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Abstract The Anderson–May model of human parasite infections and specifically
that for the intestinal worm Ascaris lumbricoides is reconsidered, with a view to
deriving the observed characteristic negative binomial distribution which is frequently
found in human communities. The means to obtaining this result lies in reformulating
the continuous Anderson–May model as a stochastic process involving two essential
populations, the density of mature worms in the gut, and the density of mature eggs in
the environment. The resulting partial differential equation for the generating function
of the joint probability distribution of eggs and worms can be partially solved in the
appropriate limit where the worm lifetime is much greater than that of the mature eggs
in the environment. Allowing for a mean field nonlinearity, and for egg immigration
from neighbouring communities, a negative binomial worm distribution can be pre-
dicted, whose parameters are determined by those in the continuous Anderson–May
model; this result assumes no variability in predisposition to the infection.
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816 A. C. Fowler, T. Déirdre Hollingsworth

1 Introduction

Ascaris lumbricoides, or roundworm, is a ubiquitous infection of low-income pop-
ulations with poor sanitation in tropical countries (Scott 2008). It has been present
in human populations for thousands of years (Cox 2002). It was originally widely
prevalent throughout the world (Tyson 1683; Stoll 1947; Crompton 2001), but was
largely eradicated from developed countries in the twentieth century [(the Japanese
experience is described by WHO (1996)], and developed countries (North America,
Europe, Russia) now only register a handful of cases (Pullan et al. 2014; Crompton
2001). Recent estimates put the number of people infected at 820 million, with con-
siderably more at risk (Pullan et al. 2014). Infection is caused when eggs excreted
in faeces are ingested. Maturing to a larval stage, they migrate through the blood to
the lungs, before being coughed up and reingested to the small intestine, where the
adult worm matures. Infection with A. lumbricoides rarely causes death, but can lead
to chronic disability, leading to poor physical and cognitive development and school
achievement (Bethony et al. 2006).

In recent years, there has been an enormous investment in providing free treat-
ments to children in affected areas (see http://unitingtocombatntds.org). These drugs
effectively clear infection, but do not affect the environment and so reinfection occurs
rapidly. Therefore, there are a number of questions arising concerning how to design
these treatment programmes, including how rapid is “bounceback” following mass
treatment, and therefore how frequently should treatment be given to push infection
levels down (Anderson et al. 2012; Jia et al. 2012; Truscott et al. 2014). While pre-
vious analysis has shown that this is likely to be dominated by the life expectancy
of the worm (Anderson and May 1991), we do not yet have approximations which
include the background transmission rate, which is likely to play an important role in
bounceback.

It has long been noticed that a feature of macroparasites, such as Ascaris, is that
they are very over-dispersed in the population, with a small proportion of the pop-
ulation harbouring the highest number, or intensity, of worms and this is commonly
represented as a negative binomial distribution (Anderson and May 1978; May and
Anderson 1978). Since severity of symptoms is related to the intensity of infection
(Bethony et al. 2006) and is expected to be correlated with infectivity, it is essential
to understand the drivers of this distribution of worms and the impact of treatment
upon it. The negative binomial distribution has been shown to be generated by varying
susceptibility across hosts (Bartlett 1960; May and Anderson 1978), but is commonly
assumed as a given property of the population in modelling (Anderson andMay 1985;
1991).

Our purpose in this paper is to examine the way in which the dynamics of the
infection can provide a cause for the observation of a negative binomial distribution.As
mentioned, this can be due to a distribution of host susceptibility, but this explanation
simply pushes the observation back to the question of why susceptibility should be
gamma distributed (Bartlett 1960). Rather, we are interested in whether a model of the
disease can in itself produce the observed negative binomial distribution. The answer
to this is yes, but it relies in the model on assuming a nonzero immigration rate of
mature eggs.
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The Dynamics of Ascaris lumbricoides Infections 817

The way in which Ascaris infections are promoted and distributed in poor commu-
nities has been described by, for example, Otto et al. (1931), Cort and Stoll (1931),
Forrester et al. (1988), Anderson et al. (1993), and Williams et al. (1974), who vari-
ously describe the nature of infection in a number of places, including Tennessee and
Virginia, USA, China, Korea, Japan, Mexico, and Guatemala. Many of these studies
focus on the transmissibility of the disease, establishing the domestic environment as
a primary hot bed of infection, but also emphasising the wider avenues of transmission
(Cairncross et al. 1996; Otto et al. 1931; Cort and Stoll 1931). In essence, the vehicle
of transmission lies in faecal deposition containing viable eggs on the open ground,
and its subsequent migration via the vector of social contact, and also in some cases the
use of human excrement as fertiliser, leading to installation of viable eggs on exported
vegetables (Cort and Stoll 1931). Essentially immigration of eggs occurs through the
normal modes of human contact, and special efforts would be required to suppress it.

Some information on the spatial spread of Ascaris can be inferred from genetic
studies. For example, Anderson et al. (1995) found that there were strong genetic
similarities of Ascaris between families in the same village, but less commonality
with different villages, while Betson et al. (2012) found evidence of high gene flow of
Ascaris between two villages in Uganda. Evidently, both social and economic inter-
course allow for an effective diffusion of Ascaris eggs, and in a particular community,
this provides a mechanism for effective immigration. We comment further on this in
the conclusions.

Our method proceeds by reformulating the continuous Anderson and May (1991)
model in a stochastic form (which is really the underlying description whence a con-
tinuous model is derived), which describes the stochastic evolution of two coupled
populations (free-living egg stage and adult worm). This leads to a partial differential
equation for the corresponding generating function, and we find that an approximate
solution is possible, based on the disparity of the timescales in each equation. While
similar ideas have been used before (e. g., Hadeler and Dietz 1983; Kretschmar and
Adler 1993), our novelty lies in providing an explicit approximate solution of the
three characteristic equations which describe the generating function p.d.e. It is as a
consequence of this solution that we are able to predict the occurrence of a negative
binomial distribution.

Stochastic models in epidemiology, and particularly for helminth infections, have a
long history. For example, a simple comparison between deterministic and stochastic
models was studied for simple epidemics by Jacquez and O’Neill (1991). Generally,
comparable analytic results for the stochastic model as for the deterministic model are
not readily available, and this has been a common observation (e. g., Isham 1995). Sto-
chastic models of parasite distributions were probably first studied by Kostitzin (1934,
p. 20 ff.), who opined that his infinite system of nonlinear differential equations ‘pre-
sented nearly insurmountable difficulties’. Tallis and Leyton (1966) consider a general
form of stochastic model, while Tallis and Leyton (1969) consider the more particular
case of helminth infections and in certain cases obtain negative binomial distribu-
tions, similarly to Bartlett (1960), depending on the assumed probability distribution
of infection.

Hadeler and Dietz (1983) consider a quasi-linear model for the distribution of
parasites in an infected host population, where the nonlinearity of themodel is affected
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818 A. C. Fowler, T. Déirdre Hollingsworth

through a dependence of the (larval) uptake rate on the mean parasite burden, based
on the idea that the larval population is in quasi-equilibrium. This is somewhat similar
to the approach that we take here. A similar model was considered by Kretschmar and
Adler (1993).

Stochastic models of helminth infections have been reviewed by Cornell (2010).
See also the articles by Walker et al. and Hollingsworth et al. in the book edited by
Holland (2013). Barbour and Kafetzaki (1991) address the overdispersion of observed
parasite distributionswith a susceptible infectivemodelwith various assumed infection
probability distributions. Isham (1995) introduced a stochastic model for parasite
burden as a function of host age, and later Herbert and Isham (2000) extended this to
three stages: eggs, larvae, and adults. Walker et al. (2010) provide a stochastic model
which focusses on the distinction between ‘trickle’ and ‘clumped’ infection rates, a
theme to which we will return. Bottomley et al. (2005) develop a stochastic model
for two species of competing helminths, which leads to two coupled equations for
the respective probability densities. The analysis is limited to a linearised system, and
computation of the mean and variance of the distributions. Adler and Kretzschmar
(1992) consider a stochastic parasite model which ignores the free-living stages of the
parasite. Gaba et al. (2006) use a computational stochastic model in a sheep/nematode
system. While some analytic progress can be made in some of these models (e.g.
derivation of equations for the mean and variance of the resulting distribution), it
seems that no direct approximate solution for the time evolution of the probability
distribution of coupled worm/egg populations has been provided. We are able to do
this here by combining the stochastic description with an asymptotic analysis of the
phase plane structure of the characteristic equations describing the generating function,
based on a separation of the timescales of the different populations. It is clear that this
idea will have wider applicability in other systems.

The structure of the paper is as follows. In Sect. 2, we review the Anderson–May
model and show how it reduces to a set of two ordinary differential-delay equations.
Thismodel is then analysed in Sect. 3, and the nonlinear effects ofmating and fecundity
yield the familiar results of bistability and population saturation. Section 4 develops
a stochastic version of the two-component population model of Sect. 3 and shows,
by means of an approximate solution, how a negative binomial distribution can be
predicted. A discussion of the results follows in Sect. 5, and the conclusions follow
in Sect. 6. Improvements in modelling structure and analyses form one of the seven
challenges facing the study of neglected tropical diseases (Hollingsworth et al. 2015),
and the main purpose of our paper is to contribute to this development.

2 Mathematical Model

Webegin by reviewing and elaborating the dynamics of anAscaris infection in a single
human, who is part of a community of N̄ identical individuals. The basic Anderson–
May model for directly transmitted helminth infections can be represented by the
diagram in Fig. 1. The five boxes represent the five basic variables of the model: E ,
the immature eggs in the environment, L , themature infective eggs in the environment,
H , the ingested eggs in their larval migratory phase through the body, where they may
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Fig. 1 Schematic representation of the Anderson–May Ascaris model. Adult worms (M) in the body
produce eggs (E) which are excreted to the environment. These eggs mature over a time τ2, and the mature
eggs (L) are ingested at a rate β ′. The ingested eggs enter a larval stage (H) and migrate to the blood and
other organs before returning after a time τ3 to the small intestine (I), where they develop into adult worms
over a time τ ′

1. Mortality rates at each stage are given by the coefficients μk

be systematically attacked by the immune system, I , the ingested infective larvae in
the small intestine, and M , the mature worms, these last three being in a single human.
The units of L and M are dimensionless, as they are taken as pure numbers. The units
of E , H , and I are day−1 (per day) because they are distributions with respect to
maturation or transit time m: specifically, E , H , and I satisfy the partial differential
equations

∂E

∂t
+ ∂E

∂m
= −μeE,

∂H

∂t
+ ∂H

∂m
= −μhH,

∂ I

∂t
+ ∂ I

∂m
= −μi I, (1)

and the respective boundary conditions are

E = E0(t) ≡ sφ N̄λM(t),
H = β ′L(t),
I = H(t, τ3),

⎫
⎬

⎭
at m = 0. (2)

Here s is the fraction of female (egg-producing) worms, φ is the probability of mating
(which will depend on M), N̄ is the human community size, λ is the specific egg
production rate, and β ′ is the transmission coefficient; in (1), μe, μh and μi are the
egg mortality rates.

Solution of the equations is straightforward using the method of characteristics
(details are provided in the Appendix), and we find

E = E0(t − m)e−μem, H = β ′L(t − m)e−μhm, I = H(t − m, τ3)e
−μi m . (3)

The equations for L and M take the form

L̇ = E |m=τ2 − μ2L − β ′ N̄ L ,

Ṁ = I |m=τ ′
1
− μ1M, (4)
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820 A. C. Fowler, T. Déirdre Hollingsworth

where μ2 is the mature egg mortality rate and μ1 is the mature worm mortality rate;
thus,

L̇ = rM(t − τ2) − μ2L − β ′ N̄ L ,

Ṁ = ν0L(t − τ1) − μ1M, (5)

where
τ1 = τ ′

1 + τ3, r = sd2φ N̄λ, ν0 = βd1, β = β ′d3, (6)

and the survival coefficients d1, d2, and d3 are defined by

d1 = e−μi τ
′
1 , d2 = e−μeτ2 , d3 = e−μhτ3 . (7)

This is the basic Anderson–May model for L and M . We will provide elaborations
of this model later. There are some differences in detail between (5) and Eqs. (16.7)
and (16.8) of Anderson and May (1991). We ignore a loss term in the equation for M
due to human mortality; this is in any case small. The main difference in the present
version of the model is that Anderson and May take β = β ′, which is equivalent to
ignoringmortality in themigratory H phase of the egg population. In fact, on page 470
of their book, β is indeed defined analogously to its definition here, and Anderson and
May also suppose (page 472) that μ2 � β ′ N̄ , so in practice there is little difference.

3 Simplification and Analysis

Estimates of the parameters of the model in (5) are given in Table 1, based on values
providedbyAnderson andMay (1991).We suppose thatμe = μ2,whenceour estimate
for d2 = 0.7, slightly higher than the in vivo value of d1 ≈ 0.6, where there is a hostile
environment, and longer maturation time. There is no estimate for migratorymortality,
and our value of 0.5 is nominal. In addition, Anderson and May provide no estimate
for β, but we can infer the value of β from the estimates of the basic reproduction rate
R0 >∼1, as given in their table 16.3. The detail of this calculation is given following
(11).

We begin by supposing that the natural mortality of infectious eggs in the envi-
ronment is much greater than that of the uptake by humans, that is, β ′N � μ2 (this
assumption is cosmetic, in the sense that otherwise we simply replaceμ2 byμ2+β ′N
below, which is equivalent to taking a smaller value of μ−1

2 in Table 1). We nondi-
mensionalise the model (5) by scaling the variables as

M ∼ M0, L ∼ rM0

μ2
, t ∼ 1

μ1
, (8)

and then, the dimensionless form of the equations is

ε L̇ = Mε2
− L ,

Ṁ = R0Lε1
− M, (9)
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Table 1 Parameter values

Symbol Meaning Typical value

d1 Ingested egg survival coefficient 0.5–0.7

d2 Egg survival coefficient in wild 0.7

d3 Larval survival coefficient in migration 0.5

N̄ Human community size 102

R0 Basic reproduction rate 1–5

s Proportion of female worms 0.5

M0 Mean worm burden 10–20

β Transmission coefficient ∼ 10−10 day−1

β ′ Egg uptake rate ∼ 2 × 10−10 day−1

λ, λ0 Egg production rate 2 × 105 day−1

μ−1
1 Worm life expectancy 1–2years

μ−1
2 Mature egg life expectancy 28–84days

φ Mating probability ∈ (0, 1)

τ1 Internal egg maturation time 50–80days

τ2 External egg maturation time 10–30days

where
Fτ ≡ F(t − τ), (10)

and the dimensionless parameters are defined by

ε = μ1

μ2
, ε2 = μ1τ2, ε1 = μ1τ1, R0 = ν0r

μ1μ2
= βd1sd2φNλ

μ1μ2
. (11)

We mentioned earlier that Anderson and May (1991) do not provide an estimate
for the transmission coefficient β. They do, however, provide estimates for the basic
reproduction rate of the infection, which is the parameter R0 defined above. Three
different estimates from Iran, Burma, and Bangladesh (table 16.3, p. 478) lie in the
range R0 = 1 – 5. From (11), we have

β = R0

μ−1
1 μ−1

2 d1sd2φNλ
, (12)

and using the values of the other parameters in Table 1, together with φ = 1
2 , we

obtain a range for β of 0.07 – 2.8 × 10−10 day−1. If we accept the value of R0 of
O(1), which is inferred from the recovery timescale of the infection (e. g., Anderson
and May 1991, figure 17.4), then this calculated value of β seems very small, and it
raises the issue of whether this model for egg uptake is realistic; we come back to this
issue later in the discussion (Sect. 5). First, we complete the analysis of the model on
the basis that (5) is essentially correct.

123

Author's personal copy



822 A. C. Fowler, T. Déirdre Hollingsworth

From Table 1, we have ε, ε1, ε2 � 1, and thus, the delays can be ignored, the
infected egg population L rapidly approaches equilibrium, and the worm population
satisfies the approximate equation

Ṁ = (R0 − 1) M, (13)

where, as mentioned above, Anderson and May (1991) estimate R0 in different com-
munities as having typical values R0 ≈ 1–5.

The worm population scale M0 is undetermined, because the model (9) or (13) is
linear. In particular, if R0 > 1 then unbounded growth occurs; in reality, the worm
population is limited by nonlinearities, as discussed below.

3.1 Nonlinearity and Saturation

Anderson and May (1991) address the issue of the linearity of (5) by proposing two
nonlinear dependences of the parameters in the definition of R0. Themating probability
must be a function of M , since we must have φ = 0 for M = 1, φ = 0.5 for M = 2,
and so on. Generally, φ is an increasing function of M , asymptoting to one for large
M . A simple estimate for φ follows from assuming mating occurs if there is at least
one male and one female worm. In this case,

φ = 1 − 1

2M−1 . (14)

Similarly, egg fecundity λ is a decreasing function of M . Measurements indicate
that while λ decreases (Anderson and May 1991, figure 15.14), the net production
Mλ increases with M , as we might expect (Hall and Holland 2000). The simplest
choice for a decreasing fecundity which satisfies these constraints is the algebraic
decay function

λ = λ0M0

M + M0
, (15)

whereM0 thenprovides the natural scale for thewormpopulation. This is not dissimilar
to other algebraic data fits (Anderson and Medley 1985). With these modifications,
the dimensionless Anderson–May model (13) takes the form

Ṁ = [R0ψ(M) − 1]M, (16)

where

ψ(M) = φ(M)

1 + M
, (17)

and a reasonable representation for φ is, from (14),

φ = 1 − e−αM , (18)

where α ≈ M0 ln 2, and has a typical value in the range 7 − 14.

123

Author's personal copy



The Dynamics of Ascaris lumbricoides Infections 823

Fig. 2 The bistable equilibria of
(16), assuming (17) and (18),
with α = 5

 0

 1

 2

 3

 0  1  2  3  4

R 0

M

The nonlinear model (16) provides a classical hysteretic transition from the stable
state M = 0 to the stable upper branch of Fig. 2. Since in practice α is large, the
threshold for transition is very low, and we can approximately take φ = 1 in (17). In
this case (16) is simply

Ṁ =
(

R0

1 + M
− 1

)

M, (19)

and the stable steady state is just M ≈ R0 − 1. The general solution of (19) is just

t = 1

R0 − 1
ln

[
M

(R0 − 1 − M)R0

]

. (20)

In particular, the dimensionless time, following an intervention which reduces the
worm burden to a fraction fI of the steady state, for it to recover to a fraction fR of
the steady state, is just

tR = 1

(R0 − 1)
ln

(
fR
fI

)

+ R0

(R0 − 1)
ln

(
1 − fI
1 − fR

)

. (21)

This gives a simple expression for the bounceback time.

4 The Stochastic Anderson–May Model

The distribution of worm load in humans is highly skewed: most infected carriers have
one or two worms, and the number with higher burdens shrinks rapidly, although there
is a fat tail to the probability density. Anderson and May (1991) show that a negative
binomial distribution fits measured worm burden profiles very well. They give the
probability density of having j worms as

p j = ( j + k − 1)!
j !(k − 1)! α j (1 − α)k, (22)
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824 A. C. Fowler, T. Déirdre Hollingsworth

where in Anderson and May’s notation,

α = m

m + k
, (23)

and m and k are positive parameters: m is the mean of the distribution. We form the
probability generating function

GW(z) =
∞∑

0

p j z
j , (24)

from which we find

GW(z) =
(

1 − α

1 − αz

)k

, (25)

which gives the negative binomial distribution its name.
A natural explanation for the prevalence of negative binomial distributions in the

human population can be found through a stochastic process which describes within-
host birth, death, and immigration (Bartlett 1960). However, such a model does not
apply directly to macroparasite infections, because births do not take place within the
host. We now aim to formulate a stochastic model to allow for the Anderson–May
environmental dynamics.

We consider a community of N̄ people, each of whom has a random number of
n worms, and we suppose that the local environment contains m mature eggs, or
m cohorts (stools) of mature eggs [in the latter case, we are considering the idea
of ‘clumped’ infection (Isham 1995; Cornell 2010; Walker et al. 2010)]. The joint
probability of an individual having n worms and there beingm mature eggs is denoted
pm,n . To derive a stochastic equation for pm,n , we suppose the following processes
occur: worms die with probability μ1 dt in a time interval dt , mature eggs are taken
in by humans with specific probability ν0 dt , they die with probability μ2 dt , and they
are produced by individual worms at a rate r . As will be crucial, we also assume that
(mature) eggs are imported from elsewhere at a rate νe. Most obviously, this is by
means of human traffic.

These assumptions lead to the sequence of differential equations

ṗm,n = −[nμ1 + ν0m + μ2m + rn + νe]pm,n + μ1(n + 1)pm,n+1

+ ν0mpm,n−1 + μ2(m + 1)pm+1,n + rnpm−1,n + νe pm−1,n, (26)

and, defining the joint probability generating function

�(z, w) =
∑

m,n≥0

pm,nz
mwn, (27)

(and taking pi, j = 0 if i or j < 0), we can derive the partial differential equation

∂�

∂t
+ [μ1(w − 1) − r(z − 1)w]∂�

∂w

+[μ2(z − 1) − ν0(w − 1)z]∂�

∂z
= νe(z − 1)�. (28)
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The Dynamics of Ascaris lumbricoides Infections 825

In terms of this distribution, the mean quantities L and M of Sect. 2 are defined by

L = ∂�(z, 1)

∂z

∣
∣
∣
∣
z=1

, M = ∂�(1, w)

∂w

∣
∣
∣
∣
w=1

, (29)

and if we differentiate (28) with respect to z and w and apply the appropriate limits,
we regain (5) in the form

L̇ = rM − μ2L + νe,

Ṁ = −μ1M + ν0L , (30)

indicating the values of the egg production rate r and egg intake rate ν0 are the same
as defined earlier in (11). Because of the dependence of φ and λ, and thus r , on M ,
the parameter

R = rν0
μ1μ2

(31)

will also be a function of M . For M = 0, we have R = R0 as in (11), but the nonlinear
dependence of r on M means that the value of R = Rc at the stable steady state is
different, and crucially less than one; if we assume (19), for example, we have the
simple relation

Rc = 1

R0
. (32)

We come back to discuss the problem when r varies later; for the moment, we just
take it as a constant.

If the initial populations have values M and N , then the initial condition for � is

� = zMwN at t = 0. (33)

It is convenient to define
Z = z − 1, W = w − 1; (34)

then the characteristic equations for (28) are

Ż = μ2Z − ν0W (1 + Z),

Ẇ = μ1W − r Z(1 + W ),

�̇ = νeZ�. (35)

Despite their simplicity, solutionof these for Z andW does not appear feasible in closed
form. Instead, we take advantage of the fact that μ1 � μ2, so that the system (35)1,2
is relaxational, with Z being the fast variable. Additionally, note that our concern is
with the distribution of the worm numbers. If we denote its generating function as
GW (w), then in terms of z and w,

GW (w) = �(1, w); (36)
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826 A. C. Fowler, T. Déirdre Hollingsworth

-2
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 0

 1

-2 -1  0  1  2

W

Z

Fig. 3 Phase portrait for (35)1,2, using values μ1 = 0.002 day−1, μ2 = 0.02 day−1, Rc = 0.6, and
ν0 = 0.02 day−1; the value of r is determined from (31). The solid (red online) curve is the Ż = 0
nullcline, and the dashed (without arrows, green online) curve is the Ẇ = 0 nullcline. Apart from the

origin, which is an unstable node, there is a second fixed point at
(
1
3 , 1

2

)
, which is a saddle point, and

located at the apparent slight discontinuity (which arises through the solution of two separate trajectories)

note that z = 1 when Z = 0 in Fig. 3.
Figure 3 shows a phase portrait in the (Z ,W ) phase plane for a typical set of

parameters having μ1 � μ2, and in which ν0 ∼ μ2 (though as we see later the case

ν0 � μ2 is more likely). The figure illustrates the case where r <
μ1μ2

ν0
, for which

the fixed point other than the origin lies in the first quadrant; the only difference for

the case r >
μ1μ2

ν0
is that it lies in the third, but the phase portrait is otherwise the

same.
What concerns us is the large time evolution of � along the characteristics, since

this will give us the limiting distribution, and in view of (36), we are also interested
in the initial conditions for (35) which intersect the W axis, on which Z = 0, i. e.,
z = 1. It suffices to discuss the trajectories in W < 0, which must thus originate from
the saddle point at the origin, emerging almost along the lower unstable separatrix.
For the case where μ1 � μ2, these trajectories remain almost on the Z nullcline until
they leave at the last moment and dive almost horizontally to the right. This allows us
to obtain an approximate solution for �.

We consider first the case ν0 ∼ μ2. The trajectories inW < 0 remain approximately
on the Z nullcline

W = μ2Z

ν0(1 + Z)
, (37)

on which therefore

Ẇ ≈ μ1W − rν0W (1 + W )

μ2 − ν0W
. (38)
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Similarly, from (35) we can derive the approximate equation for � on the Z nullcline,

1

�

d�

dW
= ν0νe

μ1(μ2 − ν0W ) − ν0r(1 + W )
, (39)

and the appropriate initial condition for long time solutions is

� = 1 at W = 0. (40)

Defining

� = μ1μ2 − rν0
ν0(μ1 + r)

= μ2(1 − Rc)

ν0 + μ2Rc
, (41)

the solution of this is

� =
(

�

� − W

)k

, (42)

where
k = νe

μ1 + r
, (43)

and rewriting this in terms of w = 1 + W yields

� =
(

1 − α

1 − αw

)k

, (44)

where

α = 1

1 + �
= ν0 + μ2Rc

ν0 + μ2
. (45)

This gives the familiar negative binomial distribution on the Z nullcline, but it
remains approximately valid also on the W axis, since the change in W between the
two is asymptotically small.Hence, the long-termwormdistribution is (approximately)
negative binomial.

We now discuss the solution of the characteristic equations (35) when ν0 � μ2. It
is appropriate to rescale the variables as

Z ∼ δ = ν0

μ2
, t ∼ 1

μ1
, (46)

which leads to the (rescaled) equations

μŻ = Z − W (1 + δZ),

Ẇ = W − RZ(1 + W ),

�̇ = νZ�, (47)

where
μ = μ1

μ2
, ν = νeν0

μ1μ2
. (48)
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Since μ � 1, the Z equation is still fast and the earlier discussion applies, except now
the Z nullcline is approximately Z = W , since δ � 1. Thus on this nullcline,

1

�

d�

dW
≈ ν

1 − R(1 + W )
, (49)

whose solution (in terms of w) satisfying � = 1 on w = 1 is

� =
(

1 − R

1 − Rw

)ν/R

, (50)

so that we again obtain the negative binomial distribution (44) with parameters

α = R, k = ν

R
= νe

r
. (51)

Note that at the stable steady state R = Rc < 1.

5 Discussion

The negative binomial distribution is commonly written in terms of k and the mean

m = αk

1 − α
, and thus, we have

k = νe

μ1 + r
, m = νe(ν0 + μ2Rc)

μ2(μ1 + r)(1 − Rc)
, ν0 ∼ μ2,

k = νe

r
, m = νeRc

r(1 − Rc)
, ν0 � μ2. (52)

Note that if Rc ∼ 1 as we suppose, then ν0 � μ2 only if μ1 � r ; so we see that the
first result in (52) includes the second as a particular limit and is uniformly valid.

The estimates in Table 1 suggest the egg production rate is r ∼ 107 day−1, whence
the assumption that Rc ∼ 1 suggests ν0 ∼ β ∼ 10−10 day−1. As we intimated
earlier, it may not be the actual egg production which is important, but the infected
(clumped) stool production (Isham 1995; Walker et al. 2010). Eggs are not distributed
randomly in the environment. They are concealed in faeces which themselves are
deposited occasionally and locally. And within these faeces, only the eggs located on
the outside should be available for uptake. Thus, although the adult worm produces
105 eggs per day, these are packaged in one set of faeces and only a small fraction
will be exposed and available. More specifically, if 105 eggs of diameter 50µm are
distributed uniformly in a 2cm diameter stool, then a rough calculation suggests that
∼ 103 will present themselves on the surface. More importantly, it is not really the
egg density which is important but the faecal stool density. In terms of infected stool
production, a rate λ ∼ 1 day−1 is more reasonable. If we take total infected stool
production at 10day−1, then the necessary uptake rate is ν0 ∼ 10−5 day−1, but this
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is still much less than μ2, so it seems the assumption ν0 = βd1 � μ2 is safe; in that
case we can use the second line of (52) in our discussion.

Observed distributions can then give us some further understanding of the value
of the egg uptake rate and the immigration rate. As an example, we consider some
Korean data (Anderson andMay 1991, figure 15.17), for whichm = 2.2 and k = 0.32;
thus Rc = 0.87, and more importantly, νe = kr <∼r ; the immigration rate would need
to be comparable to the local production rate. This can make sense, if children of
neighbouring villages frequently visit.

It is essential in our analysis to include the effects of external immigration. Partly,
this is because with the effects of nonlinearity included, immigration is necessary in
order to make the zero state unstable. More pertinently, if there is no immigration,
then the initial condition is retained in the distribution, although there may be some
effect of nonlinearity on this. Indeed, straightforward asymptotic solution of (35) with
νe = 0 leads to the approximate distribution

� =
[

1 + (w − 1)

(
�

� + 1 − w

)ν′

exp

(

−r ′t
μ2

)]N

, (53)

where � is as given in (41), and

r ′ = μ1μ2 − rν0, ν′ = 1 − ν0�

μ2
. (54)

The behaviour of the distribution at large time is opaque; however, because with no
immigration, the equilibrium worm density is obtained when r ′ = 0 and thus also
� = 0. Naïve insertion of these limits implies extinction, which cannot be the case,
and a more subtle investigation is necessary, but we do not pursue this here.

A comment should be made concerning the assumption that the nonlinear depen-
dence of the production rate r is on the mean M and not n. If we were dealing with a
single individual, this would not be the case, and the differential equations (26) would
be genuinely nonlinear. However, because we have a reasonably large number of indi-
viduals, which we suppose represents the worm distribution, the correct expression
for r in (26) and thus eventually (35) is

r̄ = r(n), (55)

where the overline represents an average over the population. The characteristic equa-
tions are the same (e. g., (47), but with R replaced by R̄, but the eventual distribution
is the same, except that R̄ is then the average of R over the distribution.

In view of the asymptotic assumption that μ1 � μ2, one might suppose that the
direct stochastic equivalent of the first-order Eq. (13) would give similar results. This
is not the case, as it is simple to show that the result is a Poisson process for the
worm distribution. Nor does the assumption of an exponential distribution of lifetimes
affect this. Assumption of a fixed finite lifetime just leads to the renewal equation
and again a Poisson process with mean proportional to the product of the effective
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egg uptake β and the worm lifetime T . However, if we additionally suppose that this
product itself has a gamma distribution, then a negative binomial distribution for the
worm population again ensues. Thus, an alternative explanation for such distributions
is a simple immigration-death process for the adult worms, together with a gamma
distribution for uptake rates, for example. Such distributions are not unreasonable,
insofar as very young children are protected, but their uptake will rise sharply when
they are toddlers but decrease as they grow up. It remains to be seen whether such an
explanation is consistent with observed values of m and k.

6 Conclusions

Wehave addressed and provided a solution to the question of why human communities
subject to endemic infections of the helminth Ascaris lumbricoides generally display
a negative binomial distribution of adult worm numbers in the human hosts. Our
solution method generalises the classic Anderson–May model to a coupled stochas-
tic/deterministic process, and we show that the dynamics of the infection naturally
leads to the evolution of negative binomial distributions, providing we include the
effect of egg immigration into the model.

If this is the correct explanation, it has important consequences for treatment strate-
gies. Following disinfection, worm recoverywould in any case be enabled by ingestion
of worms already present in the environment. If, however, these could be removed,
then according to the model, treatment would be permanent, and recurrence would be
entirely due to immigration. Indeed, this is also true for the classical Anderson–May
ordinary differential equation model. Also, observed parameters of the distribution
then suggest that immigration is as important as local egg production. If quarantining
could be introduced, the immigration rate νe and thus also ν would be reduced, and
(50) then suggests that the distribution would become much sparser, and eradication
more likely.

The alternative is that the negative binomial distribution arises because of the vari-
ability in uptake rates in the population, suggesting that immigrationmaybe infrequent.
In that case, infection recurrence ismost likely due to the continuing presence postinoc-
ulation of eggs in the soil.

An interesting question for the Anderson–May model is why the inferred value of
the transmission coefficient β is so low. β = β ′d3 is the product of two terms, the
uptake rate β ′ and the survival probability in the body. From our discussion above,
the constraint that R0 ∼ 1 requires βλ ∼ 10−5 d−2, so that even if we take the uptake
objects to be infected stools (thus replacing λ by stool production rate, say 1 day−1),
we would then need β ∼ 10−5 day−1. It seems difficult to see how we could have
stool contact rate β ′ < 10−2, say, in which case the immune loss rate would need to be
d3 <∼10−3. While that seems entirely reasonable on the basis of an effective immune
response, it raises the question why the immune response is not able to completely
eradicate the infection; nor is it consistent with our much higher assumed value of d3
in Table 1. Questions such as this go beyond the Anderson–Maymodel, but are central
to the more general question as to why infectious diseases typically have a value of
R0 ∼ 1, and what mechanism enables this.
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Appendix

Solution of (1)

We write (1) in characteristic form:

ṁ = 1, Ė = −μeE,

ṁ = 1, Ḣ = −μhH,

ṁ = 1, İ = −μi I, (56)

with the boundary conditions (2) taking the parametric form

t = τ, E = E0(τ ), H = β ′L(τ ), I = H(τ, τ3) at m = 0 (57)

(these give the solutions for t > m; for t < m we would use an initial condition at
t = 0, but since m is finite, this just produces a transient which washes through the
system). The solution of (56) and (57) is given parametrically by

m = t − τ, E = E0(τ )e−μe(t−τ), H = β ′L(τ )e−μh(t−τ),

I = H(τ, τ3)e
−μi (t−τ), (58)

whence we obtain (3).
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