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1 Introduction

This analysis is motivated by interest in numerical procedures for coupling an
unsteady CFD computation to an unsteady structural dynamics model to predict
aeroelastic behaviour. Extremely large 3D computations of this sort are necessary
to accurately predict the onset of flutter in both turbomachinery and aircraft
applications. One approach to the numerical approximation of this problem is
the use of a single consistent, fully-coupled discretisation modelling both the
structure and the fluid as a continuum whose dynamics is governed by partial
differential equations, plus boundary conditions at the interfaces. However, for
the solid the relevant p.d.e. is the equation of motion for an elastic solid, while for
the fluid the appropriate equations are the Navier-Stokes equations with suitable
turbulence modelling. Moreover, each has its own characteristic length scales
and time scales. Therefore, the production of a single fully-coupled code for
the combined aeroelastic application is at least as much work as writing the
individual programs for the separate solid and fluid applications. Since there are
existing codes which accurately and efficiently solve these individual problems,
the more practical approach is to investigate how best to couple such codes
together to analyse aeroelastic problems [4,5,8,9]. There is a concern that the
coupling procedure may introduce a spurious numerical instability, unrelated to
the real flutter instabilities which are the focus of engineering attention. The
original aim of this study was to investigate this possibility, but an additional
objective which developed during the research was to investigate the accuracy of
the resulting coupled analysis.

The general theory for the analysis of numerical interface or boundary condi-
tion instabilities is well-established but can be complicated to apply in practice
[3,6,11,13]. In this paper we simplify the analysis by restricting attention to a
simple 1D model problem. The first section of the paper constructs the model
and tries to justify its relevance to the real 3D engineering problem. The next
section presents stability analyses for two different discretisations of the fluid
equations and a number of different treatments of the coupling to the structural
equations. This reveals that in general there is no spurious numerical instability,
but there may be a problem with the accuracy of the numerical approximation
and solid/fluid coupling which may lead to a poor approximation of the real
stability properties of the aeroelastic system. The third section presents an al-
ternative discretisation of the structural dynamics and associated aerodynamic
boundary conditions which is stable and much more accurate. The final sections
give some further discussion of the relevance of the analysis to real 3D engineer-
ing applications, and make some conclusions and recommendations for future
work.
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Figure 1: Parallel flow past a flat wall

2 Analytic equations

As shown in Fig. 1, we start by considering a steady 2D parallel flow with ve-
locity (0,V)7 in the region x>0. The equations describing isentropic linearised
perturbations to this compressible 2D flow field are
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where p, ¢ are the average density and speed of sound and p, u, v are the unsteady
perturbations to the pressure and the two velocity components.

If the wall oscillates so that its position x,(t) is independent of y, then the
resulting fluid perturbation will also be independent of y, and there will be no
perturbation to the velocity in the y-direction. This reduces the linear unsteady
aerodynamic equations to the simple form
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which is the same set of equations as those describing perturbations to a 1D
stationary flow with the same density and speed of sound. It is interesting, and
perhaps surprising, that these equations do not depend on the Mach number of
the mean flow; this is because the assumption of no variation in the y-direction
allows a Lagrangian transformation to new coordinates z* = z, y* = y—Vt,
relative to which the mean flow is indeed stationary.

Having justified the simple 1D aerodynamic equations, the other aspect of the
model formulation is the interaction between the aerodynamics and the motion
of the wall. One boundary condition is the linearised kinematic condition that
the flow velocity relative to the moving wall is zero.

Fu(t) = u(0,1). (2.3)

The dynamics of the wall’s motion are modelled by a simple mass-spring system
subject to the external unsteady aerodynamic pressure.

m &y + mwit, = —p(0,1). (2.4)



Here m represents the mass per unit area and wy is the natural frequency of
oscillation in the absence of any aerodynamic coupling. This equation will be
referred to as the scalar version of the wall dynamic equation. Some numerical
discretisations start from an equivalent coupled system of first order o.d.e.’s,

dw
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This will be referred to as the vector version of the equation.

This simple structural model seems far removed from the original represen-
tation of a continuum elastic solid discussed in the Introduction. In fact, it is
common to represent the dynamics of an oscillating blade in terms of a very
limited number of structural modes; these are usually obtained using a finite el-
ement approximation of the elastic solid vibrating in the absence of any external
aerodynamics. The modes with the lowest natural frequency are the ones which
have the greatest potential for flutter and large forced excitation, which is why
higher modes are neglected. The lowest mode is usually a simple bending mode
whose nature is very similar to the simple undamped mass-spring system. Even
a torsional mode can be viewed locally (near the blade’s surface) as being similar
to the model problem in that there are no large variations in the tangential di-
rection and so 1D aerodynamics is a good local approximation. In other 2D and
3D computations with numerical instabilities at interfaces, it is generally true
that any instability will first occur with a purely 1D eigenmode with a spatial
variation in the direction normal to the interface but no variation along the in-
terface. Thus the 1D model problem should be appropriate in trying to identify
the possibility of a purely numerical instability.

This simple model problem exhibits aerodynamic damping of the wall’s os-
cillation. To determine this it is helpful to perform a change of variables in the
aerodynamic equations. Characteristic variables defined by

where

= p+pcu,
r = p-—pcu, (2.7)
satisfy the uncoupled equations
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The acoustic wave represented by ¢ travels right with velocity ¢, while the other
acoustic wave represented by r travels left with velocity —e. We need to impose



a radiation condition at x = oo requiring that sufficiently far from the wall all
perturbations are travelling away from the wall, not towards it. Thus we require
that r—0 as x— oc.

Using the characteristic variables, the equations for the wall are

b = 5(a(0.) = 7(0.0),
iy + muwlty — —%(q(o,t)+r(0,t)). (2.9)

We now consider solutions of the form

T,(t) = X et
g(z.t) = Q™% (2.10)
r(z,t) = 0

with X and @) being complex constants. The real physical variables correspond

to the real components of these complex expressions. These solutions satisfy the
necessary equations and boundary conditions provided that

1
wX = —Q,
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1
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for which non-trivial solutions exist only if

—mw? +iwpe +mws =0 = ) d?, (2.12)
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where d= is the non-dimensional damping factor. In real turbomachinery

mwo
applications modelled using a structure with a single degree of freedom, the

level of damping is very small, usually in the range 0.005-0.02. For aircraft
applications concerned with wing aeroelasticity values in the range 0.05-0.2 are
more typical. Assuming that d is small,

Lo—id+ (1 - 1d) +O(d"). (2.13)
Wo

Taking the positive root without any loss of generality (since the real variables

correspond to the real component only) gives

iwt ~, iwot—dwot
’ .
et e (2.14)

and so the fractional reduction in the wall’s oscillation amplitude in one period
of oscillation is
1 — e 2™ x 27d. (2.15)



The model equations do not have any terms describing energy dissipation. It
can be shown that this reduction in the vibrational energy of the wall is in fact
exactly equal to the acoustic energy radiated during the period of oscillation.

In considering discretisations of the model equations, the central question is
whether the discrete approximation allows unstable exponentially growing solu-
tions with a timescale which is much smaller than the period of oscillation i—z If
there is no numerical instability, then the secondary question is how accurately
the aerodynamic damping is modelled by the discretisation.



3 Structural algorithms based only on wall
displacement

In this section we consider coupled aeroelastic discretisations in which the scalar
form of the wall dynamic equation is approximated using central time differenc-
ing.
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A number of different discretisations of the kinematic condition will be analysed.

3.1 Upwind aerodynamic discretisation

The first algorithms are based on upwind discretisation of the aerodynamic equa-
tions. Using forward time differencing and upwind spatial differencing, the inte-
rior equations are
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The stability analysis considers the possible existence of a G-R (Godunov-
Ryabenkii) normal mode [3,11] of the form

xg‘) = X"
qj(-n) = anmg (3.3)
r](-n) = R2"K,

with |z| >1 corresponding to an unstable mode. k, and &, are necessarily related
to z through the interior equations which require that

z = 1-Ml-x1)

q

z = 14+ Ak,—1). (3.4)

A is the CFL parameter %‘; and must satisfy the Fourier stability restriction

A<1. It can be shown that if |z|>1, then |r,| <1 and |x,|>1. Hence, to satisfy
the discrete equivalent of the radiation condition that all variables tend to zero
as j — 0o, it is necessary that R=0.

3.1.1 First order coupling

The final discrete equation is the kinematic compatibility condition. A simple
first order approximation of this is

(o — ) = o (a0 (3.5)



Inserting the assumed G-R mode into the wall dynamic equation and this
kinematic equation yields the following two equations,
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for which there are non-trivial solutions only if

pcAt

z=2+27" + (wpAt)? = —
m

(1—27") = —2d weAt(1—27"), (3.7)

where d is still the non-dimensional damping factor d= . Multiplying by z
mwo

produces a quadratic equation. When d=0 the roots of this are

2 = 1 HweAt)? £4/(1 - L(wpAt)2)? — 1
= 1- %(woAt)2 + inAt\/ 1-— i(wOAt)Q (38)

If wpAt < 2 then the two roots are a complex conjugate pair of unit magnitude,
while if wyAt > 2 then the two roots are real and negative, with one having a
magnitude greater than unity, giving unstable exponential growth. Thus, nu-
merical stability in the absence of any aerodynamic coupling requires At < j
This means that there must be more than 3 timesteps per period of 0s0111at10n
but it is clear that many more timesteps than this are required for accuracy and
so this stability criterion is not significant.

When 0 < d < 1, we look for roots of the quadratic for which |z| =1, cor-
responding to the threshold of instability. z =1 is never a solution for At > 0.
z=—1 is a solution when

4 — (WoAt)? — 2d(weAt) =0 = WAt~ 2 (3.9)

The only other roots with |2| =1 must occur as a complex conjugate pair, but in
that case their magnitude must be /1 —2dwyAt which is less than 1 for wyAt < 2.
Thus wyAt < 2 remains the approximate stability limit of this coupled problem.
Assuming there are sufficient timesteps per period to achieve an accurate solu-
tion, there is therefore no numerical stability problem.

To determine the accuracy let z=e™?! which gives

WAl 9 LT WAL L (A1) = —2d woAt(1—e WA, (3.10)
For 0 <d <1 it is convenient to consider w as a function of d as well as At and

wo, and perform a Taylor series expansion in d to obtain

w=wl_,+d—| +O(d). (3.11)

od |,



When d=0, Equation (3.10) gives
A2+ WA (WAL =0 = 4sin®(2!) = (wpAt). (3.12)

Differentiating Equation (3.10) with respect to d then gives

. 0 ; 0
iAt(e“’At—e’“’At)a—t; = —2wAt(1—e A a—tl) = wy (z + tan(“’TAt))
(3.13)
If it is also assumed that woAt <1, then

sin(221) v 224 — L8803, (3.14)

and hence w
—~l+ a (WoAL)® + d(i + SwoAt) (3.15)

0

The first order error in the coupling produces a first-order shift in the real part
of the frequency, but no error in the important imaginary part which gives the
predicted damping. However, in a real aeroelastic computation in which the
aerodynamics causes a frequency shift as well as a damping effect, the first-order
coupling error would probably also produce a first-order error in the predicted
damping. For a typical flutter frequency and a timestep limited by the CFL
stability restriction %‘; <1 for a typical grid resolution, wyAt will be in the range
1072 — 1072, In this case, the errors in both the frequency and the damping
are negligible compared to other errors such as modelling approximations and
uncertainty about structural damping factors.

This conclusion about the adequacy of first order coupling changes entirely
when one considers implicit methods. Replacing the forward time differencing
of the aerodynamics by backward time differencing gives the following algorithm
for the aerodynamics.

1) _ () CAt /i1y (ma) .
q; =4q;  — Ar (q]‘ — 451 ) ) J=12,3, ..
ntl n CAt n+1 n+1 .
r§+):r§)+—Ax (r§-+J{)—r§+)), J=0,1,2,.. (3.16)

All of the previous analysis remains valid. This surprising fact is because the wall
coupling equations do not depend on the interior equations once it is determined
that 7’](-" is zero throughout the domain in order to satisfy the discrete radiation
condition. The conclusions about the accuracy change because the timestep is
no longer limited by the CFL condition. Instead, wyAt will typically be O(1071).
It is the computational efficiency of this much larger timestep which is the at-
traction of using implicit methods for flutter analysis and other unsteady flow
calculations at low reduced frequencies [7,10] However, as a consequence the first
order coupling is no longer sufficiently accurate.
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3.1.2 An explicit second order coupling

A second-order accurate coupling is achieved by changing the kinematic discreti-
sation to

L /s w1 (n L mt1)  (nt1)
Kt(ﬁx&ﬂ)_g%uﬂg} 1)):2_[)0(% — it (3.17)

which leads to the following modified equation for z.
7=242"" 4 (wpAt)® = —2d wo At (2 —227"+1272) (3.18)

Multiplying by 22 now gives a cubic equation in z. In the limit as d — 0 two of the
roots are the same as before and the third is z=0. This third root is only slightly
perturbed when d > 0 and so remains strongly stable. To find the perturbation
to the other two roots it is convenient again to make the substitution z = e™??
giving

B —2 e A (W At)? = —2d wy At (3 —2e WAl 4 Lo 2wAl) (3.19)

Differentiating with respect to d gives

. Y _ .
iAt(e’“’At—e”“’At)a—(; = —2woAt (3 —Qe*ZwAtJr%e*?WAt)
_8w y > Q1 w. w . w
9d — W (z+22 sm%%) +2tan(%)sm2(%))(3_20)

The two roots which are neutrally stable when d =0 and wyAt < 2 have corre-
sponding real values for w. The imaginary part of ‘Z—‘; is then positive showing
that the perturbed roots are stable. The stability boundary therefore remains
wo At < 2.

If woAt<1 then

Lond+id+ L (weAb)? + Lid(woAL)?. (3.21)
Wo

Because of the improved accuracy of the kinematic discretisation the error is now
second order in woAt. If wgAt=0.1, corresponding to approximately 60 timesteps
per period, then the error is probably acceptable; if wgAt=0.3, corresponding to
approximately 20 timesteps per period, then the error is probably unacceptable.

3.1.3 An unstable second order coupling

Another second-order accurate discretisation of the kinematic condition is

1 1
() () [ () (n+1) _  (n) _ (n+1)
A7 (a: z ) = I (qo +qp o o ) (3.22)



11

which leads to the following modified equation for z.

z—1
z+1

2—2+42 1+ (wpAt)? = —dwyAt (3.23)

Multiplying by 241 gives a cubic equation in z. In the limit as d — 0 the spurious

root is z = —1. Differentiating the cubic equation with respect to d for z = —1
gives
0z SuwoAt
— = 3.24
od 4 — (ngt)2 ( )
and so Sd A
=—1— ———— =+ 0(d). 3.25
. g o) (3.25)

This root has magnitude greater than 1 for wyAt < 2 and the other two roots
are unstable for larger values of At. Therefore, the algorithm is unconditionally
unstable.

3.1.4 An implicit second order coupling

Yet another second-order accurate discretisation is

i (%(ZJHQ) _ xgz)) _ 2%0 (qénﬂ) _ ,r(()n-l-l)) (3.26)

which leads to the following modified equation for z.

2—2+42 1 (wAt)? = —dwoAt (z—2 1) (3.27)
Multiplying by z gives a quadratic equation with no spurious roots. Substituting
z=e"5t and differentiating yields
0
a—“f‘l’ = iwp, (3.28)

and so the perturbed roots are stable for woAt<2. If wyAt <1 then

L1+ L (wolkt)? +id. (3.29)
Wo

It is interesting that the O(d) damping term is obtained exactly, independent of
the value of wyAt as long as it satisfies the stability constraint. It is not clear
whether this property would still hold for real 3D applications.

The problem with this kinematic discretisation is that it is now an implicit

(n)

algorithm since the surface pressure p;’ depends on :rg”“), and vice versa. This

implicitness is awkward because in a 3D application it means that the aerody-
namic variables at all grid points on the surface of the vibrating blade are coupled
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through the structural boundary conditions. The difficulty can be overcome by
a predictor/corrector implementation:

(n—1) (n—2) )

Po = 2Py — Do
m Predictor
g (o =20 aly D) bmedal) =y
() _ () (,(n=1) .(n) ,.x ,(n=1) (n—-1) \ (3.30)
Po =Do (xw o wn, )
m (nt1) (n) (1) ) ) ) Corrector
NG (I?w — 2z, + 3y ) + mwixl = —py

/

In the prediction stage, a first approximation for the surface pressure p(()") is given

by linear extrapolation from the previous two timesteps, and this is used to obtain
a first estimate for z("*Y. In the correction stage, the predicted value 2* is used
in conjunction with the discrete aerodynamic equations and kinematic boundary
condition to calculate a corrected value for pg"); this is then used to calculate
a corrected value for (™", The error introduced by this predictor/corrector
approximation to the original implicit algorithm is O(d?) which is negligible if
d<1.
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3.2 Lax-Wendroff discretisation

The Lax-Wendroff discretisation of the pressure equation at grid nodes other
than the wall node is

2 2 2
(n+1) _ () PCAL oy myy | CAE () (n) . (n)
p; — P T oA (“j+1—“j71)+ A2 (pj+1_2pj +pjfl)
2
_ ) pcAt Loy, At m)
= Db — A { <§(uj+1+uj )_M(pj-i—l_pj ) (3.31)
L ), (n) At ) )
- (5(% +u;Zy) — 2pAT (p;” —pi=1)
where . A
§(ugi)1 +u§-">) T 9pAr (p§-’i)1—p§-"’)

represents a second order approximation to u(z,t) at x=(j+3)Az, t=(n+1)At.
The corresponding discrete equation for the velocity is

At CQAtQ
n+1 n n n n n n

J YT 2pAzx

Combining these two equations gives the Lax-Wendroff equations for the char-
acteristic variables.

(1) _  (m) _ CAL ) (n) A (n) (n) (n)
q; = % T oA, (qj+1 - qul) + N (‘Ij+1 —2¢;7 + ij1) ;
(1) _ (m) _ CAL ) (n) c?At? (n) (n) (n)
T =1 T oA, (Tj+1 — rj,l) + TN (Tj+1 —2r; +rj,1) . (3.33)

At the wall, the computational cell is half the usual size, extending from
=0 to z=4Az. In addition, the velocity of the wall at t = (n+3)At is well
approximated by At~! (xg’“)—xq(f)). Thus the discrete pressure equation for =0
becomes

it = =2 () - o 0 ) - 5 -

(3.34)
Using the same first order coupling as for the upwind discretisation, the dis-
crete velocity equation at the wall is repaced by the kinematic condition

1 n n n+1
A7 (:1:1(1, D :1:,(”)) = u{"Y, (3.35)

and the dynamic equation is again

m n
AP (:1:1(17“) — 22 4 :r,(f’l)) + mwlz™ = —p{". (3.36)
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We again consider the possibility of a G-R normal mode of the form

g = X on
qj(-n) = Qz"k] (3.37)
r§n) = R2"KJ.

kq and K, are related to z through the interior equations which require that

2 = 1= 3AMkg—ry,") + 37 (Kg—24k, ")

z = 1+ Nk =5 ") + 1IN (K, — 24K, ") (3.38)

— cAt

where A=<C" and A<1 as before. Solving the quadratic equation for r, gives

=1+ X\ /(z-1)2 + (22— 1)N2
—A+ A2

It can be shown that for |z| > 1 one of these two roots has magnitude greater than

unity while the other has magnitude less than unity. To satisfy the requirement

that the discrete solution must approach zero as 7 — oo we must choose the latter
root, and so

/'i',q:

(3.39)

=1+ X = \J(z-1)2 + (22— 1)\2
—A+ A2

with the complex square root being determined suitably when its argument is

complex. Similarly, solving the quadratic equation for k,, the root with magni-

tude less than unity is

/'i',q:

(3.40)

=1+ =\ J(z—1)2 + (22— 1)A2
A+ N2

with the complex square root being determined in the same manner as in the
definition of x,,.

Three equations are now needed to determine the relationship between the
complex constants X, @), R. The first two are the kinematic boundary condition
which requires that

Ko = (3.41)

2pc _1
—R=—(1- X 42
Q-R="Lo0-2)x, (3.2
and the wall dynamic equation which requires that
m 1 9 1
<@(z—2+z )+mw0>X——§(Q+R). (3.43)

The third equation comes from substituting the assumed G-R mode into the
pressure equation for j=0, which gives

_Apc

(= 1+A=(A+N)k) Q+ (2= 1= A= (A + )i, ) R = X
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Substituting for s, and &, gives

4
VE=1)2+ (2:=1)A2 (Q+R) + A (Q—R) = gA(z—l)X. (3.45)
Combining this with Equation (3.42) gives
2pcA 4
V=12 + (2:-1)A? (Q+R) = (22342 )X, (3.46)
and hence there are no non-trivial solutions unless
A (22—3+271)

2242 14+ (woAt)? = —2d wy At (3.47)

JE=1)2+ (22-1)22

Letting z = exp(iwAt) and using the standard asymptotic analysis assuming

d<1 gives

Z—Z = wy f(wAL, ) (3.48)

where the function f(wAt,\) is defined as

2\ (26708 — 34 WA)
(eiwdt _efmm)\/(emm —1)2 4 (2eivAt—1)\2
i(1 + 3i tan(3wAt))

= : : (3.49)
\/(6zwAt _ 1)2)\—2 + QBZwAt -1

f(wAtN) =

If it is assumed that the acoustic waves are well resolved on the computational
grid then

Az < 5 — WAL A (3.50)

Hence,

\/(ei‘“M—l)Q)\—2 +2ewA -1~ 1+iwAt = f(wAtN) & i+ swAt (3.51)

and so the perturbed roots are stable and first order accurate as with the upwind
discretisation of the aerodynamics. For larger values of wAt it would be necessary
to resort to direct numerical evaluation of f(wAt, \) to investigate the stability
and accuracy of the scheme.
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4 Structural algorithms based on wall
displacement and velocity

In this section we consider coupled aeroelastic discretisations based on the vector
form of the wall dynamic equation. An advantage of this approach is that by
calculating both the displacement and velocity at each timestep the kinematic
boundary condition becomes simply

) = g, (4.1)

4.1 Trapezoidal integration

The simplest second order accurate discretisation of the vector form of the wall
dynamic equation is trapezoidal integration (also known as the Crank-Nicolson
or boz method),

1

N (1w — ™) + LA (D 4 ) =

(Pt + P (4.2)

1
2
which can be re-arranged to give

wm = (I+ %AM)_1 ((1 - 1AtA)w™ + 1AL (POD 4 PM)) - (4.3)

As with the implicit method of the last section, there is the problem that w®+1)
depends on P(™*1) and vice versa; this is again solved using a predictor/corrector
procedure.

p* — op) _ p(r-1) |
w* = ([_;_%AtA)*I((]_%AtA) o %At (P*—i—P(”))) } Predictor

ptl) — pn+) (w(n),w*,q§n)’r§n)>
. Corrector
w ) = (T+1AtA) " ((I-3AtA) w® + LAt (PO+D 4 pO))
(4.4)
As before, the predictor/corrector combination gives results which are within
O(d?) of those which would be obtained from the original implicit coupling. For
simplicity, it is the implicit coupling which is now analysed for stability and
accuracy.
Assuming that upwind differencing is used for the aerodynamic equations

then 7™ =0 for all j and n, and hence

j
0 0
(n) — —
P= < — 2 j(n) > N < —2d woi (™) ) ' (4:5)
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Therefore, Equation (4.2) becomes

I —3wolAl 1 TwpAt
( swoAt  1+dwyAt ) v ( —swoAt  1—dwyAt ) w (4.6)
w™ = 2" is a solution for some non-trivial constant vector W if and only if
— _1
det | , = 1 w0t (z+1) o,
swoAt(z+1) z—1+ dwyAt(z+1)

= 27 (14 (2980 4 duwgAt) — 22 (1— (984)2) + (14 (£981)2 — dwy At) =0, (4.7)
1 — (2280)2 4 Aty/1 — @2

1+ (2802 4 dwyAt
When d=0, |z|=1. Setting z =exp(+iwAt), Equation (4.7) can be re-written

> 2 =

(4.8)

as

WAt (1 + (woAt) + dwoAt)— (1 _ wo_At ) —iwA¢ ( (UJOQAt)2 N dngt) =0,

—  —4sin’(25!) + (281)% cos?(¥2) = 0
—  tan(¥9t) = £eend (4.9)

When woAt < 1, asymptotic expansion gives

— &~ 1 — S (woAt)> (4.10)

Wo

When 0<d<1, following the same procedure as in the last section gives

ow 1wy
— = 4.11
od 1+ (“’Om) (4.11)
and so for wyAt <1,
L1 4id— L(wolAt)? — Lid (woAt)? (4.12)

Wo

Provided wyAt < 0.3, corresponding to there being at least 20 timesteps per
period, the real part of the frequency is correct to within 1% and the damping
is correct to within 2%; this is perfectly acceptable accuracy for engineering
purposes.
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4.2 Second order backward differentiation

Another second order accurate approximation of the dynamic equation is

i (3w™ D — 2™ 4 L) 4 Ap(H) = portD), (4.13)
This is the method used by Alonso et al [1] for aeroelastic computations in
which the fluid is water and so the corresponding value for d is much larger than
for aeronautical applications. As with the last method, it can be implemented
using a predictor/corrector procedure to avoid the complications of an implicit
algorithm. Alonso uses several correction stages within a time-accurate multigrid
procedure because of the much larger effect of the fluid dynamics on the structural
behaviour [1].
Repeating the analysis, the determinant condition for this discretisation is

dot $,—2-1271 —zwpAt _ 0
zwoAt %z—Q—%z’l + 2zd wo At ’

= (3224127 + 2dwoAt(3 22T+ 1277) + (woAE)P =0 (4.14)
When d=0, this reduces to

82271+ 1277 = dwyAt. (4.15)

It can be shown that both roots have less than unit magnitude for all positive
values of wgAt. In particular, when woAt < 1, one root is a strongly stable
spurious root (z~1); the other root can be expressed as z=exp(iwAt) for which
asymptotic analysis gives

w

A 1 — $(woAt)® + Li(woAt)®. (4.16)
0

Differentiating Equation (4.14) gives

Ow Wy
9d ~ 2e—iwAl _ g—2iwAt (4.17)
and hence for woAt <1,
w . L
o ~ 1 — HwoAt)? + Li(woAt)® + id — id (woAt)?. (4.18)

This analysis shows that this method is significantly less accurate that the
method based on trapezoidal integration. The error in the real part of the fre-
quency and one of the errors in the damping are both four times greater. Also,
this method results in numerical damping of the uncoupled wall dynamics; this
numerical damping of magnitude }(woAt)* could be significant relative to the
true physical damping when d is 0.005-0.01 and wyAt is 0.1 or larger.
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This same criticism can be applied to many other methods frequently used for
structural dynamics, including the Houboult, Wilson-# and Newmark-3 methods,
and the multi-parameter unified schemes of Zienkiewicz et al [15] and Thomas
and Gladwell [12]. Some of these methods always introduce numerical damp-
ing; the others depend on a set of parameters which are often chosen to ensure
some level of numerical damping. The reason that structural dynamicists prefer
methods with numerical damping is that they are usually integrating very large
stiff systems of equations in which some very high frequency modes are not ade-
quately resolved by the chosen timestep. Therefore, (quoting from the paper by
Thomas and Gladwell [12])

in practice we use methods which are damped ... since this ensures
that the highly oscillatory eigenfunctions ... excited by noise in the
initial data are damped out quickly.

In the application in this paper, there is only one structural eigenmode and
so this concern does not arise. Furthermore, in a real 3D application it is as-
sumed that a reduced modal representation of the structural dynamics would be
used [4,5,8,14], perhaps using the lowest five eigenmodes, and so again there
would be no problem of numerical stiffness. If a very large number of structural
eigenmodes are retained it may become desirable in implicit calculations to in-
troduce structural damping into the equations for the highest frequency modes
only, since these frequencies are unlikely to be adequately resolved by the large
timestep.
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4.3 State-transition algorithm

An alternative algorithm for approximating the vector version of the wall dynam-
ics equation is based on work by Edwards et al in the Unsteady Aerodynamics
Branch at NASA Langley Research Center [2,10]. The objective is to construct
an approximation which is exact when there is no aerodynamic coupling.

The exponential matrix exp(tA) is defined for an arbitrary matrix A as

oo tn
exp(td) =) EA". (4.19)
- n!

By definition, A° is the identity matrix I and so exp(tA) = I when t=0. Another
important property of the exponential matrix is that

d
pm exp(tA) = A exp(tA) = exp(tA) A (4.20)
For the particular matrix A in this analysis,
[ cos(wot) —sin(wot)
exp(td) = ( sin(wot)  cos(wot) |- (4.21)

This can be verified by checking that it satisfies the above two conditions, or by
directly evaluating A" and using the series expansions for cos(wgt) and sin(wyt).
Using this matrix, it follows immediately that

% (exp(tA) w) = exp(tA) C;—:l; + exp(tA) Aw = exp(tA) P (4.22)

and hence
w(ty) — exp(—toA)w(0) = /Oto exp((t—ty)A) P(t) dt. (4.23)

The state-transition method uses this equation with o = At and a suitable ap-
proximation to the integral. The approximation used by Edwards et al is

/0t° exp((t—to) A)P(¢) dt ~ (/Ot exp((t—15) A) dt) LP(0) + P(ty)).  (4.24)

Although this is a second order accurate approximation to the integral, meaning
that the relative error is O(A#?), it is better for the model problem in this paper
to use trapezoidal integration which is also second order accurate.

/0 ? exp((t—to) A)P()dt ~ %’ (exp(—toA)P(0) + P(ty)) . (4.25)

This gives the final algorithm,

w = exp(—AtA) (w™ + LAt P™M) 4+ LA PO, (4.26)
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A predictor/corrector procedure can again be used to avoid the problems due to
the implicit nature of this algorithm.

p* — 9opn) _ p-1) |
w* = exp(—AtA) (w(n) + %At P(n)) 4+ %At p* } Predictor

pr+l) —  pnt1) (w("),w*,q](-”),r](-"))

Corrector
w ) = exp(—AtA) (w™ 4+ JAE PM) + LA PO+D

(4.27)

Again, the predictor/corrector combination gives results which are within O(d?)

of those which would be obtained from the original implicit coupling. For sim-

plicity, it is the implicit coupling which is now analysed for stability and accuracy.

Assuming that upwind differencing is used for the aerodynamic equations
then 7’](-") =0 for all j and n, and hence

. 0 0
poy (—%p ) _ (_2dw0j$) ) (4.28)

Therefore, Equation (4.26) becomes

( 1 0 ) L@+ — ( cos(wpAt)  sin(wyAt) (1 —dwpAt) ) ™

0 1+dwpAt —sin(woAt) cos(woAt) (1 —dwyAt)

(4.29)
w™ = 2" is a solution for some non-trivial constant vector W if and only if
det [ 2™ cos(woAt) —sin(woAt) (1—dwoAt) \ 0
¢ sin(woAt) 2z (1+dwoAt) — cos(woAt) (1—dwoAt) | =
—  22(1+dwoAt) — 2z cos(woAt) + (1—dwyAt) = 0,

cos(woAt) 1/ — sin?(weAt) + (dwyAt)2
= (@A) £ (Wold) + (dwodd)® (4.30)

14 dngt
When d=0, z=cos(wyAt) £ isin(wyAt) = exp(LiwyAt), confirming that the
algorithm gives the exact analytic solution because of the way in which it was

constructed.
When 0<d<1, let z=exp(iwt), then provided sin(wyAt)#0 it follows that

arg z woAt
R(w) = N (1 — %d27tan((zqut)> + O(dY),

Cloglz7l] 1 ( 1+ dwoAt

n (d At)2) = dwg + %dwo(dwoAt)Q + O(d5),
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Y g 1 WAl

= 1, 2 4
o o)+ §14 (@0t +O(d) (4.31)

Thus, the algorithm gives the exact analytic frequency to within O((dwoAt)?)
which is extremely small for d < 1. This is a surprisingly good result, which can
be better understood by integrating the analytic o.d.e. over one period to obtain

w(27 fwo) — w(0) = /0 T xp(—tA)P(t)dt. (4.32)

The corresponding discrete solution replaces the integral by the trapezoidal inte-
gration approximation. When d <1, to leading order w(t) and hence P(t) vary
sinusoidally. exp(—tA) also varies sinusoidally and so the product has terms
which are either constant or sinusoidal with frequency 2wy. The trapezoidal in-
tegration of the constant is always exact, and the integration of the sinusoidal
term correctly gives zero provided there is more than one timestep during the
period 7/wy; this corresponds to the constraint sin(wyAt)#0.

The conclusion from this analysis is that the state-transition integration of
the structural dynamics equations is very accurate even when there are relatively
few timesteps per period. Since it provides both x,, and z,, at each timestep it is
also easy to construct highly accurate discretisations of the kinematic boundary
condition. In this model 1D problem, the accuracy with which the aerodynamic
equations are approximated does not affect the predicted aerodynamic damping
of the wall’s motion. In the real 3D application it would affect the result, so it
is then the accuracy of the aerodynamic calculation which would determine the
accuracy of the coupled aeroelastic analysis.

Following the slightly different discretisation used by Edwards et al,

[rowte-mma= (o G o ) e

and hence the modified equation for z is

det ( z — cos(wpAt) —sin(woAt) + d(z+1)(1—cos(wpoAt) > 0

sin(wpAt)  z — cos(woAt) + d(z+1) sin(wpAt)

—  2(1+dsin(weAt)) — 2z cos(woAt) + (1—dsin(wyAt)) = 0,

_cos(wpAt) £ isin(wyAt)y1—d?

‘ 1 + dsin(wyAt) (4:34)
When d=0 this leads to
w osin(weAt) sin(woAt) . 5 (sin(wpAt) ’
— =~ 1l4+id——— — =d At) ———= + cid (dwoAt)” | ———
Wo o wOAt 2 COS(WO ) wOAt + 3Z ( wo ) ngt

(4.35)
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The O(d) term is no longer obtained exactly independent of the value of wAt,
but the error is O(d(weAt)?) which is very small if wyAt <0.1. In practice, for
3D computations this method is probably as accurate as the other discretisation
of the state-transition equations, since in both cases the main error will come
from the discretisation of the fluid equations.

A final remark is that there are two ways in which to handle weak structural
damping and weakly nonlinear structural dynamics. The first is to decompose
A into a dominant part which is constant in time and has purely imaginary
eigenvalues, plus a smaller part which contains the damping terms and nonlinear
stiffness terms; because of the nonlinear dependence on z,, and %, this smaller
part will vary in time.

A(t) = Ao + A (2). (4.36)
The wall dynamic equation can be written as

‘;i: + Agw = (P — Ayw), (4.37)

and hence
w(ty) — exp(—tgAg)w(0) = /Oto exp ((t—to)Aog) (P(t) — A1 (H)w(t))dt.  (4.38)

The relatively small extra term A;(¢)w(t) can then be approximated in exactly
the same manner as the aerodynamic term, using trapezoidal integration and a
predictor/corrector solution procedure.

The alternative is to define

t— ¢
At

P(t) = P™ 4+ (Pt — pm), (4.39)

for the interval ¢ <t <¢("*+1 and then solve the o.d.e.

— + Aw = P(t), (4.40)
dt
with initial conditions at t™ to obtain the solution at ¢!, This can be done
using any numerical algorithm with sufficiently small timesteps to achieve any
desired level of accuracy. Even if there are many structural timesteps for each
aerodynamic timestep the computational cost will be negligible since there will be
very few structural modes compared to the number of aerodynamic grid points.
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5 Discussion of relevance to 3D applications

The interpretation of the analysis in this paper in the context of real 3D engi-
neering calculations is a tricky issue. The simple model problem in the current
analysis has a one-degree-of-freedom structural oscillation in which the surface
pressure varies in phase with the wall’s velocity, causing aerodynamic damping
under all conditions. In a real application the structural model will have sev-
eral degrees of freedom. For each degree of freedom there is a corresponding
generalised force which is the combined effect of the entire surface pressure dis-
tribution on the particular mode of vibration. The nondimensional generalised
force will have magnitude corresponding to the damping factor d in the model
problem, but unlike the model problem the generalised force will not be perfectly
in phase with the mode’s motion. Flutter, a physical instability of the coupled
aeroelastic system, occurs when the phase difference between the force and the
velocity of the mode is greater than 90°. This corresponds to redefining the
damping factor d in the model analysis to be a complex quantity with negative
real component. For accurate prediction of the conditions under which flutter
occurs, it is therefore the phase rather than the magnitude of the aerodynamics
which must be accurately captured by the numerical discretisation. Treating d
as a general complex quantity, it can be seen that the analyses of the first order
coupling with both the upwind and Lax-Wendroff discretisations show significant
phase errors unless the timestep is very small. The analysis of the second order
coupling shows the leading error is in the magnitude of the aerodynamic effect;
there is only a third-order error in its phase. These methods are therefore very
much more accurate.
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6 Conclusions

The principal conclusions from this study are:

e The key non-dimensional physical parameter in the model problem is the
aerodynamic damping factor d. For turbomachinery applications this lies
in the range 0.005-0.02; for aircraft applications it is usually in the range
0.05-0.2. To simplify the analysis in this study, asymptotic approximations
are made on the basis that d < 1. For larger values of d numerical com-
putation would be required to obtain the complex frequencies arising from
the numerical discretisation.

e The other important non-dimensional parameter in this analysis is the
product of the natural frequency of the wall’s vibration and the timestep,
woAt, which is inversely proportional to the number of timesteps per period.

e There appears to be no possibility of a spurious numerical instability due
to the coupling of the aerodynamic and structural models, provided there
are no unstable or neutrally stable spurious modes in the uncoupled limit
as d—0.

e If an explicit CFD algorithm is used for the aerodynamic equations, then
for typical flutter frequencies and aerodynamic grid resolution wyAt will be
O(1073). Hence, any stable algorithm for the discretisation of the struc-
tural dynamics and the kinematic boundary condition will be sufficiently
accurate provided it is at least second order accurate for the uncoupled
vibration, and first order accurate for the coupled analysis.

e If an implicit CFD algorithm is used for the aerodynamic equations, then
it is possible that wpA¢ will be O(107!). In this case it is necessary to
use a discretisation which is second-order accurate for both the uncoupled
and coupled systems. It is also best to avoid the use of the many standard
algorithms which cause spurious numerical damping of the uncoupled wall
dynamics; these methods may be very suitable for extremely stiff systems
but are not suitable for this application in which there is very little physical
damping and its accurate evaluation is essential.

e The state-transition structural algorithm has excellent numerical proper-
ties which make it particularly suitable for calculations with extremely few
timesteps per period. Trapezoidal integration of the vector form of the wall
dynamic equation is also very accurate.

e By using the analogy between complex values of d in the model problem
and real 3D engineering applications, it is thought that the analysis re-
solves many of the central issues in the stability and accuracy of coupled
discretisations of aeroelastic systems.
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