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Practical 3: Finite Difference notes

This practical uses finite difference methods to approximate the solution of the
Laplace PDE
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on the unit cube 0 ≤ x, y, z,≤ 1, subject to specified values for u(x, y, z) on the
boundary.

Using a uniform grid with spacing ∆ in each direction, we define ui,j,k to be an
approximation to u(i∆, j∆, k∆). We then have
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and using these approximations in the Laplace PDE gives
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which can be re-arranged to give

ui,j,k =
1

6
(ui+1,j,k + ui+1,j,k + ui,j+1,k + ui,j+1,k + ui,j,k+1 + ui,j,k+1) .

To solve this linear system of equations, given specified boundary conditions, we
use the Jacobi iteration
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It can be proved that this converges to the solution of the finite difference
equations.

Note: there are other much better iterative methods (conjugate gradient,
multigrid) which should be used for real applications but they are more
complicated – that’s why we are using Jacobi iteration in this practical.
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