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On adjoint equations for error analysisand optimal grid adaptation in CFD
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21 IntroductionOne challenge facing CFD is to be able to give tight error bounds so that an engi-neer knows the accuracy of the computed results. Leaving aside the di�cult issueof assessing the magnitude of modelling errors due to turbulence and transitionprediction, this requires an accurate estimate of the errors due to the discretisa-tion of the system of p.d.e.'s. With such knowledge, one can then hope to developa rigorous approach to optimal grid adaptation, to produce the most accuratesolution for a given computational cost, or to minimise the computational costin achieving a given level of accuracy.At present, there is still a considerable gap between mathematical theory andengineering practice. When using smooth structured grids for smooth 
ow �eldswith no singularities, the order of accuracy can be deduced from an analysisof the truncation error. The absolute magnitude of the error for a particulargrid size can be estimated from past experience with grid re�nement studies ontest problems. However, when one starts using grid redistribution (moving gridpoints) to improve the resolution of 
ow features, the grid is no longer smooth,and if one uses local grid re�nement (adding additional grid points) the gridbecomes unstructured, at least from the point of view of theoretical analysis ifnot from the programming perspective.For unstructured grids the current practice in grid re�nement remains theuse of heuristic methods. Some of these are based on well-founded physicalreasoning, that one needs to have good resolution of features such as shocks,boundary layers, wakes and free shear layers. However, it is entirely possiblethat too much computational e�ort is put into the resolution of these features atthe expense of insu�cient resolution of other parts of the 
ow �eld such as thesmooth but rapid expansion over the leading edge of an airfoil. Other methodsare based on the idea of reducing the magnitude of the truncation error, but thistakes no account of the magnitude of the solution error caused by that truncationerror.Until recently, the rigorous mathematical approach to error analysis for un-structured grids has involved the use of the Aubin-Nitsche technique to deriveerror bounds for �nite element approximations of model problems such as theconvection-di�usion equation [1]. However, when applied to approximations ofhyperbolic p.d.e.'s this usually results in error bounds using negative Sobolevnorms (e.g. [2]) which have little engineering signi�cance. Therefore, this hasgenerally been of little help to engineers although it has led to practical gridre�nement indicators [3, 4].Very recently, however, a promising new approach to error analysis and opti-mal grid re�nement has been introduced by Becker & Rannacher, S�uli & Giles,and Paraschivoiu, Patera and Peraire. This starts from the observation thatin many cases the key quantities of engineering interest are functionals of thesolution, such as the lift and drag on an airfoil. Therefore, the most relevant



3measure of the solution error is the absolute error in these derived quantities.This leads to a mathematical analysis involving the adjoint p.d.e. with inhomo-geneous terms and boundary conditions appropriate to the particular functional.The resulting adjoint solution de�nes the relationship between the error in thefunctional and the �nite element residual error, which is the extent to which the�nite element solution is not the solution of the original analytic problem. Thus,an estimate of the adjoint solution together with the local �nite element residualerror can be used to de�ne an optimal grid re�nement strategy to obtain themost accurate prediction of lift and drag for a given computational cost.This line of research is still in its infancy. Drawing on theory developed forelliptic p.d.e.'s in structural analysis [5, 6, 7], Becker and Rannacher developeda posteriori error estimates for the incompressible Navier-Stokes equations [8].In addition to similar a posteriori error estimates, S�uli, Giles et al have also de-veloped a priori error estimates for the incompressible Navier-Stokes equations,proving an interesting superconvergence property [9]. Paraschivoiu, Patera andPeraire have also developed a slightly di�erent analysis employing adjoint solu-tions to obtain upper and lower bounds for functionals for elliptic p.d.e.'s [10]with the aim of proceeding to the Navier-Stokes equations.The aim of this paper is to explain this approach to error analysis and showhow it can be used for optimal grid adaptation. The �rst section outlines ana priori error analysis for �nite volume discretisations of the Euler equationson both structured and unstructured grids. The error estimates can be usedeither to improve the computed value for the functional, or as the basis for gridadaptation through redistribution or re�nement. In addition, it is shown that forunstructured grids the use of a conservative discretisation ensures that the orderof accuracy of the functional is one greater than the order of the truncation errorof the �nite volume discretisation.The second section presents the theory for a �nite element discretisation of asimple elliptic model problem, discussing the superconvergence property arisingfrom the a priori error analysis, and the use of the a posteriori error analysisfor grid adaptation. This provides an introduction to the literature on �niteelement error analysis; references are provided for the extension of the analysisto the convection/di�usion and incompressible Navier-Stokes equations.2 Finite volume analysisThe analysis begins with the discrete equations arising from a �nite volumeapproximation of the original 
uid dynamic equations,Rh(Uh) = 0:Here Uh is the discrete 
ow solution and the equations come directly from a 
uxbalance and are not normalised by the area or volume of the computational cells.



4 The solution error eh is de�ned byUh = U + eh;where U is the analytic 
ow solution. Linearising the discrete equations givesRh(U) + @Rh@Uh eh � 0;where Rh(U) is the vector of truncation errors obtained by substituting the ana-lytic solution into the discrete operator. This equation describes the relationshipbetween the truncation error, which is relatively easy to estimate, and the solu-tion error which is the quantity of greater interest.If I(U) is the scalar functional of interest (e.g. lift or drag) based on theanalytic solution, then the error in the corresponding discrete approximation,Ih(Uh), can be broken into two components,Ih(Uh)� I(U) = �Ih(Uh)� Ih(U)� + �Ih(U)� I(U)� :The second term is the truncation error in approximating the operator I. The�rst term is due to the error in the discrete solution Uh and can be approximatedas follows, Ih(Uh)� Ih(U) � @Ih@Uh eh= � @Ih@Uh  @Rh@Uh!�1Rh(U)= V T Rh(U);where the vector V is the solution of the adjoint 
ow equations, @Rh@Uh!T V +  @Ih@Uh!T = 0:Thus the adjoint 
ow solution relates the errors in quantities such as lift anddrag, to the underlying truncation errors in the evaluation of �nite volume cellresiduals.The role of the adjoint 
ow solution in optimal design is now well established[11, 12, 13, 14, 15]. The fact that the same adjoint solution plays a critical rolein error analysis should not be surprising. In design one is concerned with theperturbation of a functional due to changes in the geometry; in error analysisone is concerned with the perturbation of the functional due to the truncationerrors.



5Structured gridsFor structured grids in which one wishes to improve the accuracy through gridredistribution, moving the grid points to better resolve regions of large 
owvariation, this analysis can be used to de�ne an optimal adaptation strategy.Consider the discretisation of the Euler equations in 2D or 3D on a smoothstructured grid. Taylor series expansions can be used to analyse the truncationerror of the discretisation. Bearing in mind that the residuals are not normalisedby the area or volume of the computational cells the truncation error is of orderhp+d where h is the length of the cell (assumed to have a �xed aspect ratio tosimplify the analysis), p is the order of accuracy and d is the dimension of theproblem. After computing the adjoint solution, and using the 
ow solution toestimate the higher order derivatives in the truncation error, the overall error inthe functional can be expressed as a sum of the following formXj hp+dj Tj:Here the index j denotes the individual locations of the 
ow variables (usuallyat nodes or cell centres) and hj is the length of the associated cell. Tj is a scalarwhich involves the product of the adjoint solution and higher order derivativesof the 
ow solution coming from the truncation error estimation. A numericalestimate of the value of these higher order derivatives can be obtained from acomputed 
ow solution by using local least-squares approximation by a highorder polynomial. An adjoint 
ow calculation provides the adjoint solution andhence one can obtain an accurate estimate for the quantity Tj at each node.The resulting error estimate for the functional can be used in two ways.The �rst is to use it as a correction to the computed value of the functional,providing a more accurate value at the cost of an adjoint 
ow computation. Ifone is interested in more than one functional then each would require an adjoint
ow computation, but this might still be computationally less expensive thanimproving the accuracy through using a �ner grid for the original 
ow calculation.The second option is to use the error estimate for optimal grid adaptationthrough redistribution, moving grid points to better resolve 
ow features. Theobjective would be to minimise Xj hp+dj jTjj:Taking hdj to be the area (d=2) or volume (d=3) of the cell, this summationcan be approximated by the integralZ hp jT j dV;



6where jT j is a continuous approximation to jTjj. Similarly, the total number ofcells is given approximately by Z h�d dV:Minimising the �rst integral while keeping the latter �xed, using a Lagrangemultiplier, leads to the requirement that hp+d jT j should be uniform.In practice, one would usually be concerned with more than one functional,such as both lift and drag. To handle this, the adaptation criterion could beamended so that the strategy is to ensure thathp+d Xm jT (m)jis approximately uniform, where T (m) are the corresponding error componentsfor the functionals of concern. In principle, the construction of each T (m) requiresthe solution of an adjoint equation. However, in practice it may be that theseadjoint solutions can be approximated su�ciently well for adaptation purposesby simple analytic functions, based on a detailed understanding of their originand qualitative nature [16].This strategy may not seem very di�erent from current adaptation practiceswhich aim to make the truncation error uniform across the grid. The crucial dif-ference however is the inclusion of the adjoint solution which re
ects the fact thatnot all truncation errors are equal in their e�ect on the quantities of engineeringinterest such as lift and drag. A good example of this is truncation errors in thewake behind an airfoil. It is not uncommon for the wake to be poorly resolveda chord or more downstream of an airfoil, due to grid generation di�culties inanticipating the trajectory of the wake. However, although the resulting trun-cation errors may be relatively large, the adjoint 
ow solution for lift and dragfunctionals is relatively small, re
ecting the fact that these errors do not signi�-cantly a�ect the 
ow near the airfoil. Thus, adaptation procedures based solelyon truncation error estimates may over-resolve the wake region, while those in-cluding the in
uence of the adjoint solution will correctly play greater emphasison decreasing the errors in those cells close to the airfoil which have the greatestin
uence on the lift and drag.Unstructured gridsFor unstructured grids, some further analysis is required to obtain good errorestimates. Consider a typical discretisation of the 2D or 3D Euler equationsusing node-based variables, an edge-based data structure, a standard �nite vol-ume discretisation of the nonlinear 
ux terms (which can also be interpretedas a Galerkin �nite element discretisation) plus the addition of characteristicsmoothing.



7Assuming all of the cells are of bounded aspect ratio, the truncation error atan interior node j can be expressed in the following way as a sum over the set ofedges Ej coming out of node j.Rj = Xk2Ej hd+1k SjkHere hk is the length of the edge and there is an implicit assumption that all ofthe cells are of bounded aspect ratio so that the face associated with the edgehas length/area O(hd�1k ). Sjk consists of derivatives of the 
ow solution; thisresult comes from the standard integration error from a linear representation ofthe 
ux on the face.Note that since the area/volume of the cell is O(hdj) where hj is the repre-sentative length scale for the cell, the local truncation error normalised by thecell area is O(h). This �rst order accuracy for the truncation error has led someto believe that the solution accuracy may also be �rst order. Indeed, if one usesthe error representation obtained above,V T R(u) �Xj V Tj Rjthen since the total number of nodes is O(h�d) where h is the average value forhj over the whole grid, it appears to follow that the error is O(h).However, numerical evidence suggests that such methods are second orderaccurate [17]. If one considers a union of neighbouring cells covering a regionwhose area/volume is O(1), then summing over these cells, the truncation errorsfor interior 
uxes cancel due to conservation. The boundary has O(h�d+1) faces,each with a truncation error which is O(hd+1), so the overall truncation error forthis aggregation of cells is O(h2). Giles attempted to re�ne this argument usinga Fourier decomposition of the truncation error and the resulting solution error,but the analysis was not rigorous [18].To recover the second order accuracy in the error analysis using the adjointapproach requires a simple rearrangement of the error summation. It dependscrucially on conservation, so that for an edge k connecting nodes i and j, thetruncation error associated with the 
ux along the edge is equal and opposite forthe two cells, i.e. Sik = �Sjk:Therefore, the error summation over all cells can be rearranged into a summationover all edges E, and all boundary nodes B, of the formXk2E hd+1k �V Tk Sk +Xj2B hd+1j V Tj Sj:Here Sk is the truncation error for the 
ux along edge k and �Vk is the di�erencein the adjoint solutions at the nodes joined by the edge. Assuming that the



8analytic adjoint solution is di�erentiable, �Vk should be O(hk), and with thetotal number of edges being O(h�d) this means that the �rst sum is O(h2). Thenumber of boundary nodes is O(h�d+1) and so the second sum is also O(h2). Theconclusion is that the overall error in integral quantities, such as lift and drag, issecond order even though the local truncation error is �rst order.Focusing on the error contribution due to the edges, this is now of the formXk2E hd+2k Tkwhere Tk is the product of the adjoint solution gradient along the edge and higherorder derivatives of the 
ow solution coming from the Taylor series expansionsused to evaluate the 
ux truncation error.As with the structured grid error analysis, this error estimate can be usedto improve the computed value of the functional. Alternatively, it can be usedfor grid adaptation through the addition of extra grid nodes, thereby reducingthe cell sizes hk. The greatest reduction in the error is achieved by introducingadditional nodes into the region in which the average magnitude of hd+2k jTkjis greatest. With repeated re�nement, this quantity should eventually becomeapproximately uniform over the grid. The re�nement can be continued until theerror estimate is smaller than a user-de�ned tolerance, thereby achieving the goalof minimising the computational cost for a given level of accuracy.3 Finite element analysisTo simplify the details of the analysis we restrict consideration to the 2D or 3DPoisson equation, �r2u = f;on a domain 
 which is a unit square or cube, depending on the dimension, andsubject to Dirichlet conditions u = g on the boundary @
.Notation and de�nitionsWe de�ne two inner products, one on the domain,(u; v) � Z
 uv dV;and the other on the boundary,(u; v)@
 � Z@
 uv dA:It is also convenient to de�ne the following bilinear functionala(u; v) = (ru;rv):



9The L2 norm, H1 semi-norm and H1 Sobolev norm are given bykuk2L2 � (u; u); juj2H1 � a(u; u); kuk2H1 � (u; u) + a(u; u):Semi-norms and Sobolev norms of higher degree are de�ned similarly.Standard f.e. analysisThe standard error analysis for this problem is well-established; see the textbookof Strang & Fix for full details [1].The function space H1(
) consists of those functions u for which kukH1<1.The subspace H10 (
) contains those functions which, in addition, are zero onthe boundary @
, while the subspace H1g (
) has those functions satisfying theDirichlet b.c. u = g.The weak solution of the problem is given by the function u 2 H1g (
) suchthat a(u; w) = (f; w); 8w 2 H10 (
):Now let Sh be a �nite element subspace of H1(
) consisting of continuousfunctions which are linear on each triangle (or tetrahedron) of a triangulationT h of the unit square (or cube), with h being the maximum diameter of anyindividual cell. The subspace Sh0 consists of those functions which are zero on theboundary. In addition we will assume that the boundary data g is piecewise linearso that there also exists a subspace Shg with functions satisfying the Dirichletboundary conditions.The solution of the �nite element problem is the function uh 2 Shg such thata(uh; wh) = (f; wh); 8wh 2 Sh0 :For any wh 2 Sh0 � H10 (
), a(u; wh) = (f; wh);and hence we obtain the orthogonality propertya(u�uh; wh) = 0; 8wh 2 Sh0 :Now, there exist positive constants C1; C2 independent of h such thata(w;w) � C1 kwk2H1 ; 8w 2 H10 (
);a(v; w) � C2 kvkH1 kwkH1 8v; w 2 H10 (
):Hence, using the orthogonality property,


u�uh


2H1 � C�11 a(u�uh; u�uh)= C�11 a(u�uh; u�wh);� C�11 C2 
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10for any wh 2 Shg . Thus, 


u�uh


H1 � C�11 C2 


u�wh


H1 :At this point wh is chosen to be an interpolant of u. Standard results concerningthe accuracy of interpolation can then be used to deduce that


u�uh


H1 � C�11 C2C3 h jujH2;where C3 is another constant independent of h.This proves �rst order accuracy in the H1 norm. To prove second orderaccuracy in the L2 norm requires the Aubin-Nitsche technique of using an adjointproblem. The function v 2 H10 (
) is de�ned by the weak problema(v; w) = (u�uh; w); 8w 2 H10 (
);and by standard elliptic regularity results there exists a fourth constant C4 suchthat jvjH2 � C4 
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L2 :Then, using the orthogonality property again,
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2L2 = a(u�uh; v) = a(u�uh; v�vh); 8vh 2 Sh;and so, choosing vh to be an interpolant of v,
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H1� C�21 C32C23 h2 jujH2jvjH2� C�21 C32C23C4 h2 jujH2 
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L2 � C�21 C32C23C4 h2 jujH2:Primal/dual formulations for linear functionalSuppose now that we are interested in obtaining the value for the followingfunctional which is a combination of inner products over both the domain andthe boundary, I = (u; d) + (�@u@n; e)@
:For an arbitrary function w 2 H1e (
), integration by parts yields(f; w) = a(u; w) + (�@u@n; e)@
;



11where u is still the weak solution of the original (primal) problem. Hence, theproblem of determining the value of the linear functional can be expressed inweak form as:Analytic primal P: given functions d; e; f; g, �nd I(d; e; f; g) and u 2 H1g (
)such that I + a(u; w)� (f; w)� (u; d) = 0; 8w 2 H1e (
):The weak formulation of the corresponding dual problem is:Analytic dual D: given functions d; e; f; g, �nd I(d; e; f; g) and v 2 H1e (
)such that I + a(w; v)� (f; v)� (w; d) = 0; 8w 2 H1g (
):The equivalence of the two problems, the fact that they yield the same linearfunctional I(d; e; f; g), follows immediately from considering w=v in the primalproblem, and w=u in the dual.The �nite element approximations to both the primal and dual problems isobtained by replacing H1e (
) and H1g (
) by She and Shg .Discrete primal Ph: given functions d; e; f; g, �nd Ih(d; e; f; g) and uh 2 Shgsuch that Ih + a(uh; wh)� (f; wh)� (uh; d) = 0; 8wh 2 She :Discrete dual Dh: given functions d; e; f; g, �nd Ih(d; e; f; g) and vh 2 Shesuch that Ih + a(wh; vh)� (f; vh)� (wh; d) = 0; 8wh 2 Shg :The equivalence of the linear functionals obtained from these two �nite ele-ment problems again follows immediately from considering wh=vh in the primalproblem, and wh=uh in the dual.Functional error representationLet u; v and uh be the solutions of the problems P;D and Ph, respectively, andlet wh be an arbitrary function in She . Then, from the de�nitions of P;D andPh, it follows thata(u�uh; v�wh) = a(u; v)� a(uh; v)� a(u; wh) + a(uh; wh)= � (I � (f; v) � (u; g)) + (I � (f; v) � (uh; g))+ (I � (f; wh)� (u; g)) � (Ih� (f; wh)� (uh; g))= I � Ih:Similarly, if u; v and vh are the solutions of P;D and Dh, respectively, andwh 2 Shg then a(u�wh; v�vh) = I � Ih:Thus we have two di�erent representations of the error I�Ih in the �niteelement approximation of the linear functional.



12A priori error analysisThe a priori error analysis starts fromI � Ih = a(u�uh; v�vh):Using the error bounds from the standard error analysis given before, the errorin the functional when using a �nite element space of piecewise linear functionsis bounded by ���I � IH ��� � 


u� uh


H1 


v � vh


H1� C�21 C22C23 h2 jujH2jvjH2:If one uses a �nite element space with polynomials of higher degree such that


u� uh


H1 � Cshs jujHs+1;for some integer s and constant Cs, then this a priori error estimate becomes���I � IH ��� � C�21 C22C2s h2s jujHs+1jvjHs+1:This shows that the order of accuracy of the �nite element approximation ofthe functional is twice as good as the accuracy of the solution uh in the H1 norm.This superconvergence property is due to the fact that the leading order termsin the solution error, u�uh, are orthogonal to the smooth functions d; e in theevaluation of the linear functional.A posteriori error analysisThe a posteriori error analysis starts fromI � Ih = a(u�uh; v�wh);where wh will be an interpolation of the dual solution v.Splitting the integral into a sum of integrals over each individual triangle, ortetrahedron, and then integrating by parts yieldsI � Ih = XK2T h TK;where TK = ZK(f +r2uh)(v�wh) dV + 12 Z@K "@uh@n # (v�wh) dA;in which h@uh@n i is the jump in normal derivative across internal faces, and isde�ned to be zero on faces forming part of the boundary @
.



13When using piecewise linear �nite elements, r2uh is zero within each cell,and h@uh@n i is easily evaluated. The interpolation error v�wh can be estimatedfrom the second derivatives of v; these in turn can be estimated using seconddi�erences of the dual �nite element solution vh. In this way, the magnitude ofthe cell error TK can be accurately estimated.For optimal grid adaptation, the strategy would be to re�ne cells for whichjTKj is large until the bound on the error is acceptably small. In the process,jTKj would become relatively uniform across the whole grid.ExtensionsThe analysis presented here is for a simple p.d.e. (the Poisson equation) on asimple domain (which can be triangulated exactly) and with simple boundaryconditions and linear functional (corresponding to functions in the �nite elementspace).The analysis can be extended to much harder problems. Becker and Ran-nacher derived the a posteriori error analysis for the incompressible Navier-Stokesequations [8], and S�uli, Giles et al developed both a priori and a posteriori anal-yses for the incompressible Navier-Stokes equations [9]. These analyses assumesimple domain boundaries and boundary data. A forthcoming paper by S�uliand Giles will show, for the convection/di�usion equation, that smooth curvedboundaries and smooth boundary data can be treated in a way which does notdestroy the superconvergence property for functionals; the key is an appropriateprojection of the boundary geometry and data onto the �nite element space.4 Some concluding remarksThis paper has outlined the way in which the solution of an appropriate dualproblem can be used to estimate the error in approximating a nonlinear functionalin CFD computations. The error estimates can be used either to obtain betterapproximations to the functional itself, or to drive grid adaptation with the aimof achieving the most accurate answer possible for a given level of computationale�ort.The �nite volume analysis shows that on unstructured grids discrete conser-vation is crucial in gaining one order of accuracy relative to the order of the localtruncation error. However, the analysis outlined makes the assumption that thegradient of the dual solution is bounded. This may not be true for the Eulerequations along the stagnation streamline [16], and so additional analysis maybe required.The a priori �nite element error analysis reveals an interesting superconver-gence property, showing that the order of accuracy of the approximate linearfunctional is twice that of the solution itself. The lack of a similar result for
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