
An introduction to parallel computing

Mike Giles

University of Oxford

Mike Giles Introduction 1 / 22



My background

maths undergraduate

worked at Rolls-Royce in the summers, saw power of
computational modelling for design of aircraft gas turbines

PhD in aeronautical engineering, developing computational fluid
dynamics methods

As an academic:

collaborated with Rolls-Royce for 25 years, first in an engineering
dept, then a computer science dept

then moved to a maths dept and switched to computational
finance, and more generally stochastic simulation

Mike Giles Introduction 2 / 22



Mathematical modelling

essential first step in any new application area

often leads to PDEs

sometimes also leads to stochastic models with modelling of
uncertainty

important to make sure models are well-posed mathematically

simple examples provide insight

asymptotics can reveal role of key parameters, and simplified
models

Mike Giles Introduction 3 / 22



Computational science & engineering

However, quantitative predictions usually require computation;
computation is now the “third leg” of science along with theory and
experiment

sometimes small calculations (a few seconds), sometimes very
big (a month or more)

sometimes on a laptop, sometimes on a supercomputer

often use software packages written by someone else, but you
might be that “someone” in the future!

Mike Giles Introduction 4 / 22



Computational science & engineering

Computational engineering has completely changed the way industry
works

Products used to be designed through a lot of experimental
trial-and-error, guided by engineers with outstanding experience /
insight / ingenuity

Now done largely computationally, with final experiments to verify
predicted behaviour

Mike Giles Introduction 5 / 22



Computational science & engineering

Computational science has also changed completely

Used to be driven experimentally, with theory being developed to
understand experimental data, at least qualitatively

Now theory leads to computations which match experiments to high
accuracy, and can discover new features to be investigated
experimentally

Mike Giles Introduction 6 / 22



Computational science & engineering
In my dept:

modelling of molten glass extrusion, leading to better mobile
phone glass covers

stochastic modelling of filters with application to removal of
arsenic in groundwater in India/Bangladesh, as well as industrial
filters

applications to mathematical finance used in banks in London
and New York

stochastic simulation of biochemical reactions at very low
concentrations

modelling of battery performance for electric vehicles

stochastic modelling of groundwater flow

modelling of plasma in fusion reactors

several data science applications

Mike Giles Introduction 7 / 22



Progress in scientific computing

Over the past 60 years, there has been huge progress in the
development of efficient numerical algorithms:

Monte Carlo algorithm

FFT

conjugate gradient method

multigrid methods

finite element method

interior point method in optimisation

multipole methods

Numerical analysis is an important branch of mathematics

Mike Giles Introduction 8 / 22



Progress in scientific computing
Computer power has advanced even more – over 1,000,000×
performance growth in last 30 years:

top500.org

performance
evolution

Mike Giles Introduction 9 / 22



Progress in scientific computing

However, things are beginning to tail off a bit – computer hardware is
no longer improving at the same rate.

The power consumption is getting ridiculous – the #1 system,
Frontier at the Oak Ridge National Laboratory, USA, needs 21 MW,
and just a single CPU these days takes up to 350W.

This is partly because there used to be power savings from making
the circuitry smaller, which offset the increase due to more circuitry,
but the thickness of the “wires” on a chip is down to a few atoms.

Also, the operating frequency is no longer going up – been stuck at
around 3GHz for several years, at least when all of the chip is working.

Mike Giles Introduction 10 / 22



Progress in scientific computing
Manufacturers continue to increase the total amount of circuitry,
in part by using bigger chips, so the main improvement in capability
has come from multiple cores.

Data for Intel Core i5 desktop CPUs (like ones in computer lab)

year cores power frequency
2015 2-4 15-65 W 1.8-3.6 GHz
2019 4-6 35-95 W 1.8-4.6 GHz
2023 8-14 45-125 W 1.3-5.1 GHz

Notes:

data from https://ark.intel.com/

CPUs run at lower frequencies when many cores are active

2023 CPU is a mix of “performance” and “efficiency” cores

Mike Giles Introduction 11 / 22



Progress in scientific computing

The fastest Intel CPUs cuse up to 350W and have up to 60 complex
cores, each of which is very powerful

In comparison, the fastest NVIDIA GPU has 16896 much simpler
cores, and uses up to 700W

To program those we need to use CUDA, NVIDIA’s proprietary
extension to C/C++

Mike Giles Introduction 12 / 22



Two model applications

In our CUDA practicals we will be looking at two particular
applications:

Practical 2: approximation of an SDE (Stochastic Differential
Equation) and Monte Carlo estimation of an average output

Practical 3: approximation of the solution to an ellptic PDE
(Partial Differential Equation)

Mike Giles Introduction 13 / 22



ODEs

A standard ODE (Ordinary Differential Equation) looks like

dy

dt
= f (y)

which we sometimes also write as

dy = f (y) dt

This can be integrated over a short time interval to give

y(∆t) = y(0) +

∫ ∆t

0

f (y(t)) dt

Mike Giles Introduction 14 / 22



ODEs

If we then make the approximation f (y(t)) ≈ f (y(0)) we get

y(∆t) ≈ y(0) + ∆t f (y(0))

Repeating this for one timestep after another gives us the
Forward Euler approximation

ŷn+1 = ŷn + ∆t f (ŷn)

where
ŷn ≈ y(n∆t)

For approximating ODEs there are other much more accurate
methods, but this is a good starting point for SDEs

Mike Giles Introduction 15 / 22



SDEs

With SDEs we add an extra random term

dy = f (y) dt + σ(y) dW

where dW is the increment in a random Brownian motion

This is a model used for stock prices where there is uncertainty
each day about what will happen.

The corresponding Euler-Maruyama approximation is

ŷn+1 = ŷn + f (ŷn) ∆t + σ(ŷn) ∆Wn

where ∆Wn is a Normal random variable with zero mean and
variance ∆t, so ∆Wn =

√
∆t Zn where Zn is a standard Normal

random variable with zero mean, and unit variance

Mike Giles Introduction 16 / 22



SDEs
We can’t predict the future, so not interested in one particular y(t)

Instead we want to run lots of independent simulations, using
different random numbers, to simulate different possible futures

For each one, we evaluate how much money we will get from a
financial “option” – let’s call it P (n) for the nth simulation

We then get the Monte Carlo estimate for the average value of P
by averaging over N independent simulations:

1

N

N∑
n=1

P (n)

The error in this estimate is proportional to 1/
√
N , so we often

want to do at least 105 simulations, hence the need for parallel
execution

Mike Giles Introduction 17 / 22



PDEs

If we have a square slab of metal, with its edges held at different
temperatures, then the temperature distribution is described by
the elliptic partial differential equation

∂2u

∂x2
+
∂2u

∂y 2
= 0, 0 < x < 1, 0 < y < 1

with u(x , y) on the four edges at x=0, x=1, y=0, y=1

In simple cases like this we can calculate the solution, but in
more difficult cases we need to use a numerical approximation

Mike Giles Introduction 18 / 22



PDEs

Suppose we use a finite difference grid with uniform spacing
∆x = ∆y , and we want an approximation Ui ,j ≈ u(i∆x , j∆y)

-

6

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

tt
tt
tt
tt
tt
t

x

y

Mike Giles Introduction 19 / 22



PDEs

If we fit a quadratic function

f (x) = a + b x + 1
2
c x2

through the three values Ui−1,j ,Ui ,j ,Ui+1,j then

c ≡ f ′′(x) =
1

∆x2
(Ui+1,j − 2Ui ,j + Ui−1,j)

and so this is an approximation to

∂2u

∂x2

Mike Giles Introduction 20 / 22



PDEs

Similarly,
1

∆y 2
(Ui ,j+1 − 2Ui ,j + Ui ,j−1)

is an approximation to
∂2u

∂y 2

and so putting the two together gives the PDE approximation

1

∆x2
(Ui+1,j − 2Ui ,j + Ui−1,j) +

1

∆y 2
(Ui ,j+1 − 2Ui ,j + Ui ,j−1) = 0

Mike Giles Introduction 21 / 22



PDEs

With ∆x = ∆y , this simplifies to

Ui ,j = 1
4

(Ui+1,j + Ui−1,j + Ui ,j+1 + Ui ,j−1)

and one way to solve this set of simultaneous equations (for
0<i<I , 0<j<J with I=J=1/∆x) is to use the Jacobi iteration

U
(n+1)
i ,j = 1

4

(
U

(n)
i+1,j + U

(n)
i−1,j + U

(n)
i ,j+1 + U

(n)
i ,j−1

)
Starting from U

(0)
i ,j =0, U

(n)
i ,j converges (slowly) to the solution

– there are much better numerical methods for this problem but
it is a useful testcase for parallel computing

Mike Giles Introduction 22 / 22


