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1 Introduction

This paper is concerned with a detailed error analysis of two different discretisations
of the one-dimensional constant coefficient convection/diffusion equation on an infinite
domain. Both are based on a second order central space discretisation; one uses the
Forward Euler time discretisation and the other uses Crank-Nicolson, with or without
a Rannacher startup in which one or more Crank-Nicolson timesteps is replaced by two
half-timesteps of Backward Euler discretisation to improve the convergence.

The novelty in this paper is in the focus on Dirac initial data. One reason for this
focus is concern with the convergence of adjoint discretisations. Adjoint methods are
being used heavily for optimal design [10, 11], error analysis and correction for integral
outputs [1, 7, 12], and optimal grid adaptation [2, 4]. In applications in which the original
p.d.e. is nonlinear, the adjoint discretisation is usually obtained in one of two ways, either
as a discretisation of the adjoint p.d.e. corresponding to the linearisation of the original
p.d.e., or as the transposed equation corresponding to the linearised discretisation of
the original p.d.e. In either case, if the original nonlinear solution is smooth, then
the coefficients of the adjoint discretisation will be smooth, and it is possible to prove
convergence in both steady and unsteady applications as the mesh spacing and timestep
approach zero [19, 20]. However, when the underlying nonlinear solution is discontinuous,
as in the case of shocks in compressible flow, then there is numerical evidence [5] showing
that one must be careful in the treatment of the discontinuity to obtain convergence for
the adjoint discretisation.

To understand the connection between Dirac initial data and adjoint equations, con-
sider the following system of linear equations,

Un+1 = AnUn,

arising from the discretisation of an unsteady linear one-dimensional p.d.e. Here U n

represents the approximation to a scalar variable u(x, t) on a one-dimensional grid with
uniform spacing h at time tn = nk. If one is interested in the value of an integral output

J =

∫ ∞

−∞

g(x)u(x, T ) dx,

this may be approximated as

Jh = h
∑

j

g(xj)U
N
j ,

where T = Nk. Alternatively, but equivalently, it can be evaluated as

Jh = h
∑

j

V 0
j U

0
j ,

where the adjoint solution V n
j satisfies the adjoint discrete equations

V n = (An)TV n+1,
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subject to the final data
V N
j = g(xj).

The equivalence follows immediately from the identity

(V 0)TU0 = (V N)TAN−1AN−2 . . . A1A0 U0 = (V N)TUN .

This adjoint approach to evaluating the output functional is advantageous when
there is a single output functional of interest, but many different sets of initial data.
Under these circumstances, the standard approach would require a separate forward
analysis for each set of initial data, whereas the adjoint approach requires just one
adjoint calculation, plus an inexpensive inner product evaluation for each set of initial
data.

In the particular case of Dirac initial data with

U0
j = h−1δj,0 ≡

{
h−1, j = 0

0, otherwise

one obtains
V 0

0 = h
∑

j

g(xj)U
N
j .

Thus, convergence of the integral output for Dirac initial data is equivalent to pointwise
convergence of the adjoint discretisation. The results for the explicit Forward Euler
discretisation in this paper will be used in a future paper [8] to prove the pointwise
convergence of adjoint discretisations when there are discontinuities in the solution of
the underlying nonlinear p.d.e..

A second motivation for the analysis in this paper is applications in mathematical
finance which require the numerical solution of variants of the Black-Scholes equation
[21]

∂V

∂t
= rV − rS

∂V

∂S
− 1

2
σ2S2∂

2V

∂S2
.

This is an equation which is solved backwards in time, from a terminal time t=T , to an
initial time t=0. The value for σ is sufficiently large that the diffusion plays a significant
role in the evolution of the solution; it is not a convection-dominated problem. Hence,
second-order central space differencing and Crank-Nicolson time integration is widely
used to approximate this equation. On a uniform grid with spacing h and timestep k
this results in the discrete equations

(I + 1
2
Dj)V

n+1
j = (I − 1

2
Dj)V

n
j

where

Dj = −
k

2h2
σ2 (Sj)

2 δ2
s −

k

2h
r Sj δ2s + r k

with δ2
s and δ2s being the standard second difference and central first difference operators,

respectively, and tn+1 = tn−k where n is the time level index which increases from n=0
at time t=T to n=N at time t=0.
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For European call options, the “initial” data at the terminal time is

V (S, T ) = max(S−K, 0).

The top-left plot in Figure 1 shows the numerical solution V (S, 0) at time t=0 obtained
on a uniform grid 0≤S≤Smax = 5, using parameter values r=0.05, σ=0.2, K = 1, T =2.
The boundary conditions which were used are Vj=0 at S=0, and δ2Vj=0 at S=Smax.
The agreement between the numerical solution and the analytic solution [21] appears
quite good, but in the financial application the first derivative, ∆ ≡ ∂V/∂S, and the
second derivative, Γ ≡ ∂2V/∂S2, are both important quantities. Their numerical values
obtained by central differencing are in much poorer agreement with the analytic solution,
as shown in the other two left-hand plots in Figure 1. In particular, note that the
maximum error in the computed value for Γ occurs at S=1, which is the location of the
discontinuity in the first derivative of the initial data.

The left-hand plots in Figure 2 show the behaviour of the maximum error as the
computational grid is refined, keeping fixed the ratio λ ≡ k/h. It can be seen that the
numerical solution Vj exhibits first order convergence, while the discrete approximation
to ∆ does not converge, and the approximation to Γ diverges.

At first sight, this may appear surprising as the Crank-Nicolson method is well-
known to be consistent and unconditionally stable, and hence one expects convergence.
However, it is unconditionally stable only in the L2 norm, and this, together with con-
sistency, ensures convergence in L2 only for initial data which lies in L2 [17], and the
order of convergence may be less than the second order achieved for smooth initial data.
For example, the L2 order of convergence for discontinuous initial data is 1

2
. With the

European call, the initial data for V lies in L2, as does its first derivative, but the second
derivative does not. This then is the root cause of the observed failure to converge as
the grid is refined. Furthermore, it is the maximum error, the L∞ error, which is most
relevant in financial applications.

In [16], Rannacher analysed this problem from the perspective of L2 convergence of
convection-diffusion approximations with discontinuous initial data. His objective was
to recover second order convergence in the context of Crank-Nicolson time-marching (he
also considered higher order time integration schemes), and using energy methods he
proved that this could be achieved by replacing the Crank-Nicolson approximation for
the very first timestep by two half-timesteps using Backward Euler time integration.
This solution, often referred to as Rannacher time-stepping, has been used with success
in approximations of the Black-Scholes equations [9, 13, 14, 15]. The right-hand plots
in Figures 1 and 2 show that replacing the first two Crank-Nicolson timesteps by four
half-timesteps of Backward Euler, for which

(I + 1
2
D)V

n+1/2
j = V n

j .

results in second order convergence for V , ∆ and Γ. The purpose of the analysis in
this paper is to explain this behaviour by analysing the implicit discretisation of the
convection-diffusion equation subject to Dirac initial data, corresponding to the initial
data for Γ. This will prove that four half-timesteps of Backward Euler time-marching is
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Figure 1: V , ∆ and Γ for European call option
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the minimum required to recover second order convergence; the use of more than four
half-timesteps will probably lead to an increase in the overall error, and therefore four
half-timesteps can be regarded as optimal.

The numerical analysis is based on the Fourier transform of the discrete equations [18]
and asymptotic approximation of the inverse Fourier transform to bound the resulting
discretisation error. It is similar to the approach used by Brenner, Thomée and Wahlbin
[3], however, their interest was in studying convergence for Lp initial data, as opposed to
the Dirac initial data of interest in this paper. Numerical results confirm the sharpness
of the error bounds which are derived.

2 Model problem and discretisations

The model problem to be analysed is the convection-diffusion equation

∂u

∂t
+ a

∂u

∂x
=

∂2u

∂x2
, (2.1)

on −∞<x<∞ and 0<t<1, subject to the Dirac initial data

u(x, 0) = δ(x).

The generalisation to non-unit diffusivity and terminal times other than t = 1 will be
discussed later.

Defining the Fourier transform pair

û(κ, t) =

∫ ∞

−∞

u(x, t) e−iκx dx,

u(x, t) =
1

2π

∫ ∞

−∞

û(κ, t) eiκx dκ,

then the Fourier transform of Equation (2.1) yields

dû

dt
= − (iaκ+κ2) û,

subject to initial data û(κ, 0) = 1. The solution to this is

û(κ, t) = exp
(
−(iaκ+κ2) t

)
,

and hence

u(x, t) =
1√
4πt

exp

(
− (x−at)2

4t

)
=

1√
2t

N

(
x−at√

2t

)
,

where

N(x) =
1√
2π

exp

(
−x

2

2

)
,
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is the standard Normal distribution with zero mean and unit variance.
The forward Euler central space discretisation on a uniform grid with spacing h and

timestep k is
Un+1
j = (I−D) Un

j , (2.2)

where

D = − d δ2
x +

r

2
δ2x, d =

k

h2
, r =

ak

h
,

with δ2
x and δ2x being the usual second difference and central first difference operators,

respectively.
The Crank-Nicolson discretisation is

(
I + 1

2
D
)
Un+1
j =

(
I − 1

2
D
)
Un
j , (2.3)

and the half-timestep Backward Euler discretisation used in the Rannacher startup is
(
I + 1

2
D
)
U
n+1/2
j = Un

j . (2.4)

The discrete approximation to the Dirac initial data in both cases is

U0
j = h−1δj,0 ≡

{
h−1, j = 0

0, otherwise.

The objective of the error analysis will be to quantify the error UN
j −u(xj, 1) for N=1/k.

First however, there is an important point to clarify, which is that Equations (2.3) and
(2.4) do not have unique solutions because the homogeneous equation

(
I + 1

2
D
)
Vj = 0,

has non-trivial solutions of the form Vj = wj where w satisfies the quadratic equation

w − 1
2
d (w2−2w+1) + 1

2
r (w2−1) = 0.

It can be shown that one root has magnitude greater than unity, leading to exponential
growth as j →∞, while the other has magnitude less than unity, leading to exponential
growth as j → −∞. Hence, there is at most one solution of Equation (2.3) or (2.4)
which remains bounded. We will now show that such a bounded solution does exist,
and thus by requiring boundedness we obtain a unique solution.

To construct this bounded solution we consider the use of periodic boundary condi-
tions Un

j+J = Un
j for j = −J/2,−J/2 + 1, (with J even) and all n. Using the discrete

Fourier transform pair

Un
j =

1

hJ

J/2∑

m=−J/2+1

Ûn
m exp(ijθm)

Ûn
m = h

J/2∑

j=−J/2+1

Un
j exp(−ijθm).
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where θm = m∆θ = 2πm/J, the Fourier transform of Equation (2.3) gives

Ûn+1
m =

1− 1
2
ir sin θ − 2d sin2 θ

2

1 + 1
2
ir sin θ + 2d sin2 θ

2

Ûn
m,

for n≥R, where R is the number of initial Crank-Nicolson timesteps replaced by 2R
half-timesteps of Backward Euler time integration, while for n<R the Fourier transform
of Equation (2.4) gives

Ûn+1
m =

1

(1 + 1
2
ir sin θ + 2d sin2 θ

2
)2

Ûn
m.

These can be combined to give

Ûn
m = zn1 (θ) z

min(n,R)
2 (θ) Û0

m,

where

z1(θ) =
(
1− 1

2
ir sin θ − 2d sin2 θ

2

) (
1 + 1

2
ir sin θ + 2d sin2 θ

2

)−1
,

z2(θ) =
(
1− 1

2
ir sin θ − 2d sin2 θ

2

)−1 (
1 + 1

2
ir sin θ + 2d sin2 θ

2

)−1
.

For the Dirac initial data, Û0
m = 1 and hence

Un
j =

1

2πh

J/2∑

m=−J/2+1

zn1 (θm) z
R
2 (θm) e

ijθm ∆θ

−→ 1

2πh

∫ π

−π

zn1 (θ) z
min(n,R)
2 (θ) eijθ dθ

as J → ∞ with h held fixed; the limit clearly exists because of the continuity of z1(θ)
and z2(θ). By making the substitutions θ=κh, xj=jh the integral can also be expressed
as

Un
j =

1

2π

∫ π/h

−π/h

zn1 (κh) z
min(n,R)
2 (κh) eiκxj dκ.

This has the correct initial data and satisfies the discrete equations on an infinite domain
since for each j the periodic solution satisfies the discrete equations for all J > j. It is
also bounded because of the discrete Parseval identity

h

J/2∑

j=−J/2+1

∣∣Un
j

∣∣2 =
1

2πh

J/2∑

m=−J/2+1

∣∣∣Ûn
m

∣∣∣
2

∆θ

which in the limit J →∞ becomes

h
∑

j

∣∣Un
j

∣∣2 =
1

2π

∫ π/h

−π/h

∣∣∣Ûn(κ)
∣∣∣
2

dκ.
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3 Forward Euler error analysis

3.1 Analysis of Fourier transform error

The Fourier transform of Equation (2.2)) yields

ÛN(κ) = zN(κ).

where

z(κ) = 1− i a d h sinκh− 4d sin2 κh

2
.

We now compare this to the analytic solution u(x, 1) whose Fourier transform is

û(κ, 1) = exp
(
−iaκ−κ2

)
.

The comparison is split over two wavenumber regions, a low wavenumber region in
which |κ| < h−m for some constant m satisfying the constraints 0<m< 1

2
, and the high

wavenumber region |κ| > h−m.

Proposition 1 (Low wavenumber region)
For |κ| < h−m, as h→ 0 with Nk = 1 and d = k/h2 held fixed,

ÛN(κ)− û(κ, 1) = h2 exp
(
−iaκ−κ2

){
p(a, d;κ) +O

(
h2(κ2+κ8)

)}
,

where
p(a, d;κ) = 1

2
d a2κ2 +

(
1
6
− d
)
i a κ3 +

(
1
12
− 1

2
d
)
κ4. (3.1)

Proof Performing a Taylor series expansion,

log ÛN = N log z = −iaκ−κ2 + h2 p(a, d;κ) +O(h4(κ2+κ8)).

The restriction m< 1
2 ensures that both the leading order error term and the remainder term

tend to zero as h→ 0, and hence

ÛN = exp
(
−iaκ−κ2

) {
1 + h2 p(a, d;κ) +O(h4(κ2+κ8))

}

= û(κ, 1) + h2 exp
(
−iaκ−κ2

) {
p(a, d;κ) +O(h2(κ2+κ8)).

}

A more detailed proof [6] gives precise bounds on the remainder term. ¥

Proposition 2 (High wavenumber region)
For h−m < |κ| < π/h, as h → 0 with Nk = 1 and d = k/h2 held fixed with d < 1

2
,

ÛN = o(hq), for any q>0.

Proof For h sufficiently small so that |a|h < 1, then

|z|2 = 1− 8 d sin2 κh

2

(
1− 2d sin2 κh

2
− 1

2(ah)
2d cos2

κh

2

)

≤ 1− 8 d(1−2d) sin2 κh

2
.
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Since sin2(θ/2) ≥ (θ/π)2 for θ ∈ [0, π], it follows that for |κ|≤π/h,

|z|2 ≤ 1− 8 d(1−2d)κ
2h2

π2
≤ exp

(
−8 d(1−2d)κ

2h2

π2

)
,

and hence for fixed Nk = Ndh2 = 1 we obtain

|ÛN (κ)| ≤ exp
(
−4 (1−2d)κ

2

π2

)
≤ exp

(
−4 (1−2d)h

−2m

π2

)
.

¥

3.2 l∞ and l1 error estimates

The inverse Fourier transform of exp (−iaκ−κ2) p(a, d;κ) is

e(x) = − d

4
√
2
a2N (2)

(
x−a√

2

)
−
(

1

24
− d

4

)
aN (3)

(
x−a√

2

)

+

(
1

48
√
2
− d

8
√
2

)
N (4)

(
x−a√

2

)
, (3.2)

where N (m) denotes the mth derivative of the Normal distribution N(x). Using the
notation q(h) ' r(h) to denote that

q(h)

r(h)
− 1 = o(h), as h→ 0,

then we obtain the following bounds for the error UN
j − u(xj, 1):

Proposition 3 For the discretisation (2.2), with fixed d = k/h2< 1
2
as h→ 0,

‖Un − u(., 1)‖l∞ ' h2‖e‖L∞
and

‖Un − u(., 1)‖l1 ' h2‖e‖L1
,

except for the specific case a=0, d= 1
6
for which e(x) is identically zero.

Proof We outline the proof; for additional details see [6]. The inverse Fourier transform
gives

UN (x)− u(x, 1) =
1

2π

∫

|κ|<h−m

(
ÛN (κ)−û(κ, 1)

)
eiκx dκ

+
1

2π

∫

h−m<|κ|<π/h

(
ÛN (κ)−û(κ, 1)

)
eiκx dκ− 1

2π

∫

π/h<|κ|
û(κ, 1) eiκx dκ.

The last two integrals both gives contributions which are o(hq) for any q > 0, and hence

UN (x)− u(x, 1) =
1

2π

∫

|κ|<h−m

h2 exp
(
−iaκ−κ2

)
p(a, d;κ) eiκx dκ + O(h4)

=
1

2π

∫ ∞

−∞
h2 exp

(
−iaκ−κ2

)
p(a, d;κ) eiκx dκ + O(h4)

= h2 e(x) + O(h4).
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Figure 3: Convergence results for the explicit discretisation

The l∞ error bound follows immediately; the l1 error bound requires the additional observation

that due to the explicit nature of the discretisation UN has compact support in a region of

width 2Nh = O(h−1), and u(x, 1) is negligibly small outside this region. ¥

Figure 3 presents convergence results obtained on the truncated domain −10<x<10
and the time interval 0<t<1 using a=2. As the grid spacing h is reduced, the timestep
is related to the grid spacing h through k = dh2 with d = 1/8. For all but the very
largest values of h, there is very good agreement between the numerical errors and the
asymptotic analysis of Proposition 3.

4 Crank-Nicolson and Rannacher error analysis

The Fourier analysis in Section 2 gives the solution at the final iteration level N = 1/k
(assumed to be greater than R, the number of Crank-Nicolson timesteps replaced by
two half-timesteps of Backward Euler time-marching) as

UN
j =

1

2π

∫ π/h

−π/h

ÛN(κh) eiκxj dκ,

where
ÛN(θ) = zN1 (θ) zR2 (θ).



13

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

x

U

Crank−Nicolson time−marching

u
U

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ / π

Fo
ur

ie
r a

m
pl

itu
de

u
U

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

x

U

Rannacher startup with 4 half−steps

u
U

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ / π

Fo
ur

ie
r a

m
pl

itu
de

u
U

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

x

U

u
U

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ / π

Fo
ur

ie
r a

m
pl

itu
de

u
U

−4 −2 0 2 4

−0.2

0

0.2

0.4

0.6

0.8

x

U

u
U

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ / π

Fo
ur

ie
r a

m
pl

itu
de

u
U

Figure 4: Numerical results for the implicit discretisations
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Figure 4 plots comparisons between the numerical and analytic solutions to the
convection-diffusion problem with a=2 at the final time t=1 for two grid resolutions,
h= 1/3 for the upper half of the figure, and h= 1/6 for the lower half. The timestep
is chosen so that λ = k/h = 3/4 in each case. The plots on the left are for Crank-
Nicolson without any Rannacher startup, whereas the plots on the right are for R=2,
replacing the first two Crank-Nicolson timesteps by four half-timesteps of Backward
Euler integration.

The main feature of the results in physical space (i.e. the plots of U and u versus x)
is the high-wavenumber error near x=0 for the Crank-Nicolson time-marching. Asymp-
totic analysis will show its width is proportional to h, and its magnitude is proportional
to h−1. Looking at the comparison in Fourier space (i.e. the plots of |Û | and |û| versus
θ) in the Crank-Nicolson results there appear to be three regions: an O(h) region one

on the left in which û ≈ Û , an O(1) region on the right in which û¿ 1 but Û = O(1),

and a central region in which both û¿ 1 and Û ¿ 1. This is the basis for the asymp-
totic analysis, which considers a low wavenumber range defined by |κ| < h−m, a high
wavenumber range defined by h−q < |κ|, and the intermediate range h−m < |κ| < h−q,
with m and p satisfying the constraints 0 < m < 1

3
and 1

2
< q < 1 for reasons to be

explained later.
The convergence analysis considers the limit h, k → 0 with λ = k/h held fixed. The

reason for this choice of limit is that the truncation error due to the spatial central
differencing and the Crank-Nicolson time integration is O(k2 + h2), and so k=λh keeps
the spatial and temporal approximation errors of the same order. We now analyse the
Fourier error Û−û in each of the three regions.

Proposition 4 (Low wavenumber region)
For |κ| < h−m, as h→ 0 with λ = k/h held fixed,

ÛN(κ)− û(κ, 1) = h2 exp(−iaκ− κ2)
{
p(a, λ,R;κ) +O(h(κ3+κ9))

}
,

where
p(a, λ,R;κ) = 1

6
i aκ3 + 1

12
κ4 − 1

12
λ2κ3(i a+κ)3 + 1

4
Rλ2κ2(i a+κ)2.

Proof Setting θ = κh, N = 1
k =

1
λh , r = aλ, d = λ

h , a Taylor series expansion in h gives

log ÛN = N log z1 +R log z2 = −iaκ− κ2 + h2p(a, λ,R;κ) +O(h3(κ3+κ9)).

The restriction that m< 1
3 ensures that the h

2κ6 term and the h3κ9 remainder both tend to
zero as h→ 0, and hence

ÛN = exp(−iaκ− κ2)
{
1 + h2p(a, λ,R;κ) +O(h3(κ3+κ9))

}
.

¥

Proposition 5 (High wavenumber region)
For h−q < |κ|, as h→ 0 with λ = k/h held fixed,

ÛN = (−1)N−R h2R

(2λ sin2 θ
2
)2R

exp

(
− 1

λ2 sin2 θ
2

) (
1 +O

(
h θ−2

))
.
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Proof

z1(θ) =
(
1− 1

2 ir sin θ − 2d sin
2 θ

2

) (
1 + 1

2 ir sin θ + 2d sin
2 θ

2

)−1

=

(
1

2d sin2 θ
2

− ir

2d
cot θ2 − 1

) (
1

2d sin2 θ
2

+
ir

2d
cot θ2 + 1

)−1

−→ −1 as d→∞,

and similarly

z2(θ) =
(
2d sin2 θ

2

)−2
(

1

2d sin2 θ
2

− ir

2d
cot θ2 − 1

)−1(
1

2d sin2 θ
2

+
ir

2d
cot θ2 + 1

)−1

−→ −
(
2d sin2 θ

2

)−2
as d→∞,

Hence, expressing d and N as functions of h as in the proof of Proposition 4, Taylor series
analysis gives

log
{
(−1)N−RÛN

}
= 2R log

h

2λ sin2 θ
2

− 1

λ2 sin2 θ
2

+O

(
h

sin2 θ
2

)
.

The restriction that q> 1
2 ensures that the remainder term tends to zero as h→ 0, and therefore

we obtain the result in the Proposition. ¥

Proposition 6 (Intermediate region)

For h−m < |κ| < h−q, as h→ 0 with λ = k/h held fixed, ÛN(κ) = o(hr), for any r>0.

Proof Defining s = sin2 θ
2 ,

|z1|2 =
(1−ds)2 + r2s(1−s)
(1+ds)2 + r2s(1−s) .

Differentiating, one finds that d|z1|2/ds = 0 when s2 = (d2− r2)−1. Substituting r=aλ, d= λ
h ,

this shows that as h → 0, |z1| has a maximum at s = 0, 1, and a minimum at s ≈ d−1,

corresponding to κ = O(h−1/2) which lies within the intermediate region. Noting that for any

r > 0, the Proposition 4 and 5 prove that |z1|N = o(hr) at both κ = h−m and κ = h−q, it

follows that |z1|N = o(hr) within the entire intermediate region. Since
∣∣zN1 zR2

∣∣ < |z1|N−R, it
follows that ÛN = o(hr) for any r>0. ¥

Defining
Êlow = h2 exp(−iaκ− κ2) p(a, λ,R;κ),

and

Êhigh = (−1)N−R h2R

(2λ sin2 θ
2
)2R

exp

(
1

λ2 sin2 θ
2

)
,

then since Êlow ¿ Êhigh in the high wavenumber region, and Êhigh ¿ Êlow in the low
wavenumber region, the results above can be combined to give

ÛN(κ)− û(κ, 1) ≈ Êlow + Êhigh, |κ| < π/h.
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The inverse Fourier transform then gives

UN
j − u(xj, 1) ≈ Elow

j + Ehigh
j ,

where the low wavenumber error is

Elow
j = h2

{
Ra2λ2

8
√
2

N (2)

(
xj−a√

2

)

− 2a+a3λ2+6Raλ2

48
N (3)

(
xj−a√

2

)

+
1+3a2λ2+3Rλ2

48
√
2

N (4)

(
xj−a√

2

)

− aλ2

32
N (5)

(
xj−a√

2

)

+
λ2

96
√
2
N (6)

(
xj−a√

2

) }
,

and the high wavenumber error is

Ehigh
j = (−1)N−R h2R−1 (2λ)−2R fj,

where

fj =
h

2π

∫ π/h

−π/h

e−iκxj

sin4R θ
2

exp

(
− 1

λ2 sin2 θ
2

)
dκ

=
1

2π

∫ π

−π

e−ijθ

sin4R θ
2

exp

(
− 1

λ2 sin2 θ
2

)
dθ

=
1

π

∫ π

0

cos jθ

sin4R θ
2

exp

(
− 1

λ2 sin2 θ
2

)
dθ.

Ehigh
j clearly has a width which is O(h), and has a maximum magnitude at j=0 where

xj=0, which explains the observed behaviour in Figure 4. The integral for j=0 can be
evaluated analytically (see Appendix A) giving

max
j
|Ehigh

j | = |Ehigh
0 | = h2R−1 (2λ)−2R d2R

dβ2R
erfc(

√
β),

where β = λ−2 and erfc(x) is the complementary error function.
The fact that the low wavenumber is O(h2) and the high wavenumber error is

O(h2R−1) is confirmed by the results in the upper plots of Figure 5, which shows con-
vergence results for the convection-diffusion case with a = 2. It can be seen that for
the standard Crank-Nicolson time-marching, the results exhibit O(h2) convergence until
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h reaches a sufficiently small value that the O(h−1) high wavenumber error becomes
dominant. The plots show the sensitive dependence of the high wavenumber error on
the value of λ. For large values of λ, erfc(λ−1) ≈ 1 and so Ehigh

j becomes significant for
quite large values of h. On the other hand, for small values of λ, erfc(λ−1) is extremely
small, and so Ehigh

j does not become dominant until h is extremely small. With the
Rannacher startup with four half-timesteps of Backward Euler integration (R=2), the
high wavenumber error is O(h3) and so the low wavenumber error remains dominant
for all h. The sharpness of the error analysis is demonstrated by the lower plots in the
figure, which compare the numerical error with the maximum magnitude of E low

j and

Ehigh
j .

5 Extensions

5.1 Diffusion coefficient and terminal time

The error analysis of the convection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= ε

∂2u

∂x2
,

and the terminal time t=T is handled through the non-dimensionalisation

t =
t

T
, x =

x√
εT

, k =
k

T
, h =

h√
εT

, a =

√
T

ε
a, U

n

j =
√
εT Un

j ,

which reduces the more general problem to the one which has already been analysed.

5.2 Alternative initial data

The analysis so far has assumed that there is a grid point at x=0, so the grid is perfectly
aligned with the discrete Dirac initial data. If the grid points xj are still located at jh,
but instead of j taking integer values it is j+α which takes integer values (with 0<α<1)
then the appropriate discretisation of the Dirac initial data is

U0
j =





(1−α)h−1, j = −α,
α h−1, j = 1− α,
0, otherwise.

This gives
Û0
m = (1−α) e−iαθm + α ei(1−α)θm .

Putting θm = κh, an asymptotic expansion with respect to h gives

Û0
m = 1 +O(κ2h2),

which leads to the result that the low wavenumber error remains second order. Further
analysis shows that the convergence order of the high wavenumber error in the implicit
discretisations is also unaffected.
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Figure 5: Convergence results for the implicit discretisations
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Although the focus of our analysis so far has been on Dirac initial data, there are
other sets of initial data which are also of interest. One is the first difference of the
discrete Dirac initial data, defined at half-integer locations,

U0
j = h−2

(
δj,−1/2 − δj,1/2

)
≡





−h−2, j = 1/2,

h−2, j = −1/2,
0, otherwise,

for which

Û0
m =

2i sin θm

2

h
,

leading to

Un
j =

1

2πh2

∫ π

−π

2i sin θ
2
zn(θ) exp(ijθ) dθ.

Another is a discrete equivalent of H(x) − 1
2
, where H(x) is the Heaviside step

function, which is again defined at half-integer locations,

U0
j =

{
−1

2
, −J/2 < j < 0,

1
2
, 0 < j < J/2,

for which

Û0
m =

h (1− (−1)m)
2i sin θm

2

,

leading to

Un
j =

1

2π
PV

∫ π

−π

(
2i sin θ

2

)−1

zn(θ) exp(ijθ) dθ,

where PV denotes the Cauchy principal value about θ=0 where the integrand is singular.
For both of these sets of alternative initial data, the low wavenumber error will still

be O(h2). However, in the implicit discretisation error analysis, the high wavenumber
error will be one order worse in the first case, O(h−2+2R) where R is again the number of
Crank-Nicolson timesteps replaced by two half-timesteps of Backward Euler integration,
and one order better in the second case, O(h2R).

6 Conclusions

In this paper we have derived sharp estimates for the error arising from explicit and im-
plicit discretisations of the constant coefficient 1D convection/diffusion equation subject
to Dirac initial data.

The extension of the Fourier analysis to multiple dimensions would pose no particular
difficulties. To extend the analysis to varying coefficients would not be so easy, but
could be performed using a matched inner and outer asymptotic analysis, with the
inner analysis in the neighbourhood of the Dirac initial data being performed using the
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analysis in this paper, treating the coefficients as being locally approximately constant.
The inner solution would then have to be matched to an outer solution describing the
subsequent evolution of the solution and the discretisation error in the outer region in
which the solution is well resolved, at least asymptotically.

The results in this paper can also be used in circumstances where the viscosity ε
depends on the mesh spacing h, provided h̄ = h/

√
εt→ 0. This is important in proving

the pointwise convergence of adjoint Burgers equation solutions along characteristics
leading into a discontinuity in the underlying nonlinear solution [8].

Regarding the use of Rannacher time-stepping, replacing each of the first R Crank-
Nicolson timesteps by two half-timesteps of Backward Euler integration, the analysis
proves, and numerical results confirm, that there is a low wavenumber error which is
O(h2), and a high wavenumber error which is O(h2R−1). Hence R=2 is the minimum to
give O(h2) convergence, and it is likely to be the optimum in general since larger values
will increase the low wavenumber error.
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Appendix A Evaluation of integral

Consider the integral

I0 =
1

π

∫ π

0

exp

(
− 1

λ2 sin2 θ
2

)
dθ.

Making the substitutions t = cot θ
2
and α = λ−1, one obtains

I0 =
2

π

∫ ∞

0

1

t2+1
exp

(
−α2(t2+1)

)
dt,

and hence

dI0
dα

= −4α

π

∫ ∞

0

exp
(
−α2(t2+1)

)
dt = − 2√

π
exp(−α2).

Since I0 → 0 as α→∞, integration gives

I0 =
2√
π

∫ ∞

λ−1

exp(−s2) ds ≡ erfc(λ−1),

where erfc(x) is the complementary error function.
Switching to a new variable β = λ−2 = α2, then I0(β) = erfc(

√
β), and

IR(β) ≡
1

2π

∫ π

−π

1
(
sin2 θ

2

)2R exp

(
− β

sin2 θ
2

)
dθ =

d2RI0
dβ2R

.


