adiabatic profile, that is to say, the viscosity increases along an
adiabat.

The crux of the matter is, what controls the aspect ratio? As Fowler (1983) pointed out,
realistic parameter choices can easily be found consistent with a fairly uniform viscosity,
but the cost is that the adiabatic temperature profile leads to an adiabatic temperature near
the CMB which is low. Fowler estimated this to be 2330K, and the estimate in figure 10 of
Jaupart et al. (2009) is even lower, at 2200K. The problem is that the CMB temperature
is presently estimated to be ∼ 4000K (Jaupart et al. 2009), and the consequent estimated
temperature jump at the boundary layer is further suggested by the post-perovskite phase
change which is thought to occur at the CMB. Even if the activation enthalpy H∗ =
E∗ + pV∗ at the CMB is as low as 500 kJmol−1, as suggested by Yamazaki and Karato
(2001), a change of temperature from 2300 to 4000K entails a viscosity jump of about
6.8 × 104. It is very difficult to imagine that such a jump can occur in an order one aspect
ratio convection cell.

5. Conclusions

Our studyhas beenmotivated by convection in theEarth’smantle, but has been an idealised
one, and has not been overly constrained by the detail that constitutes the reality of the
problem. Despite this, the motivation impels us to consider whether what we have learned
is likely to have any bearing on the real Earth, despite all the caveats discussed in the
preceding section. Even if turns out to be irrelevant to the Earth, the theory may have
implications for extra-solar “super-Earths”, where larger values of mantle depths may lead
to larger values of the viscous pressure number μ (Tackley et al. 2013).

Our principal finding is that at viscosity contrasts in excess of 1030, narrow convection
cells become the norm, andwe have found an asymptotic structure which is consistent with
this. The question is, how robust is this structure, and is it likely to occur in the real Earth, or
indeed in other terrestrial planets?We have interpreted the tendency towards narrow cells
as being indicative of the necessity for the interior viscosity to remain relatively uniform,
but we might equally interpret it as a way in which the relatively high viscosity jump at the
base can be stablymaintained. It is certainly the case that in purely temperature-dependent
viscous convection in O(1) aspect ratio cells, the basal temperature jump diminishes as
the viscosity number ε decreases, and we associate this with increasing instability as the
viscosity jump in the basal thermal boundary layer increases. The maximum jump that
can be stably maintained in a square cell for thermobaroviscous convection appears to be
about 103 (Khaleque 2015, figure 4.5). The notion that in the Earth there is a basal jump in
excess of 104 is suggestive of the adoption of narrow cells.

Throughout our analysis, we have referred to the different parts of the flow by their
geophysical counterparts, simply because there is a natural correspondence. There is a
rigid lid, and this is the lithosphere. There is a low viscosity zone below this, which is the
asthenosphere. The circulatory flow in the upper core corresponds to the upper mantle,
while the more or less vertical exchange flow in the lower core corresponds to the lower
mantle. One might even associate the core-mantle thermal boundary layer with the D′′
layer, although it seems more likely that this is associated with other processes, including

D
ow

nl
oa

de
d 

by
 [

89
.2

34
.7

9.
13

] 
at

 0
3:

45
 1

0 
M

ar
ch

 2
01

6 



160 A. C. FOWLER ET AL.

for example the reaction between the outer core and the lower mantle (Knittle and Jeanloz
1991), and the post-perovskite transition alluded to above (Jaupart et al. 2009).

The main and obvious difference from the Earth’s mantle is that there is no subduction.
Various authors (Fowler, 1985a, 1993b, Tackley 1998, Tackley 2000a,b, Fowler andO’Brien
2003) have suggested that the weakening of the lithosphere necessary to initiate subduc-
tion is associated with viscoplastic yielding induced by the enormous stresses produced
in the lithosphere, which are there essentially because they are necessary to support a
heavy stagnant lithosphere. Numerical computations of lid stresses are rarely reported,
unsurprisingly since the computations tend to exhibit instability, but they can be analysed
asymptotically (Fowler 1985a), though we have not done so here; however, the analysis
should be similar. Lid stresses become huge, and provide a mechanism for subduction.

The tantalising question is then, how should we expect convection to occur in a ther-
mobaroviscous mantle when there is active subduction? For sub-continental lithosphere,
we might expect the structure to be that described here. The most obvious distinction for
oceanic lithosphere is that the plunge of the heavy lid causes a near horizontal return flow
with a much larger horizontal length scale, but this will be restricted to the upper mantle;
the lower mantle maintains its higher viscosity and sluggish convection. If we suppose
that the lower mantle retains a finger-style convection, then it seems that leakage of upper
mantle lithosphere to the lower mantle will occur locally, and most of the lower mantle
may be effectively segregated from the upper mantle. But in any case, the residence time
in the lower mantle for a 3mmy−1 flow descending and then ascending a 2300 km deep
finger cell is 1.5 × 109 y, and this seems to provide a robust way to segregate the mantle
geochemically.

The issue of plume and mega-plume formation can not be readily addressed, as such
features are essentially associated with time-dependent convection. Constant viscosity
convection certainly becomes unstable and plume-like at high Rayleigh number, and it is
interesting in this context tonote that the lowermantle approximatemodel (67)has a steady
solution which bifurcates unstably, as noted after (76). We have not found such instability
in our numerical calculations, which suggests that a further stabilising bifurcation may
occur at smaller λ. However it is tempting to suppose that if there is a real instability,
the result could be plume formation on a horizontal scale comparable to the finger width,
perhaps of order l = 300 km (corresponding to a = 1.8, ε = 0.055, d = 3000 km). It
is noteworthy that this scale is comparable to that of coronae on Venus, which may also
represent the surface expression of mantle plumes (Solomatov and Head 1991). We might
expect such plumes to punch theirway through the uppermantle oceanic return flow.Their
development time scale is l2/κ ∼ 3000Ma, but a thermal runaway-type process could
significantly reduce this. Even if there were many fingers, relatively few would provide
plumes at any one time. It is less easy to see how mega-plumes might form, however,
unless from a punch through of a subducting slab to the lower mantle and its subsequent
foundering at the CMB.
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Appendix A
We are concerned with the appropriate boundary condition for the solution of the lid equation

(A.1):
sX

(1 + s2X)2
exp

(
−μs
Ta

)
= βD, (A.1)

where D(X) (which also depends on s) is determined by (42), χ being the solution of (37). As
discussed in the text, this equation is not uniformly valid near X = a, and in fact it is not uniformly
valid near X = 0 either, although it automatically satisfies the zero slope boundary condition. This
can be seen by consideration of (26), for example, which shows that the definition of ψ in (29) does
not yield zero shear stress atX = 0 unless sXXX = 0, due to the term ε2ψXX . While this is apparently
a small term, it is not uniformly so as the viscosity becomes large as we enter the lithosphere.

Some insight can be gained by consideration of a singularly perturbed modification of (A.1),

νsXX + sX
(1 + s2X)2

= βD exp
(
μs
Ta

)
, (A.2)

where we suppose ν � 1. First note that the leading order approximation to (A.2) is just (A.1).
However, (A.2) has the ability to mimic some features of the corner layer illustrated in figures 5 and
6.

A phase plane analysis of (A.2) is straightforward (in the (w = sX , s) phase plane), and shows
that as X increases, (A.1) is approximately satisfied until sX = 1/

√
3 = tanπ/6, following which s

begins to rapidly increase, and if D were constant, s would blow up. On the other hand, assuming
this is near X = a, the discussion earlier indicates that then D must reach zero. Examination of
the solution for χ computed assuming s is given by the 0.615 isotherm from the full numerical
solution shows that D does indeed approach zero as the slope starts to blow up (figure A1), and the
consequence of this is to bring the trajectory back below the sX-nullcline given by (A.1), and sX can
decrease to a value near zero. This description is illustrated in figure A2.

In more detail, the solution of (A.2) is described in the (w, s) phase plane, where

sX = w, νwX = βD exp
(
μs
Ta

)
− w
(1 + w2)2

; (A.3)

trajectories move rapidly to the left hand branch of thew-nullclines, illustrated for values (progress-
ing upwards) of D = 0.042, 0.012 and 10−7. As D increases from zero at X = 0, the nullclines
descend rapidly, and as they do, the solution resides on the left hand stable branch and moves
horizontally (since w � 1) along the inlet adjustment region ab. At the point b, the value of w
approaches the maximum value of 1/

√
3 ≈ 0.577. Beyond this value, slow variation of w can only

be maintained by having s increase while w remains constant, and this is enabled by having D
decrease, as shown in figure A1, which lifts the w–nullcline. This quasi-static phase bc is necessary
because the cell width (here a = 3) is so large.

Eventually, this phase can not be maintained, and a blow-up (cd) occurs, in which

νsXX ≈ βD exp
(
μs
Ta

)
, (A.4)

and this would continue until s becomes infinite, except for the consequent rapid approach of D
to zero. When D becomes sufficiently low, the nullcline overtakes the trajectory, so that it reverses
direction, andw rapidly decreases towards zero; this is the collapse phase de, in which approximately
(for (A.3))

νs3XsXX + 1 = 0. (A.5)

What is the consequence of this for (A.1)? If we supposed that (A.2) was indeed its regularisation,
then the requirement of a boundary layer at X = a implies we should require that the outer solution
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Figure A1. Numerical calculation of D(X) from the solution of (42) for χ with the lid s(X) determined
by the full numerical isotherm T = 0.615.
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Figure A2. Blow-up and collapse of the slope of the Ta isotherm in the solution of (A.2). The curve abcde
is the isotherm T = 0.615 from the full numerical solution, and consists of four phases: inlet adjustment
ab, 0 < X < 0.3, quasi-static bc, 0.3 < X < 2.3, blow-up cd, 2.3 < X < 2.8, and collapse de, 2.8 < X < 3,
as described in the text. Also plotted are the (w, s) nullclines given by (A.1) for the indicated values of
D.

satisfy
sX = 1√

3
at X = a. (A.6)

We use this idea to close the problem. We formally choose the boundary condition for (A.1) to
be (A.6), and this closes the prescription for s. In practice, the numerical solution of (A.1) is done
rather differently. We actually solve a regularisation of (A.1) such as that given by (A.2), on the
basis firstly that this is a simpler strategy, secondly it may be more accurate than solving (A.1) in
comparing with the full numerical solution, and thirdly we solve it as a boundary value problem,
using sX = 0 at X = 0, and also sX = 1/

√
3 at the value indicated by the full numerical solution;

for Ta = 0.615, this is X = 2.3. A further problem is that the solution is extremely sensitive to the
value of ν. We avoid this difficulty by choosing the value of ν such that in addition, s(0) is the value
obtained from the full numerics.

This now raises an additional difficulty. For Ta = 0.615, the value of ν we obtain is ν = 3.25,
hardly small. Indeed, comparison of figure A2 with figure A1 shows that the “useful” values of D
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are not actually those where the transitions take place, which are D ≈ 0.2 at b, and D ≈ 0.07 at
c, instead of our indicated values 0.042 and 0.012. The resolution of this awkwardness appears to
lie in the choice of regularisation, which is of course not unique. Indeed, if instead we choose a
regularisation given by

νsXX + sX
(1 + s2X)2

exp
(

−μs
Ta

)
= βD, (A.7)

then the choice of ν which provides the correct value of s(0) is ν = 0.284, and we consider this
reasonable. This gives the solution shown in figure 7.

On the other hand, while the phase plane up to the quasi-static region is well represented, (A.7)
does not permit blow up. A possible compromise to accommodate both effects is the regularisation

νsXX + sX exp
(

−μs
Ta

)
= βD(1 + s2X)

2, (A.8)

which does permit blow-up. Optimisation of ν to achieve s(0) = 1.29 yields ν = 0.363. While it is
tempting to pursue even better such terms, it may be a fruitless exercise.
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