
FlashAttention:
an interesting CUDA application

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

FlashAttention – p. 1/27

Overview

mathematical algorithm

particular focus on softmax function

naive implementation, and why it performs poorly

how many operations performed?

how much data transferred?

re-examining implementation

how to minimise data transferred?

how to implement softmax?

FlashAttention – p. 2/27

FlashAttention

Three references:

FlashAttention: Fast and Memory-Efficient Exact
Attention with IO-Awareness (PDF) – 1750 citations

FlashAttention-2: Faster Attention with Better
Parallelism and Work Partitioning (PDF) – 750 citations

FlashAttention-3: Fast and Accurate Attention with
Asynchrony and Low-precision (PDF) – 50 citations

The code is available on Github but I have not looked at the
code, just read the papers.

I am not concerned with why this “transformer” is important
for machine learning (original Google Research “Attention
is All You Need” paper has over 150k citations!) – I’m only
focussed on how to achieve good CUDA performance.

FlashAttention – p. 3/27

https://arxiv.org/pdf/2205.14135.pdf
https://arxiv.org/pdf/2307.08691.pdf
https://tridao.me/publications/flash3/flash3.pdf
https://github.com/Dao-AILab/flash-attention
https://research.google/pubs/attention-is-all-you-need/

Mathematics

The objective is to evaluate

N×d
︷︸︸︷

O = softmax






N×d
︷︸︸︷

Q ×

d×N
︷︸︸︷

KT




×

N×d
︷︸︸︷

V

where typical values for N and d are N = 1024, d = 64.

Note that if we didn’t have the softmax operation, then we
would organise the matrix product as

O = Q×
(
KT×V

)

since N ≫ d. This would minimise floating point operations,

O(d2N), and data movement, O(dN).

FlashAttention – p. 4/27

softmax

The softmax operation applied to a row vector uj , 1 ≤ j ≤ N

is defined as

vj = softmax(u)j = exp(uj) /

N∑

k=1

exp(uk).

so that 0 < vj < 1 and

N∑

k=1

vk = 1.

When applied to the matrix S = QKT , it is applied
row-wise, i.e. applied separately to each row of S.

FlashAttention – p. 5/27

softmax

There is an important practical complication.

When using low precision, variables have a very restricted

range. e.g. for fp16, the range is roughly 10−4 − 105.

This means that there is a likelihood that exp(uj) will lead

to overflow (Inf) or underflow (0). A single overflow is a
problem; it’s also a problem if all of them underflow.

Consequently, the implementation uses the following:

m = max
j

uj , vj = exp(uj −m) /

N∑

k=1

exp(uk −m).

Avoids overflow, and if some underflow that’s not a problem.

FlashAttention – p. 6/27

Naive implementation

The naive implementation is fairly simple:

calculate S = QKT , using cuBLAS which loads Q and
K by blocks to compute and store blocks of S;

calculate P = softmax(S), loading in rows of S, doing
warp/block reductions as required, and then storing P ;

calculate O = P V , using cuBLAS which loads P and V
by blocks to compute and store blocks of O.

It’s possible that PyTorch can do all of this at a very high
level, making the implementation really easy.

Unfortunately, the performance is poor because S and P
are N×N matrices.

FlashAttention – p. 7/27

Performance estimate

With any new application, before doing any coding I do a
back-of-the-envelope estimate of the performance to
identify whether the application is compute-bound or
bandwidth-limited.

i.e. is the limit on performance the Gflops of the GPU, or
the GB/s bandwidth between GPU memory and GPU?

Quite often it is the memory bandwidth which is the limiting
feature, and that is the case here with the naive
implementation.

FlashAttention – p. 8/27

Naive implementation

Remembering that N ≫ d, the main data transfers are

storing S

loading S

storing P

loading P

Total data moved for N = 1024, d = 64, assuming fp32
(4 Bytes per variable) is

10242 × 4× 4Bytes = 0.016 GB

The A100 GPU is capable of 2 TB/s, so this equates to 8 µs.

FlashAttention – p. 9/27

https://www.nvidia.com/en-gb/data-center/a100/

Naive implementation

On the compute side we have two major elements which
we will consider separately.

The first is the dN2 multiply-adds to compute S, and

another dN2 multiply-adds to compute O.

With N = 1024, d = 64, this requires

64× 10242 × 2× 2 = 0.256 GFlop

The A100 tensor cores are capable of 156 TFlops (TF32 /
float), so this equates to 1.6 µs.

FlashAttention – p. 10/27

https://www.nvidia.com/en-gb/data-center/a100/

Naive implementation

The second element is the N2 exponentials to compute P .

With N = 1024, d = 64, and noting that the exponential is
equivalent to 8 floating point operations, (see section 5.4.1
in the CUDA C/C++ Programming Guide) this requires

10242 × 8 = 0.008 GFlop

The A100 standard cores are capable of 19.5 TFlops
(FP32), so this equates to 0.4 µs.

Conclusion: both computing times are much smaller than
the data transfer time, so the application is
bandwidth-limited.

FlashAttention – p. 11/27

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#maximize-instruction-throughput
https://www.nvidia.com/en-gb/data-center/a100/

Performance estimate

In general, the back-of-the-envelope performance estimate
influences the way in which you write your code.

If compute-bound:

don’t worry (too much) about cache efficiency

minimise integer index operations

if using double precision, think whether it’s needed

If bandwidth-limited:

ensure efficient cache use – may require extra coding

may be better to re-compute some quantities rather
than fetching them from device memory

if using double precision, think whether it’s needed

FlashAttention – p. 12/27

FlashAttention

Coming back to FlashAttention, the back-of-the-envelope
analysis shows that the challenge is to reduce the amount
of data moved between the GPU memory and the GPU.

Looking again at the naive implementation

calculate S = QKT

calculate P = softmax(S)

calculate O = P V

it means we need to avoid storing/loading S and P , which
in turn means that we can’t do the above three steps
sequentially; they have to be overlapped somehow.

The only arrays we should be loading in are Q, K and V ,
each of which is N×d so much smaller than S and P .

FlashAttention – p. 13/27

FlashAttention

Let’s start with the final step.

As discussed previously in Lecture 5, the output matrix O
can be computed in blocks (or “tiles”).






 ()








=






() () () ()















()

()

()

()








Oij =
∑

k

PikVkj

The blocks Vkj are easily loaded in; the challenge is

generating the blocks Pik on-the-fly.

FlashAttention – p. 14/27

FlashAttention

For the first block, Pi1, we can compute the corresponding
block Si1 on the fly using the same block/tile approach:






()








=






() ()








(

()

()

)

Si1 =
∑

k

QikK1k

The blocks Qik and K1k are easily loaded in to perform this
calculation.

FlashAttention – p. 15/27

FlashAttention

If there is only one block, Pi1, then we would compute it as

Pi1 = softmax(Si1)

This would require a warp reduction (assuming the block is
handled by a single warp) to first compute

mi = rowmax(Si1)

a column vector with each element being the max of the
row of Si1. Then we need a second reduction to do a
row-sum of the scaled exponentials, and finally the scaling
of the row elements to give Pi1.

We can then compute Pi1V1j which gives Oij, if there’s only
one block Pi1.

FlashAttention – p. 16/27

FlashAttention

The tricky bit, and the hardest thing to understand in the
whole FlashAttention algorithm/implementation, is what to
do if there are two blocks, Pi1 and Pi2.

To make things a little simpler, let’s suppose we don’t have
to do the re-scaling of the exponentials using the mi

rowmax’s. Hence, all we have to do for each row n is
compute

exp(Snj) /

N∑

k=1

exp(Snk)

If we treat both blocks as described on the last slide, then
the problem is that each block is dividing by a partial sum of
exponentials, not a full row sum.

FlashAttention – p. 17/27

FlashAttention

However, changing to the full row-sum simply involves a
multiplicative factor so with two blocks what we get for a
particular row n is

αn(Pi1V1j)n + (Pi2V2j)n

where the re-scaling of row n of Pi2 uses

∑

(1)+(2)

exp(Snk) =
∑

(1)

exp(Snk) +
∑

(2)

exp(Snk)

and

αn =
∑

(1)

exp(Snk) /
∑

(1)+(2)

exp(Snk).

FlashAttention – p. 18/27

FlashAttention

This can be generalised to multiple blocks, repeatedly
adding to each row sum, and rescaling what has been
computed previously.

It can also be generalised to include the re-scaling of the
exponentials to keep things in range – read the original
FlashAttention paper to see the details.

FlashAttention – p. 19/27

FlashAttention

Two little “hacks” for improved performance?

1) the single precision warp maximum m can be computed
in a single instruction by

m_max = __int_as_float(

__reduce_max_sync(-1,__float_as_int(S)));

treating the bits of the float as if they are an int

(Currently CUDA only has this warp max for signed and
unsigned integers)

FlashAttention – p. 20/27

FlashAttention

2) m does not need to be precisely the row-max of S; all
that is needed is that exp(Sj −m) is in range

This means that an alternative is to use m = n log 2
where n is an integer given by

n = ⌊max
j

Sj/ log 2⌋

The point of this is that the re-scaling factors

exp(∆n log 2) = 2∆n

can be evaluated very cheaply without doing a floating point
exponential.

FlashAttention – p. 21/27

FlashAttention

One thing I have not discussed so far is the size of the
blocks.

Ideally, would like all of the blocks of Q,K, V to fit in shared
memory, so that they all get loaded in just once.

In practice, the shared memory is not big enough, so
instead the block sizes are chosen as big as possible to
minimise the number of times the data has to be reloaded.

FlashAttention – p. 22/27

Reverse pass

For the reverse pass (back-propagation) there are two key
mathematical ingredients.

forward pass A = B C leads to reverse pass

B = A CT , C = BT A

where A,B,C are the adjoint/dual variables (“gradients”
in the Flash paper, denoted by dA, dB, dC)

forward pass v = softmax(u) leads to reverse pass

uj = softmax(u, v)j =
exp(uj) vj
∑

k exp(uk)
−

exp(uj)
∑

k exp(uk) vk
(
∑

k exp(uk))
2

= vj vj − vj (v
T v)

FlashAttention – p. 23/27

Naive implementation

The naive implementation is again fairly simple:

calculate P = O V T ; V = PT O

calculate S = softmax(S, P)

calculate Q = S K; K = S
T
Q

using stored values for S and P from the forward pass.

This again requires O(N2) data transfer for S, P, S, P which
leads to poor performance.

FlashAttention – p. 24/27

FlashAttention

The key to the design of the reverse pass in FlashAttention
is working out mathematical expressions for the three

outputs V ,Q,K.

These are then implemented blockwise, in a similar way to
the forward pass, using stored information on

mi, Li =
∑

k

exp(Sik −mi)

from the forward pass. The reverse pass re-computes Sik

along the way, but it reduces the data transfer and that’s
what matters for performance.

(It is often better to re-compute things rather than storing
them and re-loading them from GPU memory.)

FlashAttention – p. 25/27

FlashAttention-3

FlashAttention-3 achieves a very high percentage of the
peak compute capability of the H100 GPUs.

Extra performance is achieved by using new instructions
which enable the asynchronous loading of data directly into
shared memory, without passing through a register – a new
highly specialised feature presumably intended primarily for
ML applications.

An increasing concern is the exponentials and other
operations not using the tensor cores. As d increases the
cost of these becomes less important because there are
relatively more tensor operations.

FlashAttention – p. 26/27

Final comments

An interesting example of how to approach a new CUDA
application:

do a rough performance assessment to decide whether
the application is compute-bound or bandwidth-limited

this tells you which aspects to focus on in the
implementation

sometimes best to re-compute things to reduce data
transfer

this is an example of more general technique of “loop
fusion”, overlappng the execution of two algorithm parts
to reduce the storing/loading of intermediate variables

if it’s an important enough application, seek assistance
from NVIDIA DevTechs – two worked on
FlashAttention-3

FlashAttention – p. 27/27

	Overview
	FlashAttention
	Mathematics
	$softmax $
	$softmax $
	Naive implementation
	Performance estimate
	Naive implementation
	Naive implementation
	Naive implementation
	Performance estimate
	FlashAttention
	FlashAttention
	FlashAttention
	FlashAttention
	FlashAttention
	FlashAttention
	FlashAttention
	FlashAttention
	FlashAttention
	FlashAttention
	Reverse pass
	Naive implementation
	FlashAttention
	FlashAttention-3
	Final comments

