
LIBOR model

Let Ln
i denote the forward LIBOR rate for the time interval [i δ, (i+1) δ) at

time n δ ≤ i δ. Taking the timestep to be equal to the LIBOR interval δ, the
evolution of the forward rates Ln

i for n = 0, . . . , Nmat− 1 is approximated by
the discrete equations
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where Zn is the N(0, 1) random variable for the nth timestep, and
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The model treats the volatility as being a function of time to maturity. Once
a rate reaches its maturity it remains fixed, so we set Ln+1

i =Ln
i if i ≤ n.

Swaption portfolio payoff

A portfolio of Nopt different swaptions with swap rates swapn and maturity
matn has payoff
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where
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Note that
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and hence
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making it clear that the swaption is concerned with a swap of the floating
forward rate Li and the fixed rate swapn.
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