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On adjoint equations for error analysis
and optimal grid adaptation in CFD
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This paper explains how the solutions of appropriate adjoint equa-
tions can be used to estimate the errors in important integral quanti-
ties, such as lift and drag, obtained from CFD computations. These
error estimates can be used to obtain improved estimates of the in-
tegral quantities, or as the basis for optimal grid adaptation.

The theory is presented for both finite volume and finite element
approximations. For a node-based finite volume discretisation of the
Euler equations on unstructured grids, the adjoint analysis makes it
possible to prove second order accuracy. A superconvergence property
is proved for a finite element discretisation of the Laplace equation,
and references are provided for the extension of the analysis to the
convection /diffusion and incompressible Navier-Stokes equations.
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1 Introduction

One challenge facing CFD is to be able to give tight error bounds so that an engi-
neer knows the accuracy of the computed results. Leaving aside the difficult issue
of assessing the magnitude of modelling errors due to turbulence and transition
prediction, this requires an accurate estimate of the errors due to the discretisa-
tion of the system of p.d.e.’s. With such knowledge, one can then hope to develop
a rigorous approach to optimal grid adaptation, to produce the most accurate
solution for a given computational cost, or to minimise the computational cost
in achieving a given level of accuracy.

At present, there is still a considerable gap between mathematical theory and
engineering practice. When using smooth structured grids for smooth flow fields
with no singularities, the order of accuracy can be deduced from an analysis
of the truncation error. The absolute magnitude of the error for a particular
grid size can be estimated from past experience with grid refinement studies on
test problems. However, when one starts using grid redistribution (moving grid
points) to improve the resolution of flow features, the grid is no longer smooth,
and if one uses local grid refinement (adding additional grid points) the grid
becomes unstructured, at least from the point of view of theoretical analysis if
not from the programming perspective.

For unstructured grids the current practice in grid refinement remains the
use of heuristic methods. Some of these are based on well-founded physical
reasoning, that one needs to have good resolution of features such as shocks,
boundary layers, wakes and free shear layers. However, it is entirely possible
that too much computational effort is put into the resolution of these features at
the expense of insufficient resolution of other parts of the flow field such as the
smooth but rapid expansion over the leading edge of an airfoil. Other methods
are based on the idea of reducing the magnitude of the truncation error, but this
takes no account of the magnitude of the solution error caused by that truncation
error.

Until recently, the rigorous mathematical approach to error analysis for un-
structured grids has involved the use of the Aubin-Nitsche technique to derive
error bounds for finite element approximations of model problems such as the
convection-diffusion equation [1]. However, when applied to approximations of
hyperbolic p.d.e.’s this usually results in error bounds using negative Sobolev
norms (e.g. [2]) which have little engineering significance. Therefore, this has
generally been of little help to engineers although it has led to practical grid
refinement indicators [3, 4].

Very recently, however, a promising new approach to error analysis and opti-
mal grid refinement has been introduced by Becker & Rannacher, Siili & Giles,
and Paraschivoiu, Patera and Peraire. This starts from the observation that
in many cases the key quantities of engineering interest are functionals of the
solution, such as the lift and drag on an airfoil. Therefore, the most relevant



measure of the solution error is the absolute error in these derived quantities.
This leads to a mathematical analysis involving the adjoint p.d.e. with inhomo-
geneous terms and boundary conditions appropriate to the particular functional.
The resulting adjoint solution defines the relationship between the error in the
functional and the finite element residual error, which is the extent to which the
finite element solution is not the solution of the original analytic problem. Thus,
an estimate of the adjoint solution together with the local finite element residual
error can be used to define an optimal grid refinement strategy to obtain the
most accurate prediction of lift and drag for a given computational cost.

This line of research is still in its infancy. Drawing on theory developed for
elliptic p.d.e.’s in structural analysis [5,6,7], Becker and Rannacher developed
a posteriori error estimates for the incompressible Navier-Stokes equations [8].
In addition to similar a posteriori error estimates, Siili, Giles et al have also de-
veloped a priori error estimates for the incompressible Navier-Stokes equations,
proving an interesting superconvergence property [9]. Paraschivoiu, Patera and
Peraire have also developed a slightly different analysis employing adjoint solu-
tions to obtain upper and lower bounds for functionals for elliptic p.d.e.’s [10]
with the aim of proceeding to the Navier-Stokes equations.

The aim of this paper is to explain this approach to error analysis and show
how it can be used for optimal grid adaptation. The first section outlines an
a priori error analysis for finite volume discretisations of the Euler equations
on both structured and unstructured grids. The error estimates can be used
either to improve the computed value for the functional, or as the basis for grid
adaptation through redistribution or refinement. In addition, it is shown that for
unstructured grids the use of a conservative discretisation ensures that the order
of accuracy of the functional is one greater than the order of the truncation error
of the finite volume discretisation.

The second section presents the theory for a finite element discretisation of a
simple elliptic model problem, discussing the superconvergence property arising
from the a priori error analysis, and the use of the a posteriori error analysis
for grid adaptation. This provides an introduction to the literature on finite
element error analysis; references are provided for the extension of the analysis
to the convection/diffusion and incompressible Navier-Stokes equations.

2 Finite volume analysis

The analysis begins with the discrete equations arising from a finite volume
approximation of the original fluid dynamic equations,

R"(U™) = 0.

Here U" is the discrete flow solution and the equations come directly from a flux
balance and are not normalised by the area or volume of the computational cells.



The solution error e” is defined by
Uh=U +e",

where U is the analytic flow solution. Linearising the discrete equations gives

Rh(U) + W 6h ~ 0,
where R"(U) is the vector of truncation errors obtained by substituting the ana-
lytic solution into the discrete operator. This equation describes the relationship
between the truncation error, which is relatively easy to estimate, and the solu-
tion error which is the quantity of greater interest.
If I(U) is the scalar functional of interest (e.g. lift or drag) based on the
analytic solution, then the error in the corresponding discrete approximation,
I"(U"), can be broken into two components,

"t - 1wy = (1wt - 1'w)) + (") - 1v)).

The second term is the truncation error in approximating the operator I. The
first term is due to the error in the discrete solution U” and can be approximated
as follows,

or
v ¢

oI (ORM\ ',
= a0 (W) B'(U)
= V' R'U),

") - 1(v)
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where the vector V' is the solution of the adjoint flow equations,
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Thus the adjoint flow solution relates the errors in quantities such as lift and
drag, to the underlying truncation errors in the evaluation of finite volume cell
residuals.

The role of the adjoint flow solution in optimal design is now well established
[11,12,13,14,15]. The fact that the same adjoint solution plays a critical role
in error analysis should not be surprising. In design one is concerned with the
perturbation of a functional due to changes in the geometry; in error analysis

one is concerned with the perturbation of the functional due to the truncation
errors.



Structured grids

For structured grids in which one wishes to improve the accuracy through grid
redistribution, moving the grid points to better resolve regions of large flow
variation, this analysis can be used to define an optimal adaptation strategy.

Consider the discretisation of the Euler equations in 2D or 3D on a smooth
structured grid. Taylor series expansions can be used to analyse the truncation
error of the discretisation. Bearing in mind that the residuals are not normalised
by the area or volume of the computational cells the truncation error is of order
hP*+d where h is the length of the cell (assumed to have a fixed aspect ratio to
simplify the analysis), p is the order of accuracy and d is the dimension of the
problem. After computing the adjoint solution, and using the flow solution to
estimate the higher order derivatives in the truncation error, the overall error in
the functional can be expressed as a sum of the following form

Z h§?+d 7—1]

J

Here the index j denotes the individual locations of the flow variables (usually
at nodes or cell centres) and h; is the length of the associated cell. T} is a scalar
which involves the product of the adjoint solution and higher order derivatives
of the flow solution coming from the truncation error estimation. A numerical
estimate of the value of these higher order derivatives can be obtained from a
computed flow solution by using local least-squares approximation by a high
order polynomial. An adjoint flow calculation provides the adjoint solution and
hence one can obtain an accurate estimate for the quantity 7} at each node.

The resulting error estimate for the functional can be used in two ways.
The first is to use it as a correction to the computed value of the functional,
providing a more accurate value at the cost of an adjoint flow computation. If
one is interested in more than one functional then each would require an adjoint
flow computation, but this might still be computationally less expensive than
improving the accuracy through using a finer grid for the original flow calculation.

The second option is to use the error estimate for optimal grid adaptation
through redistribution, moving grid points to better resolve flow features. The
objective would be to minimise

SonEr Ty,
J

Taking h¢ to be the area (d=2) or volume (d=3) of the cell, this summation
can be approximated by the integral

/h” T|dv,



where |T'| is a continuous approximation to |7}|. Similarly, the total number of
cells is given approximately by
Ja

Minimising the first integral while keeping the latter fixed, using a Lagrange
multiplier, leads to the requirement that h?*®|T| should be uniform.

In practice, one would usually be concerned with more than one functional,
such as both lift and drag. To handle this, the adaptation criterion could be
amended so that the strategy is to ensure that

hp+d Z |T(m) |

is approximately uniform, where 7™ are the corresponding error components
for the functionals of concern. In principle, the construction of each 7™ requires
the solution of an adjoint equation. However, in practice it may be that these
adjoint solutions can be approximated sufficiently well for adaptation purposes
by simple analytic functions, based on a detailed understanding of their origin
and qualitative nature [16].

This strategy may not seem very different from current adaptation practices
which aim to make the truncation error uniform across the grid. The crucial dif-
ference however is the inclusion of the adjoint solution which reflects the fact that
not all truncation errors are equal in their effect on the quantities of engineering
interest such as lift and drag. A good example of this is truncation errors in the
wake behind an airfoil. It is not uncommon for the wake to be poorly resolved
a chord or more downstream of an airfoil, due to grid generation difficulties in
anticipating the trajectory of the wake. However, although the resulting trun-
cation errors may be relatively large, the adjoint flow solution for lift and drag
functionals is relatively small, reflecting the fact that these errors do not signifi-
cantly affect the flow near the airfoil. Thus, adaptation procedures based solely
on truncation error estimates may over-resolve the wake region, while those in-
cluding the influence of the adjoint solution will correctly play greater emphasis
on decreasing the errors in those cells close to the airfoil which have the greatest
influence on the lift and drag.

Unstructured grids

For unstructured grids, some further analysis is required to obtain good error
estimates. Consider a typical discretisation of the 2D or 3D Euler equations
using node-based variables, an edge-based data structure, a standard finite vol-
ume discretisation of the nonlinear flux terms (which can also be interpreted
as a Galerkin finite element discretisation) plus the addition of characteristic
smoothing.



Assuming all of the cells are of bounded aspect ratio, the truncation error at
an interior node j can be expressed in the following way as a sum over the set of
edges F; coming out of node j.

Rj= % hit'Sp

keE;

Here hy is the length of the edge and there is an implicit assumption that all of
the cells are of bounded aspect ratio so that the face associated with the edge
has length/area O(hi~"). S, consists of derivatives of the flow solution; this
result comes from the standard integration error from a linear representation of
the flux on the face.

Note that since the area/volume of the cell is O(h{) where h; is the repre-
sentative length scale for the cell, the local truncation error normalised by the
cell area is O(h). This first order accuracy for the truncation error has led some
to believe that the solution accuracy may also be first order. Indeed, if one uses
the error representation obtained above,

VT R(u) = > VI'R;

J

then since the total number of nodes is O(h~?) where h is the average value for
h; over the whole grid, it appears to follow that the error is O(h).

However, numerical evidence suggests that such methods are second order
accurate [17]. If one considers a union of neighbouring cells covering a region
whose area/volume is O(1), then summing over these cells, the truncation errors
for interior fluxes cancel due to conservation. The boundary has O(h~%*!) faces,
each with a truncation error which is O(h%*1), so the overall truncation error for
this aggregation of cells is O(h?). Giles attempted to refine this argument using
a Fourier decomposition of the truncation error and the resulting solution error,
but the analysis was not rigorous [18].

To recover the second order accuracy in the error analysis using the adjoint
approach requires a simple rearrangement of the error summation. It depends
crucially on conservation, so that for an edge k£ connecting nodes i and j, the
truncation error associated with the flux along the edge is equal and opposite for
the two cells, i.e.

Sik = —Sjk-
Therefore, the error summation over all cells can be rearranged into a summation
over all edges E, and all boundary nodes B, of the form

Y hETTAVESe + Y hiTVTS;.

keE jeB

Here Sy is the truncation error for the flux along edge £ and AV} is the difference
in the adjoint solutions at the nodes joined by the edge. Assuming that the



analytic adjoint solution is differentiable, AV} should be O(hy), and with the
total number of edges being O(h~9) this means that the first sum is O(h?). The
number of boundary nodes is O(h~%*!) and so the second sum is also O(h?). The
conclusion is that the overall error in integral quantities, such as lift and drag, is
second order even though the local truncation error is first order.

Focusing on the error contribution due to the edges, this is now of the form

Z hZ+2Tk

kekE

where T} is the product of the adjoint solution gradient along the edge and higher
order derivatives of the flow solution coming from the Taylor series expansions
used to evaluate the flux truncation error.

As with the structured grid error analysis, this error estimate can be used
to improve the computed value of the functional. Alternatively, it can be used
for grid adaptation through the addition of extra grid nodes, thereby reducing
the cell sizes hi. The greatest reduction in the error is achieved by introducing
additional nodes into the region in which the average magnitude of h{t?|T}|
is greatest. With repeated refinement, this quantity should eventually become
approximately uniform over the grid. The refinement can be continued until the
error estimate is smaller than a user-defined tolerance, thereby achieving the goal
of minimising the computational cost for a given level of accuracy.

3 Finite element analysis

To simplify the details of the analysis we restrict consideration to the 2D or 3D
Poisson equation,

—V2U - f7
on a domain 2 which is a unit square or cube, depending on the dimension, and

subject to Dirichlet conditions u = ¢g on the boundary 0f).

Notation and definitions

We define two inner products, one on the domain,

= dv,
(u,v) /qu ,

and the other on the boundary,

(u,v)a0 = /8(2 uv dA.

It is also convenient to define the following bilinear functional

a(u,v) = (Vu, Vo).



The Ly norm, H' semi-norm and H' Sobolev norm are given by
||U||iz = (U, U), |U|%{1 = a(ua U), ||u||iI1 = (U, u) + a(ua U)

Semi-norms and Sobolev norms of higher degree are defined similarly.

Standard f.e. analysis

The standard error analysis for this problem is well-established; see the textbook
of Strang & Fix for full details [1].

The function space H'(Q2) consists of those functions u for which |Jul|; <oo.
The subspace H](2) contains those functions which, in addition, are zero on
the boundary 0€2, while the subspace H gl(Q) has those functions satisfying the
Dirichlet b.c. u = g.

The weak solution of the problem is given by the function v € H}(Q) such
that

a(u,w) = (f,w), Yw € Hy().

Now let S be a finite element subspace of H'(£2) consisting of continuous
functions which are linear on each triangle (or tetrahedron) of a triangulation
T" of the unit square (or cube), with h being the maximum diameter of any
individual cell. The subspace S¥ consists of those functions which are zero on the
boundary. In addition we will assume that the boundary data ¢ is piecewise linear
so that there also exists a subspace Sg with functions satisfying the Dirichlet
boundary conditions.

The solution of the finite element problem is the function u” € Sg such that

a(ul, wh) = (f,w"), Vu" e St
For any w" € St c H}(Q),
au,w") = (f,w"),
and hence we obtain the orthogonality property
a(u—u",w") =0, Vu"e Sk
Now, there exist positive constants C,Cs independent of h such that

a(w,w) > Cillwll Vw € Hy (),
av,w) < Callvllp lwllp  Yo,w € Hy ().

Hence, using the orthogonality property,

2

Hu—uhHHl < O'a(u—u" u—u")

= Ol alu—u", u—w"),

< 070G fu—t],

h
u—w HHI’
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for any w" € Sg. Thus,
h -1 h
e P G

At this point w” is chosen to be an interpolant of u. Standard results concerning
the accuracy of interpolation can then be used to deduce that

|u—ut| < C'CoCyhulm,

where C'3 is another constant independent of A.

This proves first order accuracy in the H' norm. To prove second order
accuracy in the Ly norm requires the Aubin-Nitsche technique of using an adjoint
problem. The function v € H} () is defined by the weak problem

CL(U,’U)) = (u_uhaw)a Vw € H&(Q)a

and by standard elliptic regularity results there exists a fourth constant C) such
that
0|2 < Cy Hu—uh‘

Lo~

Then, using the orthogonality property again,

= a(u—u"v) = a(u—u",v—ov"), Yo" €S,

2
=
L2

and so, choosing v" to be an interpolant of v,

2
[u=,, = Co fu=at],, Jo—"|
Lo H! H!
< CT?C5C5 12 [ule vl me
< C2C3C3C W2 fulge ju—u"|
2
—  |u—ut|, < c2C3CECH B Julpe.
2

Primal/dual formulations for linear functional

Suppose now that we are interested in obtaining the value for the following
functional which is a combination of inner products over both the domain and

the boundary,
Ju
I = (u,d) + (—%,6)39.

For an arbitrary function w € H] (), integration by parts yields

ou

(f,w) = a(u,w) + (—%, €) a0,
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where u is still the weak solution of the original (primal) problem. Hence, the
problem of determining the value of the linear functional can be expressed in
weak form as:
Analytic primal P: given functions d, e, f, g, find I(d, e, f, g) and u € H,(Q)
such that
I+ a(u,w) - (f,w) — (u,d) =0, Ywe H(Q).

The weak formulation of the corresponding dual problem is:
Analytic dual D: given functions d, e, f, g, find I(d,e, f,g) and v € H(Q)
such that
I+ a(w,v) = (f,v) — (w,d) =0, Vwe H(Q).

The equivalence of the two problems, the fact that they yield the same linear
functional I(d,e, f, g), follows immediately from considering w=wv in the primal
problem, and w=wu in the dual.

The finite element approximations to both the primal and dual problems is
obtained by replacing H,(Q) and H,(2) by S and S

Discrete primal P": given functions d, e, f, g, find I"(d,e, f,g) and v" € S}
such that

I" + a(ul wh) — (f,w") — (u",d) =0, V' e S

Discrete dual D": given functions d,e, f, g, find I"(d,e, f,g) and v" € S”

such that
I" +a(w", o") — (f,0") — (w",d) =0, Vu"e Sk

The equivalence of the linear functionals obtained from these two finite ele-
ment problems again follows immediately from considering w" =v" in the primal
problem, and w"”=u" in the dual.

Functional error representation

Let u,v and u” be the solutions of the problems P, D and P", respectively, and
let w" be an arbitrary function in S*. Then, from the definitions of P, D and
Ph . it follows that

alu—u" v—uw") = a(u,v) - alu”,v) - alu,w") + alu”, w")
= _(I_(fa ) ( u, g )) (I—(f,?)) _(uhag))
+ (I = (fw") = (u,9)) = (I"= (f,w") = (u",9))
= 11"

Similarly, if v,v and v" are the solutions of P, D and D", respectively, and
wh € S;‘ then
a(u—w" v—ov") =T 1"
Thus we have two different representations of the error I —I" in the finite
element approximation of the linear functional.
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A priori error analysis

The a priori error analysis starts from
I—1"=a(u—u" v—o").

Using the error bounds from the standard error analysis given before, the error
in the functional when using a finite element space of piecewise linear functions

is bounded by

‘I—IH‘ < Hu—uhH V=
- H! H!

< 01—20220?? h2 |U|H2|U|H2.

|

If one uses a finite element space with polynomials of higher degree such that

Hs+tl,

Hu - uhH < Csh? |u
oL
for some integer s and constant C, then this a priori error estimate becomes
H —2 2 2 7 2s
|1 = 17| < C2C3C2 12 Jul e o] .

This shows that the order of accuracy of the finite element approximation of
the functional is twice as good as the accuracy of the solution " in the H' norm.
This superconvergence property is due to the fact that the leading order terms
in the solution error, u—u”, are orthogonal to the smooth functions d, e in the
evaluation of the linear functional.

A posterior: error analysis

The a posteriori error analysis starts from
I—1"=a(u—u",v—w"),

where w” will be an interpolation of the dual solution v.
Splitting the integral into a sum of integrals over each individual triangle, or
tetrahedron, and then integrating by parts yields

I-1I"= Y Ty,
KeTh

where

h
Tie= [+ vty av e g [ 198 mutyaa

in which [%] is the jump in normal derivative across internal faces, and is
defined to be zero on faces forming part of the boundary 0f2.
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When using piecewise linear finite elements, VZu" is zero within each cell,
and [%] is easily evaluated. The interpolation error v —w” can be estimated
from the second derivatives of v; these in turn can be estimated using second
differences of the dual finite element solution v”. In this way, the magnitude of
the cell error Tk can be accurately estimated.

For optimal grid adaptation, the strategy would be to refine cells for which
|Tx| is large until the bound on the error is acceptably small. In the process,
|| would become relatively uniform across the whole grid.

Extensions

The analysis presented here is for a simple p.d.e. (the Poisson equation) on a
simple domain (which can be triangulated exactly) and with simple boundary
conditions and linear functional (corresponding to functions in the finite element
space).

The analysis can be extended to much harder problems. Becker and Ran-
nacher derived the a posteriori error analysis for the incompressible Navier-Stokes
equations [8], and Siili, Giles et al developed both a priori and a posteriori anal-
yses for the incompressible Navier-Stokes equations [9]. These analyses assume
simple domain boundaries and boundary data. A forthcoming paper by Siili
and Giles will show, for the convection/diffusion equation, that smooth curved
boundaries and smooth boundary data can be treated in a way which does not
destroy the superconvergence property for functionals; the key is an appropriate
projection of the boundary geometry and data onto the finite element space.

4 Some concluding remarks

This paper has outlined the way in which the solution of an appropriate dual
problem can be used to estimate the error in approximating a nonlinear functional
in CFD computations. The error estimates can be used either to obtain better
approximations to the functional itself, or to drive grid adaptation with the aim
of achieving the most accurate answer possible for a given level of computational
effort.

The finite volume analysis shows that on unstructured grids discrete conser-
vation is crucial in gaining one order of accuracy relative to the order of the local
truncation error. However, the analysis outlined makes the assumption that the
gradient of the dual solution is bounded. This may not be true for the Euler
equations along the stagnation streamline [16], and so additional analysis may
be required.

The a prior: finite element error analysis reveals an interesting superconver-
gence property, showing that the order of accuracy of the approximate linear
functional is twice that of the solution itself. The lack of a similar result for
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the finite volume analysis may indicate a significant advantage for finite element
methods, but the advantage only appears when using methods which have better
than second order accuracy.
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