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ABSTRACT

Debris-covered glaciers are prone to the formation of a number of
supraglacial geomorphological features, and generally speaking, their
upper surfaces are far from level surfaces. Some of these features are
due to radiation screeningor enhancingproperties of thedebris cover,
but theoretical explanations of the consequent surface forms are in
their infancy. In this paper we consider a theoretical model for the
formation of “ice sails”, which are regularly spaced bare ice features
which are found on debris-covered glaciers in the Karakoram.
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1. Introduction

Debris-covered glaciers are a widespread glacier type, especially in Central Asia and the
Himalayan–Karakoram range (Benn et al. 2012, Bolch et al. 2012). Due to melt-out of
englacial debris or the deposition of rock fall from mountain slopes, debris accumulates
along the glacier tongues with ongoingmelt (Nakawo et al. 1986, Rowan et al. 2015). These
debris layers usually start as very thin layers and become thick packs of a large variety of
grain sizes; they can be up to several metres thick at the glacier terminus. While very thin
debris cover enhances the melt rate compared to clean ice, thick debris cover reduces melt
(Östrem 1959). Due to the influence of this differential melt and the action of moving melt
water on the glacier surface, the debris cover is usually not homogeneous, but shows a
spatial variability (Nicholson and Benn 2013). Melt water streams and supraglacial ponds
cut into the ice and generate ice cliffs which consist of bare ice, or which are covered
with only a very thin layer of dust (Juen et al. 2014). Ice cliffs exposed to the south are
usually small, because their low slope angles lead to a fast coverage with debris. In contrast,
northerly exposed cliffs show steep slopes, where debris cannot accumulate, but slides off
(Sakai et al. 2002). Ice cliff ablation became a focus of several research studies recently, due
to its potential impact on the general melt rate (e.g. Reid and Brock 2014, Steiner et al.
2015, Brun et al. 2016). Ice cliffs generally experience higher melt rates than the flat debris-
covered parts, and thus they enhance the large-scale surface roughness of debris-covered
glacier tongues (Mayer et al. 2006). On steep sections of the glaciers, supraglacial debris
is redistributed by mass movement, which adds to the non-regular distribution of debris
and in consequence the non-uniform ice melt across the glacier tongue (Sakai et al. 2002).
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412 A. C. FOWLER AND C. MAYER

Figure 1. Ice sails are large, quasi-tabular wedges of clean ice which protrude from the debris-covered
surface of the ice. Photograph: A. Lambrecht, 2011.

Figure 2. The ice sails on Baltoro Glacier form a regular train which progresses down glacier, and extends
over a distance of some 9 km. Photograph: C. Mayer, 2013.

Therefore, debris-covered glaciers usually show a rough surface topography which is very
dynamic with time.

Glaciers, mainly in the Karakoram, present an additional feature on the debris-covered
surface which we call “ice sails” (Mayer et al. 2006; figure 1): the almost continuous debris
surface is interrupted by clean ice sections which resemble steep pyramidal bodies, elevated
from the debris surface. These features often seem to occur in a regular sequence (figure
2), rising from the surface in the region where debris bands on the glacier merge. They
increase in height on their way downstream, reaching a vertical size of up to 20 m and
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GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 413

horizontal dimensions of 30–40 m, before they disappear again. It seems surprising that
these ice sails survive, since melt rates of clean ice should be much higher than ice melt of
the surrounding debris-covered area. In addition, an extensive survey of glaciersworldwide
reveals that these surface features exist mainly on the glaciers of the central Karakoram.
There they usually occur at altitudes between 4000 and 4500m.Amore detailed description
about morphology and regional occurrence of ice sails is given in Evatt et al. (2017).

Ice sails, also known as ice pyramids (Fisher 1950, Visser 1932), are just one of a number
of similar features found on debris-covered glaciers. Like themuch smaller scale penitentes
(Lliboutry 1954, Kotlyakov and Lebedeva 1974), they are associated with arid conditions
in which mass wastage may be by sublimation. Dirt cones (Swithinbank 1950) are similar
features, but the rôle of clean ice and debris cover is reversed: dirt cones are covered with
a layer of debris which prevents melting, while evidently the ice sails do the opposite: the
clean ice has lower mass wastage rate.

In this paper we provide a simple mathematical model which is able to explain how
differential melting of debris-covered and clean ice can lead through an instability to
the formation of isolated mounds of clean ice. Up to now the origin of ice sails has not
been explained, and this is a suitable way to explain their formation. Although we focus
here on ice sails, the basic structure of our model may have applications in describing
other such features, such as ice cliffs. The instability mechanism is based on the classical
Östrem curve (Östrem 1959) which suggests that the melt rate at the surface of a glacier,
considered as a function of debris thickness h, first increases with thickness before then
decreasing at large h. Themaximumgrowth rate occurs at a depth whichÖstrem estimated
at ∼ 0.5 cm, but his experimental results were based on a uniform sand cover, whereas in
practice the debris cover is patchy and of irregular grain size. In addition, it is observed on
Baltoro Glacier (see figure 1) that melting of clean ice is significantly lower than that of the
surrounding debris-covered ice, which may have a typical thickness of several centimetres
(the basal apron scarp visible in figure 1 is of height onemetre, and arises precisely through
excessive summer melting of the debris-covered ice). We will show that if the melt rate
is an increasing function of debris cover thickness, at least for thin debris cover, then a
uniform such cover is unstable, and finite width sails are then predicted by the model.

2. Mathematical model

2.1. The Östrem curve

We first describe a simple model which describes the melt rate M of debris-covered ice
as a function of debris depth h. A more complex version of this model has recently been
proposed by Evatt et al. (2015). As shown in figure 3, we consider a debris layer of depth h
in which the solid fraction is φ. Below the debris layer is ice, on top of which we suppose
melting causes the formation of a thin water film of (small) depth hw . The (absolute)
temperature at the surface of the layer is T , and that at the water surface is Tw . The net
average incoming radiation (both short wave and scattered long wave) is denoted byQi; we
suppose this is absorbed at the upper surface. Similarly, the outgoing black body radiation
from the upper surface is σT4. Additionally, there is a conductive heat flux k(T − Tw)/h
through the debris (here k is the relevant thermal conductivity, and we can assume a
steady state as the thermal time scale is only 100 s if h ∼ 10 cm, assuming a normal
thermal diffusivity of ∼ 10−6 m2 s−1). There is also a sensible heat flux to the atmosphere,
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414 A. C. FOWLER AND C. MAYER

3: SW+LW

5: conductive

6: conductive

1: LW 2: sensible

4: latent

Figure 3. Energy fluxes in a debris layer. These are 1: long wave radiation out; 2: sensible heat flux to the
atmosphere; 3: short wave and reflected long wave in; 4: latent heat of evaporation; 5: heat conduction
through the debris; 6: heat conduction through the water film. The latent heat flux 4 occurs at the water
surface, but does not contribute to the energy exchange at the debris surface as the vapour flux is
continuous there.

whichwe take to be hT(T−Ta), where hT is a heat transfer coefficient andTa is atmospheric
temperature, and a net heat flux Qw through the water film. We assume for simplicity that
the water film is sufficiently thin that we can take Tw = TM , the melting temperature,
throughout. Energy balances at the three interfaces then lead to the equations

Qi − σT4 = k(T − TM)

h
+ hT(T − Ta),

k(T − TM)

h
− ρwLvE = Qw ,

E = κE(1 − rh)
h

,

Qw = ρiLmM, (1)

in which E is the evaporation rate of the water film, Lv and Lm are the latent heats of
vapourisation and melting,M is the melt rate of the ice surface, rh is the relative humidity,
and κE is an effective moisture diffusion coefficient through the debris layer. There is
evidently a singularity in the definition of the evaporation E when h → 0. As we describe
further below, thewater filmwill actually vanish ifE is too large, but also the singularity will
be modified when h → 0, since there will be a residual boundary layer in the atmosphere
which prevents E becoming infinite.

On the first of these points, the water film thickness is described in this spatially
independent case by

ρwḣw = ρiM − ρwE. (2)

This allows for the film to vanish if ρiM < ρwE, in which case sublimation would occur.
If, on the other hand, ρiM > ρwE, the film would thicken and flow somewhat analogously
to an overland flow, subject to an approximate water flux

q = −ρwgh3w
3ηw

∇(s + hw), (3)
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GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 415

Table 1. Values of the parameters used. The choices forQi ,QE , hE and ha are discussed in the text.

Symbol Meaning Typical value

h debris depth 1–10 cm
ha heat transfer layer thickness 10 cm
h∗
a given by (11) 6.3 cm

hE moisture layer thickness 0.2–2 cm
hT heat transfer coefficient 10 Wm−2 K−1

k thermal conductivity 1 Wm−1 K−1

Lm latent heat of melting 3.3 × 105 J kg−1

Lv latent heat of vapourisation 2.5 × 106 J kg−1

ME evaporative rate coefficient 13.3 m y−1

M∗
E annualised average ofME 3.6 m y−1

MT melt rate coefficient 25.7 m y−1

M∗
T annualised average ofMT 7 m y−1

QE evaporative heat flux 125 Wm−2

Qi net radiation 440 Wm−2

rh relative humidity 0.3
Ta summer air temperature 283 K
TM melting temperature 273 K
T∞ equilibrium temperature 297 K
κE moisture diffusion coefficient 10−9–10−10 m2 s−1

μ defined in (7) 0.59
ρi ice density 0.9 × 103 kg m−3

ρw water density 103 kg m−3

σ Stefan–Boltzmann constant 5.67 × 10−8 Wm−2 K−4

φ solid fraction 0.5
�T defined in (11) 24.2 K

where s is the ice elevation surface, ρw is the water density, and ηw is the water viscosity.
However, we do not pursue this topic here as such fluxes are small. From (1), we find

T = (kTM + hThTa) + h(Qi − σT4)

k + hTh
,

ρiLmM = k(T − TM)

h
− ρwLvκE(1 − rh)

h
; (4)

the second of these is the latent heat generated at the ice surface.
We can estimate some of the terms using the values in table 1. First note that σT4

M ∼ 315
W m−2 ∼ Qi. Debris temperatures can commonly reach 30–40 ◦C ∼ 310 K, and this
corresponds essentially to radiative equilibrium, Qi ≈ σT4; a value of Qi = 510 W m−2

corresponds to a temperature of 35 ◦C. We use this to define an equilibrium temperature

T∞ =
(
Qi

σ

)1/4
. (5)

Noting that T∞ − TM � T∞, (4)1 can be written approximately1 as

T ≈ TM + h[Ta − TM + μ(T∞ − TM)]
ha + (1 + μ)h

, (6)

1Use (5) and the definition of μ in (7) to eliminate Qi and σ in (1)1, use the definition of ha in (7) to eliminate k, expand
1 − (T/T∞)4 to first order in powers of (T − T∞)/T∞ ; simplifying the resultant expression for T − TM yields (6).
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416 A. C. FOWLER AND C. MAYER

where
ha = k

hT
, μ = 4Qi

hTT∞
. (7)

Using (6) in (4), we have

ρiLmM ≈ k[Ta − TM + μ(T∞ − TM)]
ha + (1 + μ)h

− ρwLvκE(1 − rh)
h

; (8)

the first term gives the predominant decaying trend of the Östrem curve, while the second
gives the rising portion of the curve for small h.

Since air is an insulator, an appropriate choice of thermal conductivity would be k =
φks, where ks is the thermal conductivity of sediment, say ks = 2 Wm−1 K−1, whence we
would have k = 1 W m−1 K−1 as in table 1, and consistent with measurements of Juen et
al. (2013).

An issue concerns the limit of the evaporative heat flux as h → 0. In this limit, the term
κE/h in (8) should become κE/hE when h = 0, where hE is the effective thickness of a thin
atmospheric boundary layer. We mimic this by replacing κE/h by κE/(h + hE), and we
calibrate hE by choosing

ρwLvκE
hE

= QE , (9)

whence (8) takes the final form

M = MTh∗
a

h + h∗
a

− (1 − rh)MEhE
h + hE

, (10)

where

h∗
a = ha

1 + μ
, MT =hT�T

ρiLm
,

�T =Ta − TM + μ(T∞ − TM), ME = QE

ρiLm
. (11)

Making the same modifications in the evaporation rate E, we can derive from (1) the
expression

E = δ(1 − rh)MEhE
h + hE

, (12)

where
δ = ρiLm

ρwLv
∼ 0.12, (13)

which can be used in (2).MT is a thermalmelt rate scale, andME is an evaporativemelt rate
scale. Equally, hT is a thermal conductive length scale, and hE is an evaporative transport
length scale. The equation (10) gives a very simple parametric description of the Östrem
curve in terms of the climatically controlled parameters MT , ME , hT and hE , which we
might relate to the surface roughness (Cuffey and Paterson 2010, p. 155).

In order to roughly calibrate the values of these parameters, we follow the discussion
of energy balance in Cuffey and Paterson (2010). The quantity QE is the evaporative
heat flux for clean ice at zero relative humidity. On page 157 of their book, Cuffey and
Paterson (2010) give a typical estimate for this of QE(1 − rh) = 25 W m−2, when the

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
4:

56
 0

9 
N

ov
em

be
r 

20
17

 



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 417

0

1

2

3

4

5

6

0 10 20 30 40 50

M

h

Figure 4. An Östrem curve for the melt rateM (m y−1) as a function of debris depth h (cm). The function
is that in (14), where the chosen parameter values areM∗

T = 7 m y−1,M∗
E = 3.6 m y−1, h∗

a = 6.3 cm,
hE = 0.2 cm, rh = 0.3.

relative humidity is rh = 0.8, and thus QE = 125 W m−2. It then follows thatME = 13.3
m y−1.

At the same place, they suggest a sensible heat flux transfer coefficient of hT = 10 W
m−2 K−1. A mean summer air temperature on Baltoro Glacier is 10 ◦C, thus Ta = 283 K,
while if we select Qi = 440 W m−2 following Evatt et al. (2015), then T∞ = 297 K, and
thus �T = 24.2 K, using μ = 0.59 computed from (7). Also from (7), ha = 0.1 m, and
thus h∗

a = 0.063 m, and from (11),MT = 25.7 m y−1.
We now compare these (rough) estimates with actual data from Baltoro. The clean

ice melt rate ranges between 4 and 7 cm d−1, while the measured annual ablation is
between 4 and 4.6 m y−1. Further, the ablation season lasts 100 d, and this needs to
be factored in. Relative humidity correlates inversely with temperature in the summer,
and typical measured values of rh are in the range 0.2–0.4 during warm days (when we
suppose most melting occurs). If we take rh = 0.3, then the clean ice melt rate from (10)
isMT − 0.7ME ≈ 16.4 m y−1, and dividing this by 365 yields an estimated clean ice melt
rate of 4.5 cm d−1. Astonishingly, this unforced estimate is entirely accurate.

In our modelling, we need to multiply the values of MT and ME by 100/365, yielding
(10) in the final form

M = M∗
Th

∗
a

h + h∗
a

− (1 − rh)M∗
EhE

h + hE
, (14)

whereM∗
T ≈ 7 m y−1,M∗

E ≈ 3.6 m y−1, and we use these values as a guide.
It remains to ascertain a suitable value for hE . This can be obtained from (9), providing a

suitable estimate for κE is given. Measurement of water vapour diffusivity in porous media
is complicated by the soil suction associated with residual liquid saturation, and κE is much
lower than the free air diffusivity. Measured values lie in the typical range 10−9–10−10

m2 s−1 (Rose 1963, figure 6), and lead to estimates of hE = 0.2–2 cm.
As shown in figure 4,M initially increases with h (if hE is low enough) before reaching a

maximumand then decreasing towards zero as h increases. This figure is in fact remarkably
similar to measured Östrem curves (see Evatt et al. 2015, figure 2).
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418 A. C. FOWLER AND C. MAYER

If we suppose that hE � h∗
a , thenM has a maximum at h = hM , where

hM = (ĥ − hE)h∗
a

h∗
a − ĥ

, (15)

and

ĥ =
[
(1 − rh)M∗

EhEh
∗
a

M∗
T

]1/2
(16)

(roughly the geometric mean of hE and h∗
a); in particular if hE � h∗

a , then hM ≈ ĥ.
Typical measured values of hM are in the range 1–2 cm (Mattson et al. 1993, Kayastha

et al. 2000), but it is noteworthy that in the experiments done to ascertain these and other
Östrem figures (including Östrem’s own), surfaces with prepared thicknesses of sands and
gravels were used, for which we should expect the surface roughness to be small. Indeed,
if ĥ = 2 cm, then hE ≈ 2.5 mm, consistent with the relatively smooth surfaces seen in, for
example, figure 1 of Kayastha et al. (2000).

However, we think that on natural debris-covered surfaces, and particularly on Baltoro
Glacier, where the debris cover is highly irregular and coarse-grained, the roughness length,
and indeed other of the parameter choices, may be significantly different, so we allow some
flexibility in our parameter choices below. In particular, increasing void space in the debris
layer is liable to increase the vapour diffusivity somewhat towards its free air value, which
is 2.6× 10−5 m2 s−1 (Rose 1963), and the constraint in (9) would suggest a larger value of
hE also.

2.2. Mathematical model

Our task now lies in showing how the form of the Östrem curve will actually lead to the
features which are seen. The basis of ourmodel is that when the debris layer has a thickness
which lies on the increasing portion of the Östrem curve, a uniform layer of debris cover
promotes an instability, and the consequent evolution of the debris thickness can lead, in
certain circumstances, to the formation of steep patches of clean ice, as the debris slides
off. More specifically, we suppose that the thickness of the debris layer increases as the ice
moves downstream. An initially thin debris cover will seed the initial growth of an ice sail,
and its growth will not be limited until the debris cover becomes sufficiently thick that the
melt rate of debris-covered ice becomes comparable to that of clean ice. For the melt rate
portrayed in figure 4, where the clean ice melt rate is ≈ 4.5 m y−1, this would be when
h ≈ 3 cm.

The geometry of the model is indicated in figure 5. We denote the elevation of the
ice surface as s, and the thickness of the debris layer as h, and these are both functions
of space x and time t. The ice surface melts at a rate M(h), which we take to depend
on debris thickness but not on solar angle. In reality, north facing slopes will be subject
to lower melting than south facing slopes, which in our simple two-dimensional theory
would be accommodated by a dependence ofM on∇s. This effect is liable to be important
in the formation of such asymmetric features as ice cliffs, but is ignored here as having
secondary importance (it will affect the precise shape of ice sails, which is, however, not
our principal concern. The ice surface also diffuses because a small amount of ice creep is
driven by surface slopes, and this creep can be modelled by a diffusion term, with diffusion
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h

s

debris

ice

Figure 5. Geometry of the model.

coefficient Di. We can estimate the value of Di from a creep-derived estimate describing
the viscous collapse of an ice dome; this gives

Di ∼ ρigd3

3ηi
, (17)

as follows from a straightforward application of lubrication theory (Acheson 1990, exercise
7.13), where ρi is ice density, g is the acceleration due to gravity, d is the depth of the ice
dome, and ηi is ice viscosity. If we take values ηi = 6 bar y = 2× 1013 Pa s, ρi = 0.9× 103

kg m−3, g = 10 m s−2, d = 10 m, this yields Di ∼ 0.5 m2 y−1 = 13.7 cm2 d−1, but this
is liable to be a severe overestimate, since the stress dependence of the viscosity will cause
the viscosity to be significantly higher at the surface, where the shear stress vanishes. To
accommodate this, we select a value of the viscosity 50 times lower, and then

Di ∼ 0.01 m2 y−1 = 0.27 cm2 d−1, (18)

and will be even lower for smaller ice domes. One commonly thinks of ice domes of
this magnitude as stagnant; bear in mind that a one metre high ice pyramid would take
significantly more than a century to flatten under this diffusion rate; so that in reality it
would indeed be “stagnant ice”. Although, as it turns out, the ice creep term is relatively
small, it is necessary to retain it in order to obtain a coherent asymptotic approximation.

We also assume that sediment cover creeps, andwe alsomodel this as a diffusive process,
with diffusion coefficient Ds. This is a common assumption in geomorphology (McKean
et al. 1993, Fernandes and Dieterich 1997). Most simply, it represents the inclination of
unconsolidated sediment to roll down slopes. In the present case, the physical process
has been described by Anderson (2000) in some detail. Diffusion occurs through the
development and collapse of small scale ice tables under clasts. These form as the ice melts,
since the covered ice is protected from melting. Eventually the clasts will topple, with a
slight preference to roll downslope. Anderson also offers an estimate for the diffusivity,
which in the present case we would interpret as

Ds ≈ M0h, (19)
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420 A. C. FOWLER AND C. MAYER

whereM0 is the clean ice melting rate. Clearly the diffusive flux should go to zero as h goes
to zero; also it should depend on surface slope, since the flux will become large on very
steep slopes. However, for simplicity, we take Ds ∼ M0h0 to be constant, where h0 is a
typical value of the debris layer thickness. Taking valuesM0 ∼ 5 m y−1 and h ∼ 1–10 cm,
this suggests

Ds ∼ 0.05–0.5 m2 y−1 = 1.4–13.7 cm2 d−1. (20)
The model equations are thus taken to be

st = −M(h) + Di∇2s,
ht = Ds(∇2s + ∇2h). (21)

Here the subscript t denotes a partial time derivative. These equations represent con-
servation of mass of ice and sediment, respectively: the ice flux is −Di∇s, and the melt
rate M(h) represents loss of ice to meltwater (which is considered to be instantaneously
removed from the system). The second equation is essentially an Exner equation, in which
the flux of sediment is −Ds∇(s + h), where the sediment is taken to creep down slopes of
the till surface z = s + h.

3. Linear stability

We begin by non-dimensionalising the model. With h0 being a representative debris
thickness, we scale the variables as

s + Mct ∼ h0, h ∼ h0, M = Mc + �Mm,

x ∼ l =
(
Dih0
�M

)1/2
, t ∼ t0 = h0

�M
, (22)

where
�M = Mc − M0, M0 = M(0), Mc = M(h0), (23)

and this leads to the dimensionless model2

st = −m(h) + ∇2s,
εht = ∇2s + ∇2h, (24)

where the dimensionless parameter is

ε = Di

Ds
. (25)

For the choice of melt rate function given by (14), we have

m(h) = (h − 1)
[
1 + m∗

1 + Λh
− m∗

1 + λh

]
, (26)

2More precisely, we write s + Mct = h0s∗ , h = h0h∗ , etc., to obtain dimensionless equations for the starred variables. As
is commonly done, we then immediately drop the asterisks as the discussion henceforth involves only the dimensionless
variables.
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where
λ = h0

h∗
a
, Λ = h0

hE
, m∗ = M∗

Th0
(h0 + h∗

a)�M
,

�M = (1 − rh)M∗
EΛ

1 + Λ
− M∗

Tλ

1 + λ
> 0. (27)

For future reference, we note thatm(0) = −1,m(1) = 0, and

m′(1) > 0 if m∗ <
1 + λ

Λ − λ
or λ > Λ, (28)

although we may discount the latter case since thenm(h) never decreases at large h.
If we take the values in (18) and (20), and also

h0 = 1 cm, �M = 1 m y−1, (29)

then we have
l = 1 cm, t0 = 0.01 y. (30)

The instability we seek will be on the scale of the debris layer thickness, and the time of
formation of a bare ice patch may be over a melt season; this is what is observed, but
nonlinear effects will be necessary to explain the enormous amplitudes of the sails, and
their growth will take several melt seasons. The estimated value of ε is

ε ∼ 0.02–0.2; (31)

the precise value is very uncertain, but the only important fact in what we do is that we
take ε to be small.

We solve (24) on a spatial domain S, and take the boundary conditions for (24) to be
those of no flux at the boundary, thus

n.∇s = n.∇h = 0 on ∂S. (32)

A consequence of this is that the total debris cover is conserved:

1
S

∫
S
h dS = h̄, (33)

which also follows from integration of (24)2 over the domain S. The mean thickness h̄ can
be taken to be one in our stability analysis, but we may allow it to vary later to describe the
generally increasing thickness of sediment cover downstream (and thus, as time increases).

The dimensionless functionm(h) given by (26) is as portrayed in figure 6. Two require-
ments in our theory are m′(1) > 0 (so that the steady state is unstable) and m(∞) < −1
(so that the sails eventually disappear), and these constraints are satisfied if

λ(1 + Λ)

Λ − λ
< m∗ <

1 + λ

Λ − λ
, (34)

and our choice of coefficients in figure 6 is made to satisfy these constraints.

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
4:

56
 0

9 
N

ov
em

be
r 

20
17

 



422 A. C. FOWLER AND C. MAYER
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h

m

Figure 6. Typical assumed form of m(h) given by (26). The parameters used are h0 = 1 cm, h∗
a = 6.3

cm, hE = 1 cm, whenceΛ = 1, λ = 0.16, and alsom∗ = 0.7. WithM∗
T = 7 m y−1 and rh = 0.3, these

choices correspond toM∗
E = 3.26 m y−1, and also�M = 1.37 m y−1.

To assess the stability of a uniform state, we first note that (by choice of scales) a uniform
solution of (24) is given by h = 1, s = 0, corresponding to a uniform debris thickness and
a uniformmelting rate of the ice surface. Note that there is another steady state with h > 1,
but this is ruled out because the amount of debris is prescribed; we return to this in the
following section.

Next we linearise the equations (24) about their uniform steady state solution and seek
solutions ∝ exp

(
σ t + ik.x

)
, where k is the wavenumber vector. The resulting equation

for σ is the quadratic

εσ 2 + k2(1 + ε)σ − k2[m′(1) − k2] = 0, (35)

whose solutions can be written in the approximate form (because ε � 1)

σ = σ+ ≈ m′(1) − k2,

σ = σ− ≈ −k2

ε
. (36)

The second mode is stable, and represents the rapid relaxation of the debris surface due
to sediment creep. However, if m′(1) > 0, the first mode is unstable to long wavelength
perturbations, and we can expect undulations in debris thickness to grow on the time
scale t0.

4. Finite amplitude sails

The form of the resulting patterns is relatively easily studied within the confines of this
model, but there is an added subtlety. The sediment flux −Ds∇(s + h) in (21) is clearly
only non-zero if h > 0; if h = 0 the right hand side of (21)2 should be taken to be zero.
Most simply, this would be due to allowing Ds to depend on h, as suggested earlier. In our
simpler version whereDs is taken as constant, we append the condition h > 0 to (21)2, and
thus also (24)2.
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Next, because ε � 1, (24)2 rapidly relaxes to an equilibrium in which (because of the
no flux boundary conditions)

s + h = Z(t) when h > 0, (37)

where Z depends on time, and is the elevation of the debris surface (which is thus flat),
and so h satisfies the non-linear Fisher-type equation (Fisher 1937), modulated by a debris
conservation law:

ht = m(h) + W + ∇2h, or h = 0 and st = 1 + ∇2s,
1
S

∫
S
h dS = h̄, W = Ż. (38)

Here Ż is the time derivative of Z(t).
A major simplification of the problem results from noticing that if h = 0 (i.e. we are on

a sail), then the height of the sail above the surrounding debris layer is

h̃ = s − Z, (39)

and thus satisfies

−h̃t = −1 + W − ∇2h̃, (40)

and the condition of continuous ice flux ∇s at the sail boundary implies

∇h̃ = −∇h when h = 0. (41)

Now we notice a useful mathematical convenience: h is the dimensionless sediment
thickness, and is thus non-negative. Equally h̃ is the sail height, and only has meaning
where there is no sediment. In our numerical solutions of the model, it is convenient to
plot both functions on the same graph, with h directed downwards, as the resulting curve
portrays the ice surface everywhere. Furthermore, we can see from (40) that −h̃ satisfies
the same equation as h, providing we define m(h̃) = −1 for h̃ > 0. Evidently we can thus
extend the definition of h to h < 0 simply by defining

h̃ = −h, (42)

providing also we take m(h) = −1 for h < 0, and the integral constraint only integrates
where h > 0:

ht = m(h) + W + ∇2h,
1
S

∫
S
max (0, h) dS = h̄. (43)

In our figures below, we will plot −h as thus defined, which delineates the ice surface
everywhere.

Because the sails on Baltoro Glacier form a regular procession down the glacier, we will
study the solutions of (43) in one spatial downstream dimension x. We suppose that there
is a sail centred at x = 0, and x = ±L represents themid-point before the next sail, centred
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at x = ±2L. Thus we aim to solve

ht = m(h) + W + hxx ,

hx = 0 at x = 0, L,
1
L

∫ L

0
max (0, h) dx = h̄. (44)

The integral constraint represents the fact that the total debris volume is conserved. The
subscript x denotes a partial derivative with respect to x (just as that for t does). The
integral constraint makes this a non-standard problem whose form, however, has arisen
in other contexts, where solutions have been obtained analytically and numerically (Budd
et al. 1993, 1994, Fowler et al. 2007, Kyrke-Smith and Fowler 2014).

Let us suppose that h̄ = 1 (without any loss of generality). So long as h > 0 everywhere,
we can integrate (44) from 0 to L, and using the boundary conditions, we then obtain
(noting that the integral of ht is zero)

0 =
∫ L

0
m(h) dx + WL. (45)

If we take the specific case m = −1 + h, then W = 0 (as long as h remains positive). In
a perturbation of the steady state h = 1 which conserves h, the parts where h > 1 will
increase, and the parts where h < 1 will decrease towards zero in finite time, thus forming
the exposed sails. More generally, we will have W �= 0, but the same conclusion holds:
we expect sails to form as a consequence of the instability of the uniform state. In figure
7 we show the result of a numerical integration of the model (44), which bears out the
description above. In interpreting this figure (which plots −h vs. x in dimensional terms),
recall that when −h > 0, −h is the sail height above the sediment surface (from (39) and
(42)), while when −h < 0 (or h > 0), h is the sediment depth. Thus the plot in figure 7
shows the ice sail (−h > 0) growing above its surrounding sediment cover (−h < 0) just
as in nature.

For the case of a single sail in−LS < x < LS (i.e. x = ±LS are the edges of the sail where
the debris layer begins), integration of (44)1 leads to the definition ofW as

W = A + 1
L

[
d
dt

∫ LS

0
h dx −

∫ L

0
m(h) dx

]
, (46)

where we include an accretion rate term A = ˙̄h to accommodate an increasing thickness
of debris as the sails move downglacier, either through surface accumulation via rockfalls,
or due to debris melt out from the ice; it follows that the system (44) is equivalent to

vt = A + m(h) − 1
L

∫ L

0
m(h) dx + vxx ,

vx = 0 at x = 0, L, (47)

where

v = h − 1
L

∫ LS

0
h dx, (48)
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Figure 7. A sequence of plots of the evolving sails, obtained by solving (47)with (49) usingm(h) given
by (26) (andm = −1 for h < 0), at times t = 0, 0.4, 0.8, 1.2, 1.6, 2 y. Where−h > 0, its value represents
the height of the sail above the sediment surface (−h = 0), and where −h < 0, its value gives the
elevation of the ice surface relative to the sediment surface. Both length and height are in metres.
Parameter values used are λ = 0.16, Λ = 1,m∗ = 0.7, as in figure 6, the accretion rate is A = 0, and
the dimensional value of the half-spacing between sails is Ld = 20 m. The length and time scales are
as in (30), i.e. l = 1 cm, t0 = 0.01 y; thus L = 2,000. The dimensionless time and space steps were
both 0.1, and the initial condition for till thickness was (in dimensionless terms) h = 1− exp ( − 0.2x2),
thus a layer of thickness 1 cm with a small thinner patch around 7 cm wide. The left hand plot shows
the growing ice sail, whose height is given by −h. Where h > 0 (right hand plot), this gives the debris
thickness. The axis −h = 0 is the surface of the debris layer. The close up on the right shows that away
from the sail, the debris layer is of uniform thickness, and slowly deepens with time.

and thus
h = v + 1

(L − LS)

∫ LS

0
v dx. (49)

This is straightforward to solve numerically; v is stepped forward from (47) with an
implicit finite difference approximation, and then h updated from (49), with LS being
given by linear interpolation between the grid points where h passes through zero; the
integrals are computed using the trapezium rule. The time step is iterated to determine the
updated value of LS where h = 0. In computing the figure shown, three iterations of the
time step were used, and the time and space steps were �t = 0.1 and �x = 0.1. Finer
choices of the mesh made little difference to the results. Our choice of the boundary values
of v was chosen to conserve debris mass rather than zero flux (though they are theoretically
equivalent).

5. Discussion

The numerical solution shown in figure 7 shows that sails of the observed size will grow
in a few years. Despite the simplicity of the model, they even have the right shape. If the
computation in figure 7 is carried on further, the sails eventually reach an equilibrium.
The cause of this is that the residual debris thickness increases as it is squeezed into a
smaller length (L − LS), so that eventually (see figure 6) m = −1 for h ≈ 10 cm, and the
sails melt as rapidly as the debris-covered ice. For a larger spacing, the size of the sails is
correspondingly larger.

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
4:

56
 0

9 
N

ov
em

be
r 

20
17

 



426 A. C. FOWLER AND C. MAYER

0 10 20 30 40
t (y)

0

5

10

15

20

-h
m

ax
 (m

)

Figure 8. Evolution of maximum sail height (m) as a function of time (y). Parameters as for figure 7 but
with a dimensionless accretion rate ofA = 0.001, corresponding to 0.1 cm y−1.

In reality, debris accretes as the sails progress downstream, and if we suppose a mean
thickness of 10 cm accretes over a sail lifetime of∼ 100 y (Evatt et al. 2017), this represents
an annual accretion rate of 0.1 cm y−1, and dimensionlessly A = 0.001. Figure 8 shows
the evolution of the maximum sail height with time for a value of A = 0.001, when the sail
lifetime is actually about 35 years.

It is evident from the theory and the computations that if the melt or wastage rate of
iceM(h) in figure 4 as a function of debris cover thickness h exhibits the Östrem property,
that is, M first increases before decreasing, as in figure 4, then bare ice patches will grow
relative to thinly covered ice.Whether sails then grow to amplitudes ofmetres thendepends
largely on howmuch lower the bare icemelting rate is. If it is significantly less than the peak
melting rate, then sails will continue to grow until the debris increases sufficiently to catch
up. Thus the issue is not the range of debris thickness where the melt rate is increasing,
but the lowering of the bare ice melting rate.

Adopting (14) as our Östrem melt rate, we see that this lowering is essentially given by
(1− rh)M∗

E , and this quantity is distinguished on Baltoro Glacier by the generally low value
of the relative humidity rh ≈ 0.3, which has the required effect. Since direct observation
tells us that the bare ice melt rate is a metre a year less than that of ice covered with debris
to a typical depth of 10 cm, it seems the Östrem curve on Baltoro does have this property.

It is also evident from themodel that an even simplermodel could have been used, since
in practice the diffusive term in the computations is largely irrelevant (except at the sail
edge), and the only issue is the difference in melt rate of the sail and of the debris-covered
ice.

6. Conclusions

We have shown that a very simple model of differential ablation based on the thickness
of supraglacial debris can lead to an instability, if the debris thickness is sufficiently thin
that it lies on the increasing portion of the presumed Östrem ablation curve, and that the
result of this instability can be the ice sails which have been observed on glaciers in the
Karakoram. In passing, we have provided a simple formulation of the Östrem curve, which
appears consistent with measured values.
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Theoreticians have conventionally viewed the ice upper surface as an essentially flat
(and clean) interface, just as in times past they viewed the glacier bed in the same way.
And just as theoreticians now deal routinely with the glacier bed as a corrugated interface
between ice, water and till, in the future they will need to consider the glacier surface in
the same way. In particular, debris-covered glaciers are not flat, and the variety of surface
forms which are observed poses significant theoretical challenges. The formation of ice
sails is just one of many such challenges in the study of supraglacial geomorphology.

Acknowledgements

This paper is the result of a workshop held in Grasmere, Lake District, England, 30 September–4
October 2013. Funding for the workshop was provided by the Engineering and Physical Sciences
Research Council, UK, via the MAPLE Platform Grant EP/I01912X/1. A. C. F. acknowledges the
support of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie)
funded by the Science Foundation Ireland mathematics grant 12/1A/1683. Special thanks to Geoff
Evatt for organising the event, and to the other members of the workshop for their contributions:
Dave Abrahams, Matthias Heil, Jonny Kingslake, Lindsey Nicholson, Jack Holt and Katie Joy.
A special mention also for Astrid Pacini, who worked tenaciously on this problem as a visiting
undergraduate student from Yale to Oxford during the summer of 2014.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Engineering and Physical Sciences Research Council, UK, via the
MAPLE Platform [grant number EP/I01912X/1]; Science Foundation Ireland mathematics [grant
number 12/1A/1683].

References

Acheson, D.J., Elementary Fluid Dynamics, 1990 (O. U. P.: Oxford).
Anderson, R.S., A model of ablation-dominated medial moraines and the generation of debris-
mantled glacier snouts. J. Glaciol. 2000, 46, 459–469.

Benn, D.I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.I., Quincey, D., Thompson,
S., Toumi, R. andWiseman, S., Response of debris-covered glaciers in theMount Everest region to
recent warming, and implications for outburst flood hazards. Earth Sci. Revs. 2012, 114, 156–174.

Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.G., Frey, H., Kargel, J.S., Fujita, K.,
Scheel, M., Bajracharya, S. and Stoffel, M., The state and fate of Himalayan glaciers. Science 2012,
336, 310–314.

Brun, F., Buri, P., Miles, E.S., Wagnon, P., Steiner, J., Berthier, E. and Pellicciotti, F., Quantifying
volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial
photogrammetry. J. Glaciol. 2016, 62, 684–695.

Budd, C., Dold, B. and Stuart, A., Blowup in a partial differential equation with conserved first
integral. SIAM J. Appl. Math. 1993, 53, 718–742.

Budd, C.J., Dold, J.W. and Stuart, A.M., Blow-up in a system of partial differential equations with
conserved first integral. Part II: problems with convection. SIAM J. Appl. Math. 1994, 54, 610–640.

Cuffey, K.M. and Paterson, W.S.B., The Physics of Glaciers, 4th ed., 2010 (Elsevier: Amsterdam).
Evatt, G.W., Abrahams, I.D., Heil,M.,Mayer, C., Kingslake, J.,Mitchell, S.L., Fowler, A.C. andClark,
C.D., Glacial melt under a porous debris layer. J. Glaciol. 2015, 61, 825–836.

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
4:

56
 0

9 
N

ov
em

be
r 

20
17

 

www.macsi.ul.ie


428 A. C. FOWLER AND C. MAYER

Evatt, G.W., Mayer, C., Mallinson, A., Abrahams, I.D., Heil, M. and Nicholson, L., The secret life of
Ice Sails. J. Glaciol. 2017, submitted.

Fernandes, N.F. and Dieterich, W.E., Hillslope evolution by diffusive processes: the timescale for
equilibrium adjustments.Water Resour. Res. 1997, 33, 1307–1318.

Fisher, J.E., Ice pyramids on glaciers. J. Glaciol. 1950, 1, 373–377.
Fisher, R.A., The wave of advance of advantageous genes. Ann. Eugenics 1937, 7, 353–369.
Fowler, A.C., Kopteva, N. and Oakley, C., The formation of river channels. SIAM J. Appl. Math.
2007, 67, 1016–1040.

Juen,M.,Mayer,C., Lambrecht,A.,Wirbel, A. andKueppers,U., Thermal properties of a supraglacial
debris layer with respect to lithology and grain size. Geogr. Ann. A 2013, 95, 197–209.

Juen, M., Mayer, C., Lambrecht, A., Han, H. and Liu, S., Impact of varying debris cover thickness
on ablation: a case study for Koxkar Glacier in the Tien Shan. The Cryosphere 2014, 8, 377–386.

Kayastha, R.B., Takeuchi, Y., Nakano, M. and Ageta, Y., Practical prediction of ice melting beneath
various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor.
IASH Publ. 2000, 264, 71–81.

Kotlyakov, V.M. and Lebedeva, I.M., Nieve and ice penitentes, their way of formation and indicative
significance. Z. Gletsch.kd. Glazialgeol. 1974, 10, 111–127.

Kyrke-Smith, T.M. and Fowler, A.C., Subglacial swamps. Proc. R. Soc. Lond. A 2014, 470, 20140340.
Lliboutry, L., The origin of penitents. J. Glaciol. 1954, 2, 331–338.
Mattson, L.E., Gardner, J.S. and Young, G.J., Ablation on debris covered glaciers: an example from
the Rakhiot Glacier, Punjab. Himalaya. IAHS Publ. 1993, 218, 289–296.

Mayer, C., Lambrecht, A., Belo, M., Smiraglia, C. and Diolaiuti, G., Glaciological characteristics of
the ablation zone of Baltoro glacier, Karakoram. Pakistan. Ann. Glaciol. 2006, 43, 123–131.

McKean, J.A., Dietrich, W.E., Finkel, R.C., Southron, J.R. and Caffee, M.W., Quantification of soil
production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile.
Geology 1993, 21, 343–346.

Nakawo,M., Iwata, S.,Watanabe, O. and Yoshida,M., Processes which distribute supraglacial debris
on the Khumbu Glacier, Nepal Himalaya. Ann. Glaciol. 1986, 8, 129–131.

Nicholson, L. and Benn, D.I., Properties of natural supraglacial debris in relation to modelling
sub-debris ice ablation. Earth Surf. Proc. Landf. 2013, 38, 490–501.

Östrem, G., Ice melting under a thin layer of moraine, and the existence of ice cores in moraine
ridges. Geogr. Ann. 1959, 41, 228–230.

Reid, T.D. and Brock, B.W., Assessing ice-cliff backwasting and its contribution to total ablation of
debris-covered Miage glacier, Mont Blanc massif, Italy. J. Glaciol. 2014, 60, 3–13.

Rose, D.A., Water movement in porous materials: Part 1 – Isothermal vapour transfer. Brit. J. Appl.
Phys. 1963, 14, 256–262.

Rowan, A.V., Egholm, D.L., Quincey, D.J. and Glasser, N.F., Modelling the feedbacks between mass
balance, ice flow and debris transport to predict the response to climate change of debris-covered
glaciers in the Himalaya. Earth Planet. Sci. Letts. 2015, 430, 427–438.

Sakai, A., Nakawo, M. and Fujita, K., Distribution characteristics and energy balance of ice cliffs on
debris-covered glaciers, Nepal Himalaya. Arct. Antarct. Alpine Res. 2002, 34, 12–19.

Steiner, J.F., Pellicciotti, F., Buri, P., Miles, E.S., Immerzeel, W.W. and Reid, T.D., Modelling ice-cliff
backwasting on a debris-covered glacier in the Nepalese Himalaya. J. Glaciol. 2015, 61, 889–907.

Swithinbank, C., The origin of dirt cones on glaciers. J. Glaciol. 1950, 1, 461–465, 439.
Visser, Ph.C., Gletscherüberschiebungen im Nubra- und Shyok-Gebiet des Karakorum. Z. Gletsch.
1932, 20, 29–44.D

ow
nl

oa
de

d 
by

 [
th

e 
B

od
le

ia
n 

L
ib

ra
ri

es
 o

f 
th

e 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d]

 a
t 0

4:
56

 0
9 

N
ov

em
be

r 
20

17
 


	1. Introduction
	2. Mathematical model
	2.1. The Östrem curve
	2.2. Mathematical model

	3. Linear stability
	4. Finite amplitude sails
	5. Discussion
	6. Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	References



