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High aspect ratio cells in a computational mesh compound the inherent
stiffness in the Euler and Navier-Stokes equations which arises from a
disparity in the propagative speeds of convective and acoustic modes. A
mesh-aligned preconditioning strategy is examined which is intended to
improve multigrid performance in two ways: a) enhancing propagation of
disturbances by shaping wave front envelopes to match cell aspect ratios,
b) clustering high frequency components of the spatial Fourier footprint
away from the origin for effective damping by an optimized Runge-Kutta
time stepping scheme. In contrast to previous approaches, the method
is robust when used in conjunction with high resolution schemes on fine
meshes and with multigrid. Results are provided for a number of standard
airfoil test cases.
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1 Introduction

Explicit Euler and Navier—Stokes solvers based on multigrid remain popular due to
ease of programming and suitability for parallelization despite the fact that con-
vergence is significantly hampered by the use of a scalar time step limit which is
appropriate only for the fastest propagating mode. Considering this problem for the
Euler equations, van Leer suggested using a matrix preconditioner to approximate
characteristic time stepping with the aim of achieving a unit condition number [19,
20]. This strategy leads to a stream-aligned implementation which requires a mod-
ification of the numerical dissipation, is fragile near stagnation points and does not
take into account the additional stiffness arising from large cell aspect ratios [11].

Motivated by the breakdown of multigrid convergence in highly stretched bound-
ary layer cells, Allmaras proposed the use of an implicit ADI preconditioner for full
coarsening multigrid and preconditioners based on point-implicit block-Jacobi and
semi-implicit line-Jacobi for the more expensive semi-coarsening multigrid algorithm
of Mulder [1,2,13,14]. The approach is aimed at clustering the eigenvalues of error
modes for which multigrid is ineffective away from the origin so that they can be
rapidly damped by a multi-stage time stepping scheme. Allmaras has demonstrated
the effectiveness of this approach in improving convergence by relaxing a randomly
perturbed initial state back to uniform flow on a Cartesian mesh for a wide variety
of flow and mesh parameters [1, 2].

In the stretched boundary layer cells of a viscous mesh, the explicit scalar time
step is limited by the transverse acoustic mode At = O(%y), which is typically several
orders of magnitude more restrictive than necessary for the streamwise and transverse
convective modes, for which a more appropriate constraint is At = O(£2) = O(22).
This difference can be substantial even for Euler computations. A successful pre-
conditioner should therefore modify the shape of the wave front envelopes so that
convective and acoustic disturbances originating at the cell center both reach the cell
boundary in approximately the same number of time steps.

The present work examines preconditioners based on both characteristic time
stepping and block-Jacobi viewpoints in terms of wave front envelope shaping and
eigenvalue clustering. Analytic results for preconditioned eigenvalue clustering are
obtained for six important asymptotic limits of flow and cell variables, including two
cases for the full Navier-Stokes equations. Emphasis is placed on demonstrating
viability for practical aerodynamic computations.

2 Approach
A preconditioned semi-discrete finite volume scheme takes the form
aw;
— + PR(W) =0, (2.1)

where R(W) is the residual vector of the spatial discretization and P is a local pre-
conditioner designed to reduce stiffness arising from variation in the flow and mesh
parameters. This work examines two matrix alternatives to the standard scalar pre-
conditioner in common use. The first is a diagonal preconditioner that approximates
characteristic time stepping by operating on a transformed system in which the modes



are only loosely coupled. The second is a block-Jacobi preconditioner based on the
specific structure of the residual vector.

Analysis is performed on the linearized 2D Navier-Stokes equations in Cartesian
coordinates

oW oW W _ HOEW W W
WJrAW+BW_OM2 +D8y2 +E8wy, (2.2)

from which the Euler equations may be obtained by eliminating the viscous terms on
the right hand side. A Cartesian mesh is assumed to simplify notation, but the theory
extends naturally to a (£, n) mesh-aligned coordinate system for real applications.

2.1 Scalar Preconditioner

The explicit stability limit for a scalar time step is based on the spectral radii of the
flux Jacobians in (2.2),

p(A) = [ul +¢, p(B)=o|+c. p(C)=p(D)=%, pE)=%, (23

where u and v are the Cartesian velocity components, ¢ is the speed of sound, 7 is
the ratio of specific heats, v is the kinematic viscosity and Pr is the Prandtl number.

A conservative time step estimate for the Navier—Stokes equations is based on the
purely hyperbolic and parabolic time steps [12],

Aty = Aty + AtR!, (2.4)

where the hyperbolic time step is given by

~1 1 A B
Aty = o (”éx) + %,)) (2.5)
and the parabolic time step is
—1 1 (4p(C) | 4p(D E
Atp = CFLp ( Z(ﬁ) + Z(y2) + Ap(xA)y) : (2.6)

The factor of 4 in the parabolic time step arises from considering the worst-case
scenario of a checker-board mode, Wjy = W (£)e!™+™) for which the coefficients
of the 2nd difference stencil reinforce each other in both directions. The hyperbolic
and parabolic CFL numbers, CFLyg and CFLp, reflect the extent of the multi-stage
time stepping scheme stability region along the imaginary and negative real axes,
respectively. On a real computational mesh in which Az and Ay vary, this time
step limit defines a suitable scalar preconditioner for the Navier—Stokes equations,
PS_A}S = Atys, that reduces stiffness resulting from variation in spectral radius and
minimum cell dimension throughout the mesh.

For the Euler equations, the corresponding scalar preconditioner is defined by the
purely hyperbolic time step, P§,31 = Aty', assuming that the numerical dissipation
introduced to prevent decoupling is sufficiently small so as not to limit the stability.
The implications of this assumption for the scaling of the numerical dissipation will
be examined more thoroughly in the next section.



2.2 Diagonal Preconditioner

The scalar preconditioners described above do not combat the more serious stiffness
arising from large cell aspect ratios and the disparity in propagative speeds within the
systems. Although these are two separate issues, effective treatment for each depends
on operating on the appropriate modal components of the solution. This realization
motivated van Leer to introduce the notion of characteristic time stepping for the
Euler equations, with the aim of limiting the evolution of each characteristic mode
by the corresponding propagative speed [19].

Exact characteristic time stepping is only possible in 1D, where the system may be
decoupled into scalar characteristic equations using an eigenvector decomposition of
the single flux Jacobian. In multiple dimensions, the flux Jacobians cannot be simul-
taneously diagonalized, so Lee and van Leer designed a local matrix preconditioner
intended to obtain a condition number as close to unity as possible [11,20]. The
resulting stream-aligned implementation is incompatible with standard mesh-aligned
numerical dissipation and becomes fragile near stagnation points where the flow di-
rection is not well-defined. A more substantial limitation of this approach is that the
objective of obtaining a unit condition number for the propagative speeds does not
take into account the stiffness arising from high aspect ratio cells in a typical compu-
tational mesh. As a result, extension to Navier-Stokes applications is problematic.

The following diagonal Euler preconditioner represents an intuitive approach to
approximate characteristic time stepping on stretched meshes in which Ay < Axz. A
straightforward extension to the Navier-Stokes equations is also provided. Following
Lee and van Leer, the “entropy” variables defined by dWW = {%, du, dv, dp — c2dp}T
are used to simultaneously symmetrize and greatly simplify the flux Jacobians. The
first and third variables are associated with predominantly acoustic modes since a
pressure wave front traveling outward from a wall at ¥y = 0 perturbs the pressure
field and the perpendicular velocity field. These modes should both be limited by the
standard hyperbolic time step (2.5),

1 ATl 1 |u|+c |v]+c
Atp o Atv ~ CFLg ( Ax + Ay ) :

The second variable is associated with a streamwise convection mode supplemented
by the sonic speed and need not be limited by the sonic speed in the transverse
direction

-1 _ _ 1 |ul+c v
Atu ~ CFLy ( Ax + Ay) -

The fourth variable is completely decoupled from the other three and represents a
convective entropy mode which need not be limited by the sonic speed in either
direction

o1 1
Ats ~ CFLg (LLQ‘C - %) )
The diagonal Euler preconditioner in entropy variables takes the form
Ppl = diag[At ' AL AL ALY

A simple extension to the Navier-Stokes equations is possible by incorporating Pp,
into the same stability requirement used for the scalar time step (2.4), so that the
Navier—Stokes preconditioner is given by

Pyl =Ppl + Atp'I,



where I is the identity matrix and the parabolic time step Atp is defined by (2.6).
For a semi-discrete scheme, the updating procedure then becomes

aw
-t NPp,NT'R(W) =0,
where N = 2% and N~' = % represent transformations between conservative and

symmetrizing variables. Because the implementation is mesh-aligned, no alteration
of the dissipation is required and no ambiguity arises near stagnation points [15].

It is essential to note that characteristic time stepping is only possible in conjunc-
tion with characteristic-based rather than scalar numerical dissipation. This may
be understood by considering the necessary and sufficient stability condition for the
scalar advection-diffusion equation

Ut + AUy = Vlgy
discretized using central differences in space and forward differences in time

At < min (2” A—I2) .

a?’ 2w
For 1st order upwinding, v = MI%’ and this requirement reduces to the standard
CFL condition At < %. The corresponding representation of the Euler equations
with characteristic-based matrix dissipation is

W, + AW, = 22| A|W,,.

Using a characteristic time step corresponds to decoupling the system into scalar

characteristic equations
Q+AQ, = %|A|QmJ

using an eigenvector decomposition of the flux Jacobian A = TAT~! to produce the
characteristic variables 92 = T'0W, where A is a diagonal eigenvalue matrix. Ap-
plying the advection-diffusion stability requirement separately to each characteristic
equation leads to the limit At < &—”' for the k-th characteristic, where )\, is the cor-
responding eigenvalue. Therefore, every characteristic wave is evolving at its stability
limit.

The Euler equations with standard scalar dissipation take the form

W, + AW, = 82 p(A)W,,,

where p(A) is the spectral radius of the flux Jacobian. Using a characteristic time
step, this system can still be decoupled into characteristic equations using the same
transformation as above. However, the stability requirement for all characteristics
is now just the standard scalar CFL condition, At;, < so the advantage of a
characteristic time step is lost.

One possibility for avoiding the added expense of matrix dissipation while still
satisfying the stability requirement for a characteristic time step is the scalar CUSP
splitting proposed by Jameson, which actually introduces less dissipation than a stan-
dard characteristic upwind scheme [9, 18].

Az
p(A)’



2.3 Block-Jacobi Preconditioner

For multigrid to function efficiently, the relaxation scheme on each mesh must damp
all modes which cannot be resolved without aliasing on the next coarser mesh in
the cycle. For a multi-stage Runge-Kutta time stepping scheme, this corresponds to
clustering the eigenvalues of the residual away from the origin in Fourier space. In a
recent paper, Allmaras examined the necessary damping requirements for relaxation
methods used to drive both full and semi-coarsening multigrid algorithms [2].

For full coarsening multigrid, the relaxation scheme must damp all modes which
are high frequency in either mesh direction since only those modes which are low fre-
quency in both directions can be resolved on the next coarser grid. Explicit relaxation
methods are notoriously ineffective in damping modes which are high frequency in
one direction and low frequency in the other, which led Allmaras to propose implicit
ADI relaxation for use with full coarsening multigrid [2].

The semi-coarsening algorithm proposed by Mulder [13, 14] coarsens separately in
each mesh direction and therefore reduces the region of Fourier space for which the
relaxation scheme on each mesh must successfully damp modes for the algorithm to
function efficiently. To obtain an O(N) method for a 3D mesh with N points, Mulder
defined a restriction and prolongation structure in which not all grids are coarsened
in every direction. For 2D grids that are coarsened separately in both directions, only
those modes which are high frequency in both mesh directions need by damped by the
relaxation scheme. For this purpose, Allmaras suggests a point-implicit block-Jacobi
preconditioner that has previously been demonstrated to be effective in clustering
high frequency eigenvalues away from the origin [1]. For grids that are not coarsened
in one of the mesh directions, Allmaras proposes using a semi-implicit line-Jacobi
preconditioner in that direction [2].

These strategies for preconditioning in the context of both full and semi-coarsening
multigrid are well-conceived. The drawback to implicit ADI preconditioning for full
coarsening multigrid is the increased complexity in developing parallel implementa-
tions. The semi-coarsening strategy is actually better in this regard, since most of the
work is performed on meshes for which a point-implicit preconditioner is sufficient.
However, the drawback is that for a 3D computation, the cost of a full coarsening
W cycle is bounded by 3N, while a semi-coarsening W cycle is no longer O(N) and
the bounds for V and F cycles are 8N and 32N, respectively [7,13]. None the less,
the improved performance may justify the additional cost if full coarsening multigrid
results cannot be sufficiently improved.

For the time being, it is worthwhile determining whether an explicit or point-
implicit preconditioner that is easily parallelized can be used in conjunction with in-
expensive full coarsening multigrid to produce significant convergence improvements
for practical aerodynamic computations. With this in mind, the properties and perfor-
mance of the point-implicit block-Jacobi preconditioner are examined in the present
work.

For a preconditioned semi-discrete scheme of the form (2.1), the residual for a
standard spatial discretization incorporating a 2nd/4th difference switch of the type
introduced by Jameson et al. [10] applied to Roe-averaged characteristic variables



[16], takes the form

B B
+ %523, (S, );A'yayy +(1- sy)g@%(syyyy (2.7)
o A%«z(sm - Alyzéyy - 4AfAy 0222y

where S is a switch taking values between zero and one.
The block-Jacobi preconditioner is obtained by extracting the elements of the
residual operator which correspond to the central node

Prly = ot {182+ 6=0(1 = S,)14L 1[5, +6=9(1 5|2 + 22 4 201,

From this expression it is apparent that for a fourth difference dissipation coefficient of
@ = %, the block-Jacobi preconditioner is identical for both 2nd and 4th differences.
In practice, this is found to be a very suitable coefficient for matrix characteristic-
based dissipation, though it would be far too dissipative for a scalar scheme. The
simplified block-Jacobi preconditioner for the 2D Navier—Stokes equations may there-
fore be written

PJNlS - CFILH (|A‘ + |B| + sz + Ay ) :
In this form it is equally suitable for both smooth and shocked regions of the flow,
where the two different types of numerical dissipation are active. The block-Jacobi
preconditioner for the 2D Euler equations is obtained by eliminating the viscous terms

1 1 Al |B]
PJE CFLy (A_x + A_y) :
The necessity of matrix dissipation for use in conjunction with the block-Jacobi pre-

conditioners is obvious since they reduce to scalar preconditioners by identity using
standard scalar dissipation based on the spectral radii of the flux Jacobians.

3 Analysis

3.1 Fourier Footprints and Wave Front Envelopes

For a semi-discrete scheme (2.1), the Fourier footprint of the spatial discretization
is critical in determining the effectiveness of a multi-stage time stepping scheme in
damping error modes. The footprint is found by substituting a semi-discrete Fourier
mode of the form

Wj,k — W(t)ei(jaz"‘kay)

into the discrete residual operator (2.7). The Fourier amplitude W (t) satisfies the
evolution equation )

&+ PZW =0,
where 7 is the Fourier symbol of the residual operator

Z2(0,,0,) = itsing, + (S,) & (1~ cosf,) + (1 — Sp)4eW (1 — cosb,)?

+ £ sinb, + (S,) 5o (1 — cosy) + (1 — S,)4e (1 = cosf,)?  (3.1)
+ 2—C‘(1—(308990)4-z—yDz(l—cosﬂ) sin 6, sin 6, .

Ax? + AIA



The Fourier footprint is obtained numerically by computing the eigenvalues of PZ
for the desired range of (f,,6,). For stability, the footprint must lie within the
stability region of the time stepping scheme defined by [¢(z)| < 1, where (2) is the
amplification factor defined by

Wt = () W™,

Assuming constant Pr and v, the four independent parameters that govern the
discrete Navier-Stokes residual are the cell Reynolds number, Mach number, cell
aspect ratio and flow angle:

21,2
RBD — uAz+vAy M = \/uc+'u Ay v

v ) ) Ax’ u

The flow angle does not play a particularly interesting role in determining the form of
the residual and is taken to be zero or asymptotically zero in all of the cases examined.
As a result, the cell Reynolds number is actually the Reynolds number based on Ax:
Req = Repa,. All residuals that incorporate 4th difference matrix dissipation use a
dissipation coefficient e = %. Following from the discussion in Section 2.3, the effect
of these preconditioners will only be examined for modes which are high frequency in
both mesh directions (3 < 6,,6, < ).

Fourier footprints of high frequency modes for all Mach regimes M = (0.05, 0.5,
0.95, 2.0) and the parameters ﬁ—g = %, - =0 and Rea, = oo are displayed on the
left hand side of Figs 1-4 for each of the three preconditioners. The outer solid
line represents the stability region for Martinelli’s 5-stage Runge-Kutta scheme and
is superimposed to assist in determining appropriate choices for the hyperbolic and
parabolic CFL numbers [12]. For these cases, Rea, = 00, so that the preconditioners
contain only the hyperbolic CFL. number. For Navier-Stokes calculations, the fact
that the maximum extent along the negative real axis is roughly twice the extent
in either direction along the imaginary axis suggests the definition CFLp = 2CFLy,
so that only the hyperbolic CFL number need be determined and the subscript may
be dropped. The inner solid line represents the optimal clustering envelope for high
frequency modes based on a scalar advection-diffusion model problem [1].

In Fig. 1, the Fourier footprint for low subsonic flow is shown for 2nd difference
(1st order upwind) matrix dissipation and CFL = 2.5. The corresponding damping
histograms displayed on the right hand side of the page show the fraction of eigen-
values with amplification factor ¢)(z) for a set of discrete ranges on the interval (0,1).
In 2D there are four characteristic families representing convective entropy and vor-
ticity modes and two acoustic pressure modes. The scalar preconditioner is unable to
cluster the eigenvalues for the entropy mode away from the origin, so that exactly a
quarter of the values in the damping histogram are concentrated very near an ampli-
fication factor of one. All three preconditioners are relatively effective at clustering
the eigenvalues corresponding to the two acoustic modes away from the origin. The
treatment of the entropy mode by the diagonal and block-Jacobi preconditioners is
identical, with the eigenvalues forming an arc on the optimal clustering envelope.

For the Euler equations, additional information may be gained by examining the
effect of the preconditioners on the shape of the wave front envelopes of the four
characteristic families, as observed by van Leer and Lee [20,11]. The propagative
speed for a wave traveling at an angle 6 = tan‘”é is given for each of the four
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characteristic families by an eigenvalue of the matrix
P(Acosf + Bsinb).

The wave front for each eigenvalue is the line perpendicular to the direction of prop-
agation. The wave front envelope for a family of waves is formed by the intersection
of all the wave fronts in that family. Wave front envelopes for three different Mach
numbers are displayed on the right hand side of Figs 2-4.

Fig. 2 shows the Fourier footprint for 4th difference matrix dissipation at M = 0.5
with CFL = 2.5. It is satisfactory that the same CFL number is suitable for both
the 1st order upwind and 4th difference dissipation so that neither type is limited by
the other when they are both active on the finest mesh in the multigrid cycle. For
the scalar preconditioner, the entropy and vorticity wave fronts collapse to a point
convecting with the flow and the two acoustic wave fronts form a circle centered on
this point. These flow conditions provide a typical example of the transverse acoustic
mode limiting the time step when the flow is aligned with a stretched mesh cell. As a
result, the eigenvalues corresponding to the convective modes are close to the origin
and cannot be rapidly damped.

The wave front envelopes of the diagonal and block-Jacobi preconditioners are
surprisingly similar. Both have succeeded in moving the entropy envelope out to
its maximum stability limit at 2.5 on the real axis. This corresponds to an optimal
Fourier footprint based on the scalar model problem. Furthermore, in both cases, the
acoustic envelopes have become elongated in the direction of cell stretching and the
vorticity envelope extends away from the origin with a triangular shape. The Fourier
footprints for the acoustic modes have nearly the same radius as the entropy mode,
one each above and below the real axis, with the vorticity mode forming a tongue
between them. Note that the objective of the preconditioning is not to achieve a
unit condition number, for which all wave front envelopes would fall on a circle of
the same radius, as with the work of van Leer et al. [20]. Instead, the intent is to
shape the wave front envelopes to approximate the cell aspect ratio, so that even on
a highly stretched mesh, all disturbances cross the same number of cells per unit time
regardless of the direction of propagation.

Footprints and envelopes for M = 0.95 and M = 2.0 are shown in Figs 3 and 4
for 4th difference matrix dissipation and CFL = 2.5. The footprints keep the same
basic structure as for the previous two cases. The only change in the envelopes for the
scalar and diagonal preconditioners is the shifting along the x axis as the convective
component of the acoustic speed increases. However, the behavior of the block-Jacobi
preconditioner changes completely for the transonic and supersonic regimes. The
vorticity envelope converges on the same optimal point as the entropy envelope and
the acoustic envelopes collapse to two points on the Mach waves, which are shown by
dotted lines for the supersonic case.

In each of these cases, the scalar preconditioner is unsuccessful in clustering the
eigenvalues of the convective modes away from the origin, although the deleterious ef-
fects of this shortcoming are mitigated as the Mach number increases. Clustering for
the acoustic modes is satisfactory, though sub-optimal. The diagonal preconditioner
provides optimal clustering for the entropy mode and satisfactory but sub-optimal
clustering for the acoustic and vorticity modes. By contrast, the block-Jacobi pre-
conditioner successfully clusters the eigenvalues of all four modes inside the optimal
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Case 1 || Rea, =00 | M — 0 g_g_ﬂ) B ﬁ—i
Case 2 || Rea, =00 | M — 0 %%—>0 L=0
Case 3 || Reap, =00 | M — 0 %%—>oo v =
Case 4 || Reay, =00 | M =0.5 2—;{—>oo L=
Case 5 || Reay 00 | M —0 | &L :Reglx/Q v —
Case 6 || Rea, — 00 | M =0.5 | &L = Rex/? v —

Table 1: Asymptotic limits used to obtain analytic expressions for the Fourier foot-
print of 4th difference matrix dissipation.

envelope for each case. This is not necessarily the case for block-Jacobi precondition-
ing of the Navier-Stokes equations as a result of the viscous cross-derivative term.

3.2 Analytic Asymptotic Results

Having considered these rather moderate flow conditions, it is now worthwhile exam-
ining the behavior of the preconditioned system in more extreme conditions typical of
a viscous boundary layer, where the greatest stiffness is generally encountered. Ana-
lytic expressions for the preconditioned Fourier footprints are obtained for the impor-
tant set of asymptotic limits summarized in Table 1. Cases 1-4 assume Rea, = 00,
so that the viscous terms are neglected, though the effect of an “inviscid” boundary
layer is simulated for the first three cases by letting M — 0. Case 1 corresponds
to a stretched cell with diagonal cross flow. Case 2 represents a stretched cell with
aligned flow. Case 3 is a cell stretched perpendicular to the flow, as occurs at the
leading edge of an airfoil. Case 4 examines a moderate subsonic flow perpendicular to
a highly stretched cell. This situation often occurs in the far field due to exponential
stretching of the transverse mesh coordinates. Cases 5 and 6 consider the asymptotic
behavior for stretched cells in a viscous boundary layer. The scaling for the cell aspect
ratio is found by balancing streamwise convection and normal diffusion, so that

uov
Ax  Ay?’

which leads to the relation A
Y —1/2
5, = Feal

To simplify the analysis for Cases 5 and 6, the Prandtl number is assumed to be
unity. All of the cases are analyzed for 4th difference matrix dissipation, since this is
the type that is active over most of the fine mesh. The dissipative coefficient is taken
to be e = 1 with CFL = 1.0.

The analytic asymptotic limits of the eigenvalue distributions for all six cases are
shown in Table 2, where the notation s, = sinf,, s, = sinf,, C, = 1 — cosb,,
Cy = 1 — cosB, is adopted for brevity. The corresponding Fourier footprints for
the high frequency modes are plotted in Figs 5-7 using a separate symbol for each
family, as defined in Table 3. This table describes the asymptotic dependences of
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the different families on the two Fourier angles, corresponding to the directions of
effective smoothing.

Using the scalar preconditioner, both convective modes fall on the origin for every
case except the subsonic cross flow of Case 4, when three of the modes form a version
of the optimal envelope scaled by a factor of % By examining Table 3 it is evident
that the eigenvalues for the acoustic modes are dominated by the normal component
for aligned or nearly aligned flow and the streamwise component for cross flow.

The diagonal preconditioner succeeds in clustering all the eigenvalues inside the
optimal envelope for Cases 1, 2 and 5, all of which represent aligned or nearly aligned
flow with vanishing Mach number. For Case 3, the vorticity mode collapses to the
origin, which is a major drawback since this flow condition is encountered near stag-
nation points. For Case 4, the vorticity mode and one acoustic mode fall on the same
reduced version of the optimal envelope as for the scalar preconditioner. For Case 6,
only a small fraction of the vorticity eigenvalues are not clustered inside the optimal
envelope.

The block-Jacobi preconditioner succeeds in clustering all eigenvalues inside the
optimal envelope for both inviscid and viscous asymptotic limits. The footprints for
Cases 1 and 2 are identical to those for the diagonal preconditioner. The handling of
Cases 3 and 4 is much improved over that of the diagonal preconditioner, while the
treatment of Cases 5 and 6 is remarkably similar, as seen by examining the analytic
expressions in Table 2.

In general, the scalar preconditioner is unacceptable for highly stretched cells
either aligned or perpendicular to the flow. The diagonal preconditioner performs
well when the flow is nearly aligned with a stretched mesh but breaks down when
there is a strong cross flow. The block-Jacobi preconditioner, on the other hand,
performs optimally for every case.

The performance of the preconditioners on modes which are high frequency in one
direction and low frequency in the other is revealed by examining Table 3. Asymp-
totic dependence on a Fourier angle amounts to effective damping of modes in that
direction, since the corresponding eigenvalues will not be clustered at the origin. For
the viscous conditions of Cases 5 and 6, none of the preconditioners are able to cope
with a sawtooth pressure mode in the streamwise direction, but both matrix pre-
conditioners are able to damp entropy modes in either direction, even for perfectly
aligned flow. Notice that this is not the case for the inviscid aligned flow of Case 2,
where a normal sawtooth entropy mode will not be damped in a highly stretched cell.

4 Results

Results for a number of standard airfoil test cases are generated using a conservative
cell-centered semi-discrete finite volume scheme. Characteristic-based matrix dissi-
pation based on Roe’s linearization [16] provides a basis for the construction of high
resolution switched, symmetric limited and upstream limited schemes following the
work of Jameson [10,5,6,8]. Updates are performed using a 5-stage Runge-Kutta
time stepping scheme to drive a full coarsening multigrid algorithm [10,3,12]. The
solution is computed on a sequence of fine meshes using a W-cycle on each mesh. A
single time step is performed at each level when moving down the multigrid cycle.
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Case | —eig(PsZ) —eig(Pp7) —eig(P;7)
0 %[%(03 + C;) + (5o + 5y)] %[%(03 + C;) + (5o + 5y)]
1 o e 1o
202 + isy 202 + isy 202 +isy
207y —isy 207y —isy 20y —isy
0 202 +isy 207 + is,
2 o 12 1
3C’y +is, %C’j +is, %C’j +1isy
207 —is, 207 —is, 207 —is,
0 202 4 is, 505 +is,
; 0 0 5[3(C2+ C7) +isa)
2C% + is, 202 +is, 2C% + is,
2oz is, 102 s, 202 s,
L(202 + is,) 202 +is, 302 +isy
A $(2C2 +is,) $(2C2 +is,) 2C2 + is,
505 +isy 202 +isy 202 1 is,
%(%Cﬁ — iSy) l(202 — i8y) %C’g — 1S,
0 3 (305 + 20, +is,) $(3C2 +2C, + is,)
5 o 12 12
20y + s, 20y + s, 20y + sy
%C’; — 15y %C’; — 15y %C’; — 15y
0 5 (302 + 20, +is,) $(2C2 +2Cy + is,)
’ 0 775 (305 + 20, +is,) T(5C2 420, +is,)
202 + isy 202 + isy 202 +isy
20y —isy 20y —isy 20y —isy

Table 2: Analytic expressions for the Fourier footprint of 4th difference matrix dissi-

pation with Scalar, Diagonal and Block-Jacobi preconditioning.
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| Mode || Entropy () | Vorticity (x) | Acoustic (o) | Acoustic (+) |

Speed q q q+c q—c

Precon |Ps| Po | P; | Ps| Pp | Py | Ps|Po| P | Ps|Pp]| Py
Case1 || 0 | 04,0, |0,,0,] O 0, 0, 0,0, 0,860,070
Case 2 || 0 0, 0, 0 0, 0, 0,10, 0,860,070
Case 3 || 0 0, 0, 0 0 00,0, | 0, | 0, | 05| 05 | 05 | 0
Case 4 || 6, 0, 0, 0, 0, 0, O, | 0. | 0, || 0. | 0. | 0,
Cased || 0 | 05,0, |0,0,| 0 0, 0, 0,10, |0, 0,0, 0,
Case 6 || 0 | 0,,0,|0;0,| 0 |0,,0,|0,,0,|0,|06,]|06,]|806/|°0 |06

Table 3: Definition of mode symbols and representative propagative speeds for
Figs 5-7, and the asymptotic dependence of each mode on 6, and 6,, correspond-
ing to the directions of effective smoothing.

The stability limit on both fine and coarse meshes is CFL = 2.5 and the high reso-
lution schemes are used only on the fine meshes. The meshes have an O-topology,
with the far field located at 30 chords and dimensions 160x32 for Euler calculations
and 320x64 for laminar Navier—Stokes calculations. The plotted residuals represent
the rms change in density during one application of the time stepping scheme on the
finest mesh in the multigrid cycle. Descriptions of the geometry, flow parameters,
mesh properties, dissipative scheme and observed speedups for each test case are pro-
vided in Table 4. The speedups are calculated at a residual level of 10~* based on an
initial residual of unity. The additional cost of matrix preconditioning is 10-15% for
diagonal and 20-25% for block-Jacobi if the preconditioner is updated once per time
step.

4.1 Euler

The results for the design point of the KORN airfoil computed using a matrix switch
are shown in Fig. 8. The pressure distribution is shock free with only two counts of
drag. Convergence plots are shown for the high resolution solution and also for first
order upwinding. The improvement in the performance of the diagonal preconditioner
relative to the scalar preconditioner for the first order scheme is typical of most test
cases. The maximum cell aspect ratio in the far field is 20 and the minimum cell
aspect ratio at the wall is %, though the minimum height of the first cell is only
0.0005 chords.

In Fig. 9, solutions to a standard NACA0012 test case with a weak shock on the
lower surface are shown after 12 and 100 W-cycles using a matrix switched scheme
and block-Jacobi preconditioning. After 12 cycles, the lift changes by only four counts
and the drag is fully converged. This rate of convergence is achieved with CFL = 2.5
and without implicit residual averaging or enthalpy damping [4]. Once again, the per-
formance of the diagonal preconditioner on a high resolution scheme is disappointing.

The solution to a subsonic lifting NACA0012 test case is shown in Fig. 10. The
prediction of a single count of drag is in close agreement with the theory for subsonic
isentropic lifting flows. The diagonal preconditioner performance is midway between



15

Geometry | My, « Rej, Mesh %1 %1 %1 Scheme || Pp | Py
€ lmax € lmin wall

160x32 | 2x101! | 5x107 ! [ 5x10~* || Switch || 1.3 | 5.1
KORN 0.75| 0.0° 160x32 | 2x10T! | 5x107" | 5x10~* || 1st Up || 1.9 | 3.6
NACA0012|0.8 |1.25° 160x32 | 2x10+! | 5x10~! | 7x10~* || Switch || 1.2| 3.7

KORN 0.75| 0.0°] oo
. @]
o0

NACA0012 0.5 | 3.0°| oo | 160x32|2x10*! |5x10~" | 7x10~* || Switch || 1.7 | 2.9
0
0

NACA0012|1.2 | 0.0° 160x32 | 2x107! | 5x107 1 | 7x10~* || Switch || 1.0 | 4.0
NACA0012|1.2 | 0.0° 32064 | 2x101 | 51071 | 2x10~* || Switch | 1.0 | 14.3
Cylinder |0.38| 0.0°| oo || 128x48|3x101%|1x10~!|3x1073 | Symlim|| — | 6.2
NACA0012 | 0.5 | 0.0° | 5x103 || 320x64 | 2x10*! [ 5x 10" | 2x10~* || Switch || 1.5 | 2.0
NACA0012 [0.5 | 0.0°|5x10% || 320x64 | 2x 10+ | 51071 | 2x10~* || Symlim || 1.5 | 2.1
NACA0012 | 0.8 |10.0° [ 5x10? || 320x64 | 2x 107! | 5x107 " | 2x10~* || Switch || 1.2 3.9
Flat Plate |0.15| 0.0° [ 1x10° || 128x32 | 4x1072 | 3x103 | 3x10~° || Switch || 4.8 | 7.2

Table 4: Test case definitions, mesh dimensions, maximum and minimum cell aspect
ratios, minimum ratio of cell height to chord length at the wall, dissipation type and
speedups for Pp and P; compared to Ps.

that of the scalar and block-Jacobi preconditioners.

Results for a symmetric supersonic test case are shown in Fig. 11. A 320x64 mesh
was needed to adequately resolve the bow shock. Convergence comparisons are pro-
vided between the 320x64 mesh and a 160x32 mesh. The block-Jacobi preconditioner
responds more favorably to the fine mesh than the other two preconditioners, which
behave nearly identically on both meshes.

Fig. 12 displays the Mach contours for flow past a cylinder at M,, = 0.38 using
matrix symmetric limited dissipation. The cell aspect ratio at the wall is % and the
first cells are 0.003 chords in height. The accuracy of the scheme is demonstrated
by the symmetry of the solution upstream and downstream of the cylinder. The
maximum entropy deviation in the cells next to the wall is 5x10~*. No results are
shown for the diagonal preconditioner, which did not converge due to an instability
at the back stagnation point.

4.2 Laminar Navier—Stokes

Results for a subsonic laminar NACAQ012 test case with Re; = 5000 are shown in
Fig. 13 for a 320x64 Euler mesh. The minimum height of the first cell is 0.0002, though
the minimum cell aspect ratio is only % Convergence comparisons are provided for
both matrix switched and symmetric limited dissipation. The improvement of the
diagonal and block-Jacobi preconditioners over the scalar preconditioner is about the
same in each case. The budget plot for the z-momentum update across the boundary
layer at the mid-chord reveals that the contribution of the numerical dissipation is
negligible inside the boundary layer and also that the mesh resolution is insufficient
for this Reynolds number.

Since the symmetric limited and switched formulations are fundamentally simi-
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lar [8], it was expected that the block-Jacobi preconditioner based on the switched
scheme would also be appropriate for symmetric limited dissipation. The results of
Fig. 13 seem to confirm this hypothesis, recognizing that the reduction in convergence
using symmetric limited dissipation is about the same for both scalar and matrix pre-
conditioning. However, the speedups observed using an upstream limited scheme that
does not resemble the 2nd/4th difference switching mechanism were also comparable,
which suggests that it may be sufficient to base the form of the block-Jacobi precon-
ditioner on the first order dissipative scheme. From this point of view, the principal
advantage of reducing ¢ to % (from the more likely value of i), is the corresponding
increase in the allowable time step from CFL = 1.8 to CFL = 2.5, which more than
compensates for the reduced damping of the scheme. The footprint of the symmetric
and upstream limited schemes is apparently larger than that of the switched scheme
using either scalar or matrix preconditioning, since the CFL number could not be
raised above 1.5 on the fine meshes.

Fig. 14 displays the results for a transonic laminar NACAQ012 test case. The
resolution of the mesh appears to be adequate for Re;, = 500 based on a comparison
of the Mach number and pressure contours with results in [12]. This viewpoint is
further supported by the budget plot at the lower midchord, which reveals that there
are now roughly 20 points in the boundary layer. Once again, the block-Jacobi
preconditioner realizes a significant speed-up over the standard scalar time step.

Results for nearly incompressible flow over a flat plate at Re;, = 1x10° are dis-
played in Fig. 15 for a 128x32 H-mesh. Three quarters of the streamwise points are
located on the plate and half the normal points are equally spaced in the boundary
layer coordinate inside the boundary layer [17]. Exponential stretching is used in all
directions outside the boundary layer, and some extremely high aspect ratio cells of
O(10*5) are alleviated by skewing the stretching at the far field. It was necessary
to reduce the CFL number to 2.0 on the fine meshes as a result of the extreme non-
orthogonality in some cells. The maximum and minimum cell aspect ratios are 400
and ﬁ and the minimum height of the first cell is 0.00003 chords. The inlet is one
chord ahead of the plate, the outlet is at the trailing edge and the upper boundary is
located two chords from the plate. A comparison of the velocity components at the
mid-chord with the exact Blasius solution reveals a slight inaccuracy in the normal
velocity component. Convergence plots are shown for both the density residual and
the drag coefficient. The performance of all three preconditioners is in agreement with
the analytic results for asymptotic boundary layer behavior, though the performance
of the diagonal preconditioner is still somewhat surprising since there is a strong cross
flow in all the far field cells. An examination of the residuals at the end of the three
computations revealed that the convergence was dominated by the near field using a
scalar preconditioner and the far field mesh singularity above the leading edge using
the two matrix preconditioners.
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5 Conclusions

Examination of the preconditioned wave front envelopes reveals that the basic struc-
ture does not vary significantly with Mach number for the scalar and diagonal precon-
ditioners. The convective envelopes are limited by the circular acoustic envelopes in all
cases using a scalar preconditioner. The diagonal preconditioner provides an optimal
envelope for the decoupled entropy mode and the acoustic and vorticity envelopes are
elongated in the direction of cell stretching. The block-Jacobi preconditioner shows
the same behavior for subsonic flow, but for transonic flow the acoustic envelopes
stretch normal to the flow and eventually collapse to points on the Mach angles when
the flow becomes supersonic. Both the entropy and vorticity modes are located at
the optimal stability limit for supersonic flow using a block-Jacobi preconditioner.

Analysis of the asymptotic behavior of the Fourier footprints for scalar, diagonal
and block-Jacobi preconditioners reveals critical information about the successes and
failures of these approaches. The scalar preconditioner is completely ineffective in
clustering the high frequency convective modes away from the origin for all cases
involving vanishing Mach number. The diagonal preconditioner performs well for all
inviscid and viscous cases with aligned or nearly aligned flow but the performance de-
teriorates as the Mach number decreases for strong cross flow. Only the block-Jacobi
preconditioner succeeds in clustering all high frequency modes inside the optimal en-
velope based on a scalar advection-diffusion model problem. However, the analysis
seems to confirm the viewpoint of Allmaras that effectively damping high frequency
modes with a point-implicit preconditioner and full coarsening multigrid may not be
sufficient for stretched mesh computations. A less expensive alternative to full semi-
coarsening is to semi-coarsen across the boundary layer until the cell aspect ratio
approaches unity, at which point the residual eigenvalues of all modes will be depen-
dent on both Fourier angles, and then adopt a full coarsening algorithm for the rest
of each multigrid cycle.

Despite these reservations, very encouraging results have been achieved using full
coarsening multigrid for a wide variety of Euler and laminar Navier—Stokes test cases
using high resolution characteristic-based dissipation on fine meshes.
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Figure 1: 1st order upwind matrix dissipation.
Fourier footprint of high frequency modes and damping histogram for a 5-stage Runge-Kutta scheme.
Rea, =00, M =0.05,2¢ =12 =02 <¢, 0, < CFL = 2.5.
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Fourier Footprint, Stability Region and Optimal Clustering Envelope Unsteady Wave Front Envelopes
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Figure 2: 4th difference matrix dissipation.
Fourier footprint of high frequency modes and wave front envelopes.
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Figure 3: 4th difference matrix dissipation.
Fourier footprint of high frequency modes and wave front envelopes.
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Figure 5: Scalar Preconditioner.
Fourier footprint of high frequency modes in various asymptotic limits.
4th difference matrix dissipation. ¢ = 1, 7/2 < ,,0, < r, CFL = 1.0.
See Tables 1,2,3 for Case, Analytic and Wave descriptions.
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6f: Case 6.

Figure 6: Diagonal Preconditioner.
Fourier footprint of high frequency modes in various asymptotic limits.
4th difference matrix dissipation. ¢ = 1, 7/2 < ,,0, < r, CFL = 1.0.
See Tables 1,2,3 for Case, Analytic and Wave descriptions.
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Figure 7: Block-Jacobi Preconditioner.
Fourier footprint of high frequency modes in various asymptotic limits.
4th difference matrix dissipation. ¢ = 1, 7/2 < ,,0, < r, CFL = 1.0.
See Tables 1,2,3 for Case, Analytic and Wave descriptions.
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Figure 11: NACA0012 Airfoil. M, = 1.2, = 0.0°.
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Figure 12: Cylinder. M., = 0.38,a = 0.0°, 128 x48 O-mesh.
Matrix Symmetric Limited Scheme.
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Figure 13: NACA0012 Airfoil. M., = 0.5, = 0.0°, Re;, = 5x103, 320x64 O-mesh.
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Figure 14: NACA0012 Airfoil. My, = 0.8, = 10.0°, Re;, = 5x102%, 320x64 O-mesh.
Matrix Switched Scheme.




15¢: Mesh at the Leading Edge.

is 20% chord.

ification

Magn

10%, 128x32 H-mesh.

15:

Figure

Flat Plate. My = 0.15,a = 0.0°, Re;, = 1x

ched Scheme.

rix Swit

Mat



32

Acknowledgements

We wish to thank Prof. Antony Jameson for providing the mesh generator and
Prof. Luigi Martinelli for assistance with many aspects of the code development.

References

1]

[10]

[11]

[12]

[13]

S. Allmaras, 1993. Analysis of a local matrix preconditioner for the 2-D Navier—
Stokes equations. ATAA Paper 93-3330-CP, 11th Computational Fluid Dynamics
Conference, Orlando, FL.

S. Allmaras, 1995. Analysis of semi-implicit preconditioners for multigrid solution
of the 2-D compressible Navier—Stokes equations. AIAA Paper 95-1651-CP, 12th
Computational Fluid Dynamics Conference, San Diego, CA.

A. Jameson, 1983. Solution of the Euler equations for two dimensional transonic
flow by a multigrid method. MAE Report #1613, Princeton University.

A. Jameson, 1983. Transonic flow calculations. MAE Report #1651, Princeton
University.

A. Jameson, 1984. A non-oscillatory shock capturing scheme using flux limited
dissipation. MAE Report #1653, Princeton University.

A. Jameson, 1992. Computational algorithms for aerodynamic analysis and de-
sign. MAE Report #1966, Princeton University.

A. Jameson, 1993. Numerical wind tunnel — vision or reality. AIAA Paper 93-
3021, ATAA 11th Computational Fluid Dynamics Conference, Orlando, Florida.

A. Jameson, 1995. Analysis and design of numerical schemes for gas dynamics
1: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and
multigrid convergence. Int. J. Comput. Fluid Dyn., 4: 171-218.

A. Jameson, 1995. Analysis and design of numerical schemes for gas dynamics
2: Artificial diffusion and discrete shock structure. Int. J. Comput. Fluid Dyn.,
5: 1-38.

A. Jameson, W. Schmidt and E. Turkel, 1981. Numerical solution of the Euler
equations by finite volume methods using Runge-Kutta time stepping schemes.
ATAA Paper 81-1259.

W.-T. Lee, 1992. Local Preconditioning of the Euler Fquations. PhD thesis,
University of Michigan.

L. Martinelli, 1987. Calculations of Viscous Flows with a Multigrid Method. PhD
thesis, Princeton University.

W.A. Mulder, 1989. A new multigrid approach to convection problems. .J.
Comput. Phys., 83: 303-323.



[14]

[15]

18]

[19]

[20]

33

W.A. Mulder, 1992. A high-resolution Euler solver based on multigrid, semi-
coarsening and defect correction. J. Comput. Phys., 100: 91-104.

N.A. Pierce, 1994. Characteristic-based dissipative schemes and characteristic
time stepping for the Euler equations. Qualifying dissertation for DPhil status
at Oxford University.

P.L. Roe, 1981. Approximate Riemann solvers, parameter vectors, and difference
schemes. J. Comput. Phys., 43: 357-372.

S. Tatsumi, L. Martinelli and A. Jameson, 1994. Design, implementation, and
validation of flux limited schemes for the solution of the compressible Navier-
Stokes equations. AIAA Paper 94-0647, 32nd Aerospace Sciences Meeting and
Exhibit, Reno, NV.

S. Tatsumi, L. Martinelli and A. Jameson, 1995. A new high resolution scheme
for compressible viscous flow with shocks. ATAA Paper 95-0466, 33rd Aerospace
Sciences Meeting and Exhibit, Reno, NV.

B. van Leer, 1989. Euler solvers for transonic applications. In Transonic Sym-
posium: Theory, Application and Fxperiment. NASA.

B. van Leer, W.-T. Lee and P.L. Roe, 1991. Characteristic time-stepping or local
preconditioning of the Euler equations. AIAA Paper 91-1552-CP.



