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Stability Analysis of Preconditioned Approximationsof the Euler Equations on Unstructured Meshes.P. Moinier and M.B. Giles

This paper analyses the stability of a discretisation of the Euler equationson 3D unstructured grids using an edge-based data structure, �rst-ordercharacteristic smoothing, a block-Jacobi preconditioner and Runge-Kuttatime-marching. This is motivated by multigrid Navier-Stokes calculations inwhich this inviscid discretisation is the dominant component on coarse grids.The analysis uses algebraic stability theory, which allows, at worst, abounded linear growth in a suitably de�ned \perturbation energy" providedthe range of values of the preconditioned spatial operator lies within thestability region of the Runge-Kutta algorithm. The analysis also includesconsideration of the e�ect of solid wall boundary conditions, and the additionof a low Mach number preconditioner to accelerate compressible 
ows inwhich the Mach number is very low in a signi�cant portion of the 
ow.Numerical results for both inviscid and viscous applications con�rm thee�ectiveness of the numerical algorithm, and show that the analysis providesaccurate stability bounds.Key words and phrases: Euler, Jacobi preconditioner, low Mach number, stabilityanalysis.
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31 IntroductionThe motivation for the analysis in this paper was the use of a combination of multigridand Jacobi preconditioning to accelerate the solution of an approximation of the steadycompressible Reynolds-averaged Navier-Stokes equations on unstructured grids. Multi-grid is well known to be very e�ective in accelerating iterative convergence, providedthat one has suitable restriction and prolongation operators for transferring the resid-ual and correction, respectively, between di�erent grid levels, and a smoothing operatorwhich eliminated high-frequency errors on each grid level. With unstructured grids,there are di�culties in formulating restriction and prolongation operators of su�cientlyhigh order to satisfy the theoretical conditions identi�ed by Hackbusch [10], but themore signi�cant challenge is developing an e�cient smoothing operator.Pierce [21] analysed the behaviour of explicit time-marching methods for the Navier-Stokes equations on structured grids, and identi�ed the main problem as being the sti�-ness in the discrete equations due to the disparity in the propagative speed of convectiveand acoustic waves. This is greatly exacerbated for high Reynolds number 
ows due tothe highly stretched grids which are required to resolve the 
ow gradients in the bound-ary layer. The numerical sti�ness in this case is related to the fact that the timescale forviscous di�usion across a high Reynolds number boundary layer is much greater than thetimescale for the propagation of a pressure wave across the boundary layer. Using stan-dard explicit solvers restricted by the acoustic timescale leads to very slow convergencefor the convection/di�usion of streamwise momentum and temperature. To cope withthis problem, Pierce and Giles [22] analysed di�erent combinations of preconditionerand multigrid method for both inviscid and viscous 
ow applications. For turbulentNavier-Stokes calculations, a block-Jacobi preconditioner and a semi-coarsening multi-grid method provides an e�ective damping of all modes inside the boundary layer. Thepreconditioner provides e�ective damping of the convective/di�usive modes, while themultigrid strategy, in which the grids are coarsened only in the direction normal to theboundary layer, ensures that all acoustic modes are eliminated e�ciently. Together, verygood multigrid convergence rates have been achieved for a range of applications [22].For unstructured grids, we have followed the same approach, combining block-Jacobipreconditioning with a semi-coarsening multigrid strategy [18, 19]. This has been ef-fective in giving good multigrid convergence rates, which led to the present work toanalyse its behaviour. With structured grids, one uses Fourier (or von Neumann) anal-ysis, knowing that the eigenmodes of the iteration for small perturbations to a uniform
ow on a regular periodic grid are Fourier modes. One can then calculate the corre-sponding eigenvalues and from these determine the stability of the iterative procedure.With unstructured grids, the spatial variation in the eigenmodes is not known a pri-ori. Furthermore, even if one could compute the eigenvalues of the iterative process,their value can be misleading: there are well-known examples such as the �rst orderupwinding of the convection equation on a �nite 1D domain (e.g. [23]) for which theeigenvalues have modulus less than unity, ensuring eventual exponential decay, but al-lowing an unacceptable large transient growth due to the extreme non-orthogonality ofthe eigenvectors.



4 In the present work, we analyse the stability using a variation of the energy method[24] which relies on the construction of a suitable de�ned \energy" which can be provento monotonically decrease. In [8], Giles analyses the semi-discrete and fully discreteNavier-Stokes equations arising from a Galerkin discretisation on a tetrahedral grid.The use of the energy method shows that the semi-discrete equations are stable, withthe \energy" decreasing monotonely. The analysis of the fully discrete equations us-ing Runge-Kutta time integration is based on algebraic stability analysis [15] whichensures bounded transient growth before eventual exponential decay. The analysis inthis paper uses the same approach, but applied to our edge-based discretisation whichis the most common approach to discretising the Navier-Stokes equations on unstruc-tured grids [2, 3, 17, 20]. The inclusion of higher-order numerical smoothing and viscousterms in the stability analysis appears too di�cult, unfortunately, and so only the �rstorder discretisation of the Euler equations is considered. However, this is the dominantcomponent of the discretisation of the Navier-Stokes equations on the coarser grids usedwithin the multigrid procedure, and therefore the conclusions that are drawn from theinviscid stability analysis remain pertinent enough to explain the good behaviour of theNavier-Stokes calculations.The present analysis also extends the previous analysis of Giles in two importantrespects. The �rst is the inclusion of the Jacobi preconditioning which is used, as ex-plained above, to reduce the disparity in propagation speeds and local timescales. Thesecond is the inclusion of low Mach preconditioning, in addition to the Jacobi precon-ditioning, to accelerate the convergence and improve the accuracy when a signi�cantportion of the 
ow �eld has a very low Mach number. Both of these are now becomingcommon features of compressible Navier-Stokes discretisations on both structured andunstructured grids [14, 30, 6, 26, 27, 28].The paper is organised as follows. Section 2 presents the nonlinear discretisation ofthe Navier-Stokes equations, and the construction of the Jacobi preconditioner which isbased on its linearisation. Section 3 presents the stability analysis for small perturba-tions from a uniform 
ow, starting with a periodic grid and then considering solid wallboundary conditions. Section 4 outlines the low Mach number preconditioning and howit is included within the stability analysis. Section 5 has numerical results showing thee�ectiveness of the multigrid procedure, and that the stability analysis gives stabilitybounds which are su�cient and almost necessary.2 Numerical Method2.1 OverviewWriting the 3D compressible Reynolds-averaged Navier-Stokes equations as@Q@t +r:F(Q;rQ) = 0; (2.1)where Q(x) is the vector of conserved variables, (�; �u; �v; �w; �E)T and F(Q;rQ) is thetotal 
ux which can be split into an inviscid 
ux, F I(Q), and a viscous 
ux, FV (Q;rQ),



51, the pre-conditioned semi-discrete equations appear asP�1dQdt +R(Q) = 0; (2.2)with R(Q) being the residual vector of the spatial discretisation and P�1 the localpreconditioner.The turbulent viscosity is modelled using the Spalart and Allmaras turbulence model[25] which can be included with the above equations with the addition of a source onthe right hand side of Equation (2.1).The iterative scheme used to converge the discrete residuals to zero is pseudo time-stepping using the 5-stage Runge-Kutta method developed by Martinelli [16]. This canbe expressed as Q(0)j = QnjQ(k)j = Qnj � �kCFL Pj R(k�1)j ; k = 1; 2; 3; 4; 5Qn+1j = Q(5)jwhere R(k�1)j = Cj(Q(k�1)) � B(k�1)jB(k�1)j = �kDj(Q(k�1)) + (1��k)B(k�2)jwith Cj(Q(k�1)) being the convective contribution to Rj, and Dj(Q(k�1)) being the re-maining parts due to the dissipation, both physical and numerical, and the turbulencemodel source term.The block-Jacobi preconditioner is based on a local linearisation of the 3D Navier-Stokes equations, and constructed by extracting the terms corresponding to the centralnode, thereby giving a block-diagonal matrix. As the 
ux can be split into inviscid andviscous parts, the matrix preconditioner will have contributions coming from both. Forthe turbulence model there is also a contribution from the linearised source term.2.2 Inviscid termsUsing a �nite volume approach, the integration of the inviscid 
ux over some controlvolume 
 gives, after the application of the divergence theorem,RIj = 1Vj I@
F I(Q) � n dS; (2.3)where Vj is the volume of the control volume associated with node j and n is an outward-pointing unit normal. As explained in [18] the discrete approximation to equation (2.3)1In this paper Roman letters are used to denote discrete quantities, whereas calligraphic letters areused to denote analytic functions and variables. Bold quantities are vectors in Cartesian coordinates.



6is RIj = 1Vj 0@Xi2Ej F Iij 4 sij + Xk2Bj F Ik 4 sk1A ; (2.4)where Ej is the set of all nodes connected to node j via an edge, Bj the set of boundaryfaces associated with node j (e.g. wall and far-�eld), and 4sij and 4sk are associatedface areas. For the edge (i; j), the numerical 
ux towards node i from node j takes theform [18] F Iij = 12 ��F I(Qi) + F I(Qj)� �nij� jAijj�	(Qi �Qj)� 13(1�	)(Li(Q)� Lj(Q))�� (2.5)Here nij is the unit vector normal to the face, Aij = @F I@Q �nij, and its absolute value jAijjis de�ned to be T j�jT�1, with j�j being the diagonal matrix of absolute eigenvalues, andT the corresponding matrix of right eigenvectors. L(Q) is a pseudo-Laplacian operatorwhich is normalised to have unit weight with respect to the central node. The switch	 is de�ned to have a value close to zero when the 
ow is smooth, and close to unitywhen there is a discontinuity, such as at a shock.The corresponding contribution to the block-Jacobi preconditioner comes from thelinearised form of the 
ux with the �rst order upwinding, which is12 (AijQi + AijQj � jAijj(Qi �Qj)) :Summing the matrices multiplying the value Qj at the central node gives the followinginviscid preconditioner for a grid point which does not lie on the boundary.�P Ij ��1 = 12Vj 0@Xi2Ej (Aij+jAijj)4 sij1A :However, because H@
F � n dS = 0 when F is a constant vector, it follows thatPi2Ej (AijQj) is identically zero, and so the �rst term in the summation above canbe dropped. Extending this to include the boundary faces gives the �nal of the inviscidcontribution to the Jacobi preconditioner,�P Ij ��1 = 12Vj 0@Xi2Ej jAijj 4 sij + Xk2Bj jAkj 4 sk1A : (2.6)2.3 Viscous termsThe viscous 
ux is integrated over the same control volume, givingRVj = 1Vj I@
FV (Q;rQ) � n dS: (2.7)



7For interior grid points, this leads to the discrete formRVj = 1Vj Xi2Ej F Vij 4 sij; (2.8)where F Vij is the numerical viscous 
ux associated with the edge (i; j). On all boundaryfaces other than walls, it is assumed that the viscous 
uxes are negligible. For nodeslying on a stationary wall, the momentum residual is discarded and replaced by theno-slip condition that the velocity is zero. Therefore, there is no need to evaluate theviscous 
ux contribution from a wall face and so the expression above for the viscousresidual is used for all grid points.The numerical viscous 
ux is de�ned asF Vij = FV (Qij;rQij) �nij:Qij, the value of the 
ow vector at the middle of the edge, is taken to be a simple averageof Qi and Qj. The value of rQij is de�ned asrQij = Qj�Qijxj�xij sij + �rQij � (rQij �sij) sij� ; (2.9)where sij = (xj�xi)=jxj�xij and rQij is the simple average of the values of rQ atnodes i and j obtained by the usual application of Green's theorem on the standardcontrol volume. The �rst term in Equation (2.9) determines the component of rQ inthe direction along the edge by simply di�erencing the values of Q at the two ends;this is clearly the most accurate and the most stable way to do so, and in a highlystretched boundary layer it leads to a viscous discretisation which has the standard3-point di�erencing across the boundary layer which one would use with a structuredgrid. The second term gets the orthogonal components of rQ from the average of thegradients at either end of the edge; in highly stretched orthogonal grids this componentis insigni�cant.The viscous contribution to the preconditioner is obtained by linearising the viscous
ux expression on the basis of perturbations to a locally uniform 
ow, and neglectingthe second term in Equation (2.9). Extracting the matrix multiplying the value of Qjat the central node then gives�P Vj ��1 = 1Vj Xi2Ej Bij 4 sij; (2.10)where Bij = 1jxj�xij @F Vij@(rQij) � sij:



82.4 Turbulence modelWhen the Navier-Stokes equations are augmented by one or more turbulence modelequations, the preconditioner has to have an additional contribution (P Sj )�1 which isthe Jacobian matrix corresponding to the linearisation of the turbulence model sourceterm. The inclusion of this means that the source term is e�ectively treated in an implicitfashion.The full matrix preconditioner is then given byP�1j = �P Ij ��1 + �P Vj ��1 + �P Sj ��1 : (2.11)2.5 Preconditioner adjustment at wallsIn inviscid calculations, the component of the velocity normal to the wall boundary isset to zero. This is accomplished by discarding the normal component of the momentum
ux residual, and modifying the preconditioner so that this results in zero change to thenormal velocity component which is set to zero at the outset.The modi�cations to the residual and preconditioner can be expressed using a sym-metric projection matrix N which extracts from a general vector Q the normal compo-nents of the velocity at the wall [7, 18]. The 
ow tangency condition is thenNQ = 0;and so, trivially, N dQdt = 0:The equation for the updating of the rest of the 
ow solution is(I�N)P�1(I�N) dQdt = (I�N)Rwhich simply states that changes in the other components of the solution are driven bythe 
ux residual R.Combining these two equations yields�(I�N)P�1(I�N) +N� dQdt = (I�N)R; (2.12)giving the modi�ed preconditioner on the left hand side of the equation. It can be shownthat this modi�ed preconditioner is of full rank and hence is invertible, so this equationgives a well-de�ned speci�cation of the evolution of the entire 
ow solution.In viscous applications, a similar procedure is followed, except that it is the entire
ow velocity which is set to zero at stationary walls due to the no-slip condition.



93 Inviscid Stability AnalysisWe now examine the stability of the numerical scheme. De�ning a suitable \energy" ofsmall perturbations from a uniform 
ow, the �rst step is to consider the semi-discreteequations and prove that the \energy" is monotonically decreasing and so the equa-tions are stable. Thereafter, we consider the fully discrete equations and evaluate theirstability using the theory of algebraic stability.Key to the analysis is the use of symmetrising variables (Gustafsson and Sund-strom [9] and Abarbanel and Gottlieb [1]) which yield equations in which the mainmatrices are all either symmetric or anti-symmetric. It is important to note that thesame semi-discrete equations are obtained whether one discretises the nonlinear Eulerequations using conservative variables, linearises the equations and transforms them tosymmetrised variables, or whether alternatively one �rst linearises and transforms theequations and then discretises them. This justi�es our use of the symmetrising variablessince the stability analysis remains valid independent of the choice of variables used torepresent the linear equations.3.1 Semi-discrete equationsTo avoid the complication of analysing the in
uence of boundary conditions, we �rstconsider the analysis with periodic boundary conditions.The semi-discrete preconditioned Euler equations with �rst order characteristic smooth-ing are0@Xi2Ej 12 jAijj 4 sij1A dQjdt = �Xi2Ej 12 �(F(Qi) + F(Qi)) � nij � jAijj(Qi�Qj)�4 sij;where Aij = @F@Q � nij, as de�ned earlier.Linearising locally and transforming to the symmetrised variables U , the resultingequation is0@Xi2Ej 12 jAijj 4 sij1A dUjdt = �Xi2Ej 12 �Aij(Ui+Uj)� jAijj(Ui�Uj)�4 sij;where Aij is now a symmetric matrix whose eigenvalues are un and un�c, with c beingthe speed of sound and un the component of velocity in the direction normal to the faceassociated with the edge.Considering now the whole mesh, the combined system of o.d.e.'s may be written asP�1dUdt = � (A U + DU) : (3.1)



10P, A and D are all N � N block matrices, in which each block is a 5� 5 matrix. Theycan be expressed asP�1 = XedgesP�1ij = Xedges266664 12 jAijj 4 sij 00 12 jAijj 4 sij 377775 ; (3.2)
A = Xedges A ij = Xedges266664 0 +12Aij 4 sij�12Aij 4 sij 0 377775 ; (3.3)and D = Xedges D ij = Xedges266664 12 jAijj 4 sij �12 jAijj 4 sij�12 jAijj 4 sij 12 jAijj 4 sij 377775 ; (3.4)where an edge connects node j to node i and the four block elements correspond toentries (j; j), (j; i), (i; j) and (i; i); all other elements are zero.The application of an entropy �x [11] to the eigenvalues ensures that each blockdiagonal is strictly positive de�nite, and therefore so is P�1.The diagonal blocks in A are zero, becausePi2Ej 12F(Qj) �nij = 0 due to the closedcontrol volume around node j, as explained earlier. In addition, A is anti-symmetricbecause each of the blocks Aij is symmetric and so A ij is anti-symmetric.Concerning the matrix D , the �rst remark to be made is that since Aij is symmetric,it is diagonalisable by an orthogonal similarity transformation Aij = Tij�ijT Tij withT TijTij = I. Hence, jAijj = Tijj�ijjT Tij is symmetric, and therefore so are D ij and the fullmatrix D . In addition, for any complex vector U and its Hermitian U�,U�D U = 12 Xedges(Ui�Uj)� jAijj 4 sij (Ui�Uj):The matrices jAijj are real positive de�nite symmetric, and the quantities 4sij arepositive real numbers. Consequently, U�D U is a sum of non-negative real numbers andtherefore D is positive semi-de�nite.De�ning the perturbation \energy" as E = 12U�P�1U , we �nd its rate of change tobe dEdt = 12 �dU�dt P�1U + U�P�1 dUdt �



11= 12 (�U�(A +D )�U � U�(A +D )U)= �U�D U� 0:Hence, the energy is non-increasing. Since P�1 is symmetric and positive de�nite, thisin turn proves the stability of the semi-discrete equation.3.2 Fully discrete equationsHaving shown that the semi-discrete equations are stable, we now consider the fullydiscrete equations using Runge-Kutta time integration.Starting with equation (3.1) and de�ning C = �(A +D ), this can be rearranged byde�ning a new variable W = P�1=2U to becomedWdt = P1=2C P1=2W:Using Runge-Kutta time integration, the fully discrete equations areW (n+1) = L �k P1=2C P1=2�W (n); (3.5)where L(z) is the Runge-Kutta polynomial with stability region S, as de�ned in Ap-pendix A, and k is the global timestep. After n timesteps Equation(3.5) givesW (n+1) = �L �k P1=2C P1=2��nW (0):This is said to be absolute stable if there are no solutions which increase without boundas n!1. This requires that none of the eigenvalues of L �k P1=2C P1=2� have magnitudegreater than unity (which means that the eigenvalues do not lie outside the stabilityregion S), and any eigenvalues of unit size are simple eigenvalues.In principle, absolute stability is su�cient to guarantee that the time-marching it-eration converges to the solution of the steady equations. However, it is not su�cientin practice because if the matrix is not normal (i.e. its eigenvectors are non-orthogonal)it allows the possibility of a very large transient growth which can lead to arithmeticover
ow. We therefore require a form of stability analysis which provides su�cientconditions to eliminate this possibility.Ideally, one would like to prove strong stability, which using the L2 vector norm isexpressed as jjW (n)jj � 
jjW (0)jj;where 
 is a constant which applies uniformly to all matrices in the family of spatialdiscretisations for di�erent average mesh spacings h, and with the timestep k being afunction of h. However, in practice it is often not possible to prove strong stability.Instead, what can be more easily proved, and is used here, is a weaker form of stability



12called algebraic stability [23, 15, 13, 8]. This allows, at worst, a linear growth in thetransient solution of the form jjW (n)jj � 
njjW (0)jj;where 
 is a constant. As discussed in [8], a su�cient condition for algebraic stability isthat � �k P1=2C P1=2� � S;where the �eld of values � is de�ned as� �k P1=2C P1=2� = �k W �P1=2C P1=2WW �W : W 6= 0� :The �rst step in applying this stability analysis to the current problem is to prove thatwhen k = 1 the �eld of values is bounded by a unit circle centred on z = �1. Makingthe substitution U = P1=2W , consider� �P1=2C P1=2� = � U�C UU�P�1U : U 6= 0� = ��U�(A +D )UU�P�1U : U 6= 0� :Looking at the contributions from a single edge (i; j), let H be the orthonormalmatrix of eigenvectors of Aij , so that 12Aij 4 sij = HT�H with � being a diagonalmatrix. Introducing the de�nitions Vi = HUi and Vj = HUj, and with v(m)i and v(m)jdenoting the mth component of these vectors, we obtainU�P�1ij U = � ViVj �� 24 j�j 00 j�j 35� ViVj �= Xm ���(m)�� �jv(m)i j2 + jv(m)j j2� ;
U�D ijU = � ViVj �� 24 j�j �j�j�j�j j�j 35� ViVj �= Xm � ���(m)�� �v(m)�i v(m)j + v(m)�j v(m)i �+ ���(m)�� �jv(m)i j2 + jv(m)j j2� ;and U�A ijU = � ViVj �� 24 0 +��� 0 35� ViVj �= Xm �(m) �v(m)�i v(m)j � v(m)�j v(m)i � ;



13Hence �� U�P�1ij U � U�(A ij+D ij )U �� = Xm ������(m) + j�(m)j� v(m)�i v(m)j+ ��(m) + j�(m)j� v(m)�j v(m)i ���� Xm 2j�(m)j jv(m)i j jv(m)j j� Xm j�(m)j�jv(m)i j2 + jv(m)j j2� ;=) �� U�P�1ij U � U�(A ij+D ij )U �� � U�P�1ij U:Summing over all edges then gives the desired result.�� U�P�1U � U�(A +D )U �� � U�P�1 U;=) ���� 1� U�(A +D )UU�P�1U ���� � 1: (3.6)When k 6= 1 the �eld of values is bounded by a circle of radius k centred on z = �k.Choosing the largest such circle lying inside the stability region S gives a timestep kwhich is guaranteed to be algebraically stable. Numerical results will later establish thatthis is close to being a necessary condition for stability as well as su�cient. Appendix Aillustrates, for three popular multistage integration schemes, the stability region S withinwhich jL(z)j � 1. It also shows for each case the largest circle which lies inside S andwhich corresponds to the su�cient stability limits of the scheme being analysed.3.3 Wall boundary conditionIn symmetrised form, the semi-discrete equations with the modi�ed residual and pre-conditioner can be written as�(I�N)P�1(I�N) +N� dUdt = �(I�N)(A +D )(I�N)U:Note the introduction of the additional factor (I�N) on the right hand side, which isvalid since (I�N)U = U . De�ning U? = NU and Uk = (I�N)U , and noting thatN2 = N , one obtains��U� �(I�N)P�1(I�N) +N�U � U�(I�N)(A +D )(I�N)U ��= ��U�kP�1Uk + U�?U? � U�k (A +D )Uk ��� U�kP�1Uk + U�?U?= U� �(I�N)P�1(I�N) +N�U ;and hence ����1� U�(I�N)(A +D )(I�N)UU� [(I�N)P�1(I�N) +N ]U ���� � 1;proving that the �eld of values lies within the unit circle centred on z = �1, as before.



144 Extension to Low Mach Number Preconditioning.At low Mach number the disparity between the acoustic and convective wave speedscannot be adequately handled by block-Jacobi preconditioning on its own, and a slow-down of the convergence is observed. Furthermore, the numerical solution producedis often of poor quality, with signi�cant errors in the pressure distribution due to therelative scaling of the di�erent numerical smoothing terms. To address these di�culties,a low Mach number preconditioner can be incorporated into the numerical dissipationand hence into the block-Jacobi preconditioner. Again, the results obtained show goodmultigrid performances and the question of interest concerns now the implication of themodi�cations on the timestep stability limits presented in the previous sections. Be-fore addressing this question, we �rst present the low Mach number preconditioningtechnique employed.4.1 Preconditioned numerical dissipation4.1.1 1D preliminaryExpressed in symmetrised variables U , the Euler equations are preconditioned for lowMach number applications through the introduction of an invertible matrix �, to become@U@t + �A@U@x = 0:The standard �rst order upwind spatial discretisation gives the semi-discrete equationdUdt + 12�A�2xU � 12 j�Aj �2xU = 0 ;which can be re-written as��1dUdt + 12A�2xU � 12��1j�Aj �2xU = 0 :This shows that the introduction of the low Mach number preconditioning changes thenumerical smoothing, as well as the unsteady evolution of the 
ow �eld.4.1.2 3D generalisationFollowing the 1D approach, the 
ux function de�ned in equation (2.5) is modi�ed toincorporate the low Mach number preconditioner, becomingF Iij = 12 �F Iij(Qi) + F Iij(Qj)� ��1ij j�ijAijj�	(Qi�Qj)� 13(1�	)(Li(Q)�Lj(Q))�� : (4.1)Here the low Mach number preconditioning matrix �ij has been transformed from sym-metrised variables to conservative variables; see [18] for full details.



15In [14] Lee gives a broad overview of the current state of preconditioning. As demon-strated in [30], and because of their highly non-normal feature for low Mach number,many local preconditioners can transiently amplify perturbations by a factor of 1=M asM ! 0. Taking this fact into account, the preconditioner used in the current work isthat developed by Weiss and Smith [30] and also used by Darmofal and Siu [6]. Thispreconditioner, expressed in symmetrised variables, is simply� = 266664 � 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1
377775 :� is a free parameter whose role is to equilibrate the eigenvalues. This preconditioner al-ters only the eigenvalues corresponding to acoustic waves. Choosing � = O(M2) ensuresthat the convective and acoustic wave speeds are of a similar magnitude, proportionalto the 
ow speed. In some applications, � is chosen to be equal to some multiple of thesquare of the freestream Mach number [27, 28, 12]. However, to handle internal 
owsin which there can be extensive regions of low Mach number 
ow even though the in-
ow and out
ow may be transonic, we instead choose to follow Darmofal and Siu [6] inde�ning � to be �ij = min �1; �M2max� ;where Mmax is the maximum Mach number in a neighbourhood of the edge [18] and � isa free parameter set to 3:0 [12] which switches o� the low Mach number preconditioningwhen the Mach number exceeds 1=p3.Modi�cation of the arti�cial dissipation automatically implies modi�cation of theblock-Jacobi preconditioner. The adjustment is straightforward and only concerns theinviscid part. Thus equation (2.6) becomes�P Ij ��1 = 12Vj 0@Xi2Ej ��1ij j�ijAijj 4 sij + Xk2Bj ��1k j�kAkj 4 sk1A : (4.2)4.2 Stability analysis for Low Mach Number Preconditioning.Using symmetrised variables, the linearised 3D Euler equations are of the form@U@t + Ax@U@x + Ay @U@y + Az @U@z = 0:with Ax, Ay and Az being uniform symmetric matrices. Introducing the low Machnumber preconditioning gives��1@U@t + Ax@U@x + Ay @U@y + Az @U@z = 0;



16and performing a change of variables to V = �� 12U produces@V@t + � 12Ax� 12 @V@x + � 12Ay� 12 @V@y + � 12Az� 12 @V@z = 0:This is very similar to the original symmetrised Euler equations in that the three coef-�cient matrices are symmetric.It can be shown (see [18] for full details) that the numerical scheme obtained fromthis p.d.e. by using �rst order upwinding and block-Jacobi preconditioning is exactly thesame as that obtained by constructing the nonlinear discretisation of the Euler equationsusing the preconditioned 
uxes in Equation (4.1) and the block-Jacobi preconditioningin Equation (4.2) and then linearising these equations around a uniform 
ow �eld andtransforming the resulting linear equations into the modi�ed symmetrised variables V .Consequently, the numerical stability analysis is exactly the same as before, but withthe symmetric matrix A replaced throughout by the symmetric matrix � 12A� 12 . Thischanges the eigenvalues in the analysis, but does not change the conclusion that thesemi-discrete equations are stable and the fully-discrete equations satisfy the conditionsfor algebraic stability.In general the requirement for the analysis to remain valid is that the low Machnumber preconditioner � must be symmetric and positive de�nite when expressed insymmetrised variables; � 12 is then well-de�ned. The van Leer-Lee-Roe matrix satis�esthis condition [29], but those due to Turkel [26] and Lee [14] do not. It is the lack ofsymmetry in the matrix which is responsible for the very large transient growth analysedby Darmofal and Schmidt [5]. The analysis here shows that such a large growth will notoccur for symmetric preconditioners.5 Numerical ResultsTo test the accuracy of the predicted stability limits, we have performed a number ofnumerical experiments for both inviscid and viscous 
ows on triangular and tetrahedralgrids. As indicated in Table 1, cases 1 and 2 are based on a 2D grid around a NACA0012airfoil, case 3 on a 2D highly stretched grid around an RAE2822 airfoil, and case 4consists of a half complete aircraft con�guration bounded by a symmetry plane.In all of the computations, the four-stage Runge-Kutta method described in Ap-pendix A is used for the time marching. For the preconditioned Euler equations witha �rst order discretisation, the theoretical CFL limit guaranteeing algebraic stability is1:39. In all four cases, we present the convergence history for a multigrid calculationwhich uses a second order discretisation on the �nest grid. The purpose of this is todemonstrate the good multigrid convergence achieved by the Jacobi preconditioning,and also the low Mach number preconditioning in case 2. In addition, for the �rst threecases we investigate the CFD stability limit by performing a single grid calculation usingthe �rst order discretisation, starting from the converged second order solution on the�ne grid. For all the convergence histories, what is plotted is the L2 norm of the residualvector on the �nest mesh level, normalised by the initial residual.



17Table 1: Test cases { geometry, free stream Mach number, angle of attack, grid type,number of vertices.Test Geometry M1 � Mesh NnodeCase 1 NACA0012 0.8 1.25 Triangular 5700Case 2 a) NACA0012 0.1 0.0 Triangular 5700Case 2 b) NACA0012 0.01 0.0 Triangular 5700Case 2 c) NACA0012 0.001 0.0 Triangular 5700Case 2 d) NACA0012 0.0001 0.0 Triangular 5700Case 3 RAE2822 0.73 2.8 Triangular 11200Case 4 FALCON 0.85 2.0 Tetrahedral 156000
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Figure 1: Case 1, multigrid convergence history, CFL=1:58Case 1 is a standard transonic NACA0012 test case with a strong shock on theupper surface and a weak shock on the lower surface. Figure 1 presents the multigridconvergence history using �ve grid levels. The calculation is stable up to CFL = 1:58,which corresponds to the actual stability boundary. Running the code on the �nest gridusing the �rst order discretisation, starting from the already converged second ordersolution, the calculation becomes unstable for CFL=1:59, as shown in Fig. 2. Thus thetheory underpredicts the stability boundary by approximately 14%.In Case 2, we consider four low Mach number 
ows around the NACA0012 usingthe low Mach number preconditioner in addition to the Jacobi preconditioner. Figure 3for case 2b) with M = 0:01 shows that a calculation without the low Mach precondi-tioner code requires approximately 20 times more iterations. In both cases, �ve levelsof multigrid were used with CFL=1:63. The results for the other Mach numbers werevery similar. In addition, the use of the low Mach number preconditioner made theaccuracy of the computed 
ow �elds almost independent of the Mach number, unlike
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Figure 2: Limit of stability for Case 1.
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Figure 3: Convergence history with and without low Mach number preconditioner forM1=0:01 with multigrid.
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Figure 4: Convergence history comparison for low Mach numbers and stability bound-aries.the unpreconditioned results which deteriorate badly at low Mach numbers, as shown in[18]. In Fig. 4 we investigate the CFL stability limit for the single grid calculation. Theresults for the four sub-cases show that the actual stability boundary is at CFL=1:63so the theory now underpredicts the stability boundary by 17%.In case 3, a viscous calculation is performed for the 
ow around a 2D RAE2822airfoil. The case investigated is the standard AGARD Case 9 [4]. Again, good multigridconvergence is achieved, as shown in Fig. 5, but this time the theory overpredicts theCFL limit since the stability limit was found to be CFL=1:25. We attribute this over-prediction to the fact that our analysis does not take into account several characteristicsof this test case. One is that the theory is based on small perturbations to a uniform
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Figure 5: Multigrid convergence history for Case 3, CFL=1:25
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Figure 6: Limit of stability for Case 3. Fine Mesh
ow �eld, which is far from being the situation in this turbulent viscous case where wehave a strong shock and recirculation. Also, we are using multigrid with a second orderspatial discretisation on the �nest grid level, neither of which is accounted for in thetheory. The results in Fig. 6 for a single grid calculation with the �rst order discreti-sation, show the stability boundary is CFL = 1:32, so the theory now overpredicts thestability limit by less than 4%. To get closer to the conditions for our analysis, we showin Fig. 7 a similar test, but this time applied to the �rst coarsened level that is used inthe multigrid calculation. In this case, the inviscid terms in the discretisation are moredominant and the actual stability boundary stands at CFL= 1:56 so the theory, as inthe two previous cases, underpredicts the stability boundary by approximately 12%.Finally, case 4 concerns the inviscid transonic 
ow over a Falcon jet designed byAvions Marcel Dassault, France. This case is included to demonstrate the e�ectiveness
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Figure 7: Limit of stability for Case 3. First coarse level
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Figure 8: Case 4, business jet: multigrid convergence history.of the Jacobi preconditioner for a 3D application. Figures 8 and 9 shows the multi-grid convergence history and the Mach contour plot obtained with the second orderdiscretisation on the �nest grid. Convergence to engineering accuracy is achieved in 185multigrid cycles with a total CPU time of approximately three hours on a 250 MHz SGIOctane. This case exempli�es the e�ectiveness of the numerical algorithm for a real 3Dapplication, with the multigrid behaving well as long as the su�cient CFL condition foralgebraic stability is satis�ed. More details and examples can be found in [18].6 ConclusionsIn this paper, we have analysed the numerical stability of discrete approximations ofthe Euler equations on unstructured grids. It has been shown that the use of �rst ordercharacteristic smoothing and block-Jacobi preconditioning results in a semi-discrete sys-tem of equations which is stable when analysed for perturbations to a uniform 
ow. Thecorresponding fully discrete equations satisfy the conditions for algebraic stability whenthe timestep the appropriate CFL condition. The analysis has also been extended to in-clude the class of symmetric low Mach number preconditioners which greatly accelerateconvergence for low Mach number 
ows and improve the steady-state accuracy.Appendix A Runge-Kutta stability regionsLet us consider a system of o.d.e.'s of the formdQdt = CQ;where C is a real square matrix. Runge-Kutta time integration with a timestep k givesQ(n+1) = L(kC)Q(n);
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                                                                                Figure 9: Case 4, business jet: Mach number contours.where L(z) = pXm=0 amzm; (a0 = a1 = 1; ap 6= 0)is the Runge-Kutta polynomial function with stability region S. This region is shown inthe following �gures for three popular multi-stage schemes; the radius rc of the largestcircle lying within S equals the maximum timestep for which the analysis in the mainpaper gives a su�cient condition for algebraic stability.
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