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CONVERGENCE OF LINEARIZED AND ADJOINT
APPROXIMATIONS FOR DISCONTINUOUS SOLUTIONS OF

CONSERVATION LAWS. PART 1: LINEARIZED APPROXIMATIONS
AND LINEARIZED OUTPUT FUNCTIONALS∗

MIKE GILES† AND STEFAN ULBRICH‡

Abstract. This paper analyzes the convergence of discrete approximations to the linearized
equations arising from an unsteady one-dimensional hyperbolic equation with a convex flux func-
tion. A simple modified Lax–Friedrichs discretization is used on a uniform grid, and a key point
is that the numerical smoothing increases the number of points across the nonlinear discontinuity
as the grid is refined. It is proved that this gives pointwise convergence almost everywhere for the
solution to the linearized discrete equations with smooth initial data, and also convergence in the
discrete approximation of linearized output functionals. In Part 2 [M. Giles and S. Ulbrich, SIAM
J. Numer. Anal., 48 (2010), pp. 905–921] we extend the results to Dirac initial data for the linearized
equation and will prove the pointwise convergence almost everywhere for the solution of the adjoint
discrete equations. In addition, we present numerical results illustrating the asymptotic behavior
which is analyzed.
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1. Introduction.

1.1. Background. In recent years there has been considerable research in the
computational fluid dynamics community into the development and use of adjoint
equations for design optimization (e.g., [Jam95, AV99]), data assimilation (e.g., [CT87,
TC87]), and error analysis (e.g., [BR01, BD03]). In almost every case, the adjoint
equations have been formulated under the assumption that the original nonlinear flow
solution is smooth. Since most applications have been for incompressible or subsonic
flow, this has been valid; however, there is also considerable interest in transonic design
applications for which there are shocks. The correct formulation and discretization
of adjoint equations in the presence of shocks is therefore important, and that is the
main motivation for the analysis in this paper.

The reason that shocks present a problem is that adjoint equations are defined to
be adjoint to the equations obtained by linearizing the original nonlinear equations.
Therefore, this raises the issue of linearized perturbations to the shock. A correct
treatment of the inviscid analytic equations must linearize the shock jump equations
which arise from conservation properties at the shock. However, for numerical ap-
proximations which rely on shock capturing, as opposed to shock fitting, it is not clear
whether linearized shock capturing will yield the correct results.
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The validity of linearized shock capturing for the particular application of shocks
oscillating harmonically in flutter analysis was investigated by Lindquist and Giles
[LG94]. Their numerical results demonstrated that shock capturing produces the
correct prediction of integral quantities such as unsteady lift and moment provided
the shock is spread over a number of grid points. It was argued, but not proved,
that this is because the “viscous” shock profile remains invariant, to leading order, as
the shock oscillates, and therefore the integral effect of the linearized shock motion
is correct. As a result, linearized shock capturing is now the standard method of
turbomachinery aeroelastic analysis [HCL94, SW98], even though there has been no
proof of convergence of the numerical discretization.

There has been very little prior research into adjoint equations for flows with
shocks. Giles and Pierce [GP01] have shown that the analytic derivation of the adjoint
equations for the steady quasi-one-dimensional Euler equations requires the specifica-
tion of an internal adjoint boundary condition at the shock. However, the numerical
evidence [GP98] suggests that for this steady one-dimensional application the cor-
rect adjoint solution is obtained using either the “discrete” approach (in which one
linearizes the discrete equations and then forms their adjoint) or the “continuous”
approach (in which one discretizes the analytic adjoint equations). In the case of
the discrete approach, this is due to the second order accuracy of conservative quasi-
one-dimensional shock capturing [Gil96], whereas with the continuous approach it is
thought to be because the use of numerical smoothing automatically selects the cor-
rect numerical solution which is smooth at the shock [GP98]. Homescu and Navon
[HN03] and Bardos and Pironneau [BP03] have also addressed the correct formulation
and approximation of adjoint equations in flows with shocks.

Ulbrich has derived the adjoint equations for one-dimensional conservation laws
with source terms, and using the method of generalized characteristics he has analyzed
the differentiability of objective functionals with respect to controls [Ulb02, Ulb03].
In these papers he proved that the correct formulation leads to an interior boundary
condition for the adjoint equations along discontinuities in the original nonlinear solu-
tions, which is automatically satisfied for so-called reversible solutions of the adjoint
equation in the sense of [BJ98].

Looking at nonlinear hyperbolic equations with scalar conservation laws, there has
been considerable prior research into the convergence of numerical approximations to
the nonlinear equations. To mention just a few key papers, Crandall and Majda
[CM80] proved convergence to the unique entropy solution for monotone difference
approximations of scalar conservation laws, and Nessyahu and Tadmor [NT92] proved
an optimal bound on the order of convergence for a certain class of numerical methods,
using the Lip’ norm introduced by Tadmor [Tad91].

Linearized conservation laws with discontinuous coefficients have been analyzed
in [LeF90, BJ98]. The appropriate definition of measure valued solutions, as well as
their existence and uniqueness, have been considered in [LeF90]. The definition of
the measure valued solutions in [LeF90] is based on the averaged superposition of
Volpert for functions of bounded variation to define the nonconservative product in
the flux term. In this context, Volpert’s definition is appropriate; a detailed study
of more general definitions of nonconservative products is carried out in [DMLM95].
The solutions in [LeF90] coincide with the duality solutions considered in [BJ98]
for general linear conservation laws with discontinuous coefficients satisfying a one-
sided Lipschitz condition. Moreover, [BJ98] also introduces reversible solutions for
the backward problem of the corresponding nonconservative transport equation with
discontinuous coefficients.
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Giles has obtained numerical results for the Burgers equation [Gil03], showing
that numerical discretizations of the adjoint equations can converge to incorrect so-
lutions as the grid is refined uniformly, unless the number of grid points across the
discontinuity increases as the grid is refined. Using the discrete linearized scheme and
the discrete adjoint scheme ensures automatically that the conservative linearized
equations are discretized by a conservative scheme and the nonconservative adjoint
equations by a nonconservative scheme. This avoids approximation errors, which are
studied in detail by [HL94].

It is the desire for a theoretical understanding of these numerical results which
has motivated the research in this present paper and in Part 2 [GU10]. We consider
an unsteady one-dimensional hyperbolic equation with a convex scalar flux, such as
the Burgers equation. We use a specific explicit discretization with a modified Lax–
Friedrichs flux with a smoothing coefficient which varies with grid resolution h to
increase the number of grid points across any discontinuity as h → 0. Because the
numerical discretization is monotone, for sufficiently small timesteps, the classical
results of Crandall and Majda [CM80], as well as the more recent results of Nessyahu
and Tadmor [NT92], prove convergence of the nonlinear discretization to the unique
entropy solution. In this paper we prove that for initial data which is smooth apart
from one or more discontinuities the corresponding linearized discretization yields
solutions which converge pointwise to the analytic solution everywhere except along
the discontinuities. Furthermore, it is proved that the discrete approximation of the
linearized perturbation to output integrals converges to the analytic value. From
this we will deduce in Part 2 [GU10] that the discrete adjoint approximation must
converge to the analytic adjoint solution as h → 0, everywhere except along two
characteristics across which it is discontinuous. Furthermore, by an appropriate choice
of the numerical smoothing, the order of convergence is O(hα) for any α<1.

1.2. The model problem. The model problem is the equation

(1.1) N(u) ≡ ∂u

∂t
+

∂f(u)

∂x
= 0, −∞<x<∞, 0<t<T,

in which f(u) is a C∞ convex flux function with derivative a(u).
Numerical results will be presented in Part 2 for initial data u0(x), which is

continuous and leads to the formation of a single shock after a finite time. However,
the numerical analysis in this paper will be performed for initial data with a single
initial discontinuity at x=0, and with all derivatives in (−∞, 0) and (0,∞) having a
finite L1 norm. This condition implies that u0(x) has bounded variation, and hence
u(x, t) is bounded. An extension to much more general initial data will be presented
in Part 2 [GU10].

The shock moves with a velocity given by the Rankine–Hugoniot jump relation

(1.2) ẋs[u]− [f ] = 0,

where [u] ≡ u(x+
s , t)− u(x−

s , t) denotes the jump in u across the shock.
Linear perturbations to the inviscid solution due to perturbed initial conditions

are governed by the linear PDE

(1.3) L(u) ũ ≡ ∂ũ

∂t
+

∂

∂x

(
a ũ

)
= 0.

The corresponding linearized perturbation to the shock position satisfies the ODE

˙̃xs

[
u
]
+ ẋs

[
ũ+ x̃s

∂u

∂x

]
−
[
a ũ+ x̃s

∂f

∂x

]
= 0.
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Eliminating ∂f/∂x using (1.1) and noting that

d

dt
[u] =

[
∂u

∂t
+ ẋs

∂u

∂x

]
,

one obtains

(1.4)
d

dt

(
x̃s[u]

)
=

[
(a−ẋs) ũ

]
,

subject to initial data x̃s(0)=0.
By integrating (1.3) and (1.4) it can be verified that if the initial data ũ0(x) has

compact support, then the quantity

∫ xs(t)

−∞
ũ(x, t) dx +

∫ ∞

xs(t)

ũ(x, t) dx − x̃s(t) [u]t

is invariant in time. Here [u]t represents the jump in u(x, t) across the shock at time
t. At the final time T , if all of the characteristics from the compact support of ũ0(x)
have entered the shock, and so ũ(x, T ) is zero on either side of the shock, it follows
that

(1.5) − x̃s(T ) [u]T =

∫ ∞

−∞
ũ0(x) dx.

Thus the final shock perturbation is proportional to the integral of the initial solution
perturbation.

The linearized perturbations ũ and x̃s can be used to analyze the linearized per-
turbations of output functionals. The output functional of interest is a tracking-type
functional of the form

J =

∫ ∞

−∞
γ(x) G(u(x, T )) dx =

∫ xs(T )

−∞
γ(x) G(u(x, T )) dx+

∫ ∞

xs(T )

γ(x) G(u(x, T )) dx,

where γ is a weighting function with compact support and bounded variation. The
corresponding linear perturbation is

J̃=

∫ xs(T )

−∞
γ(x) G′(u(x, T )) ũ(x, T ) dx +

∫ ∞

xs(T )

γ(x) G′(u(x, T )) ũ(x, T ) dx

− x̃s(T ) γ(xs(T )) [G]T ,

where [G]T represents the jump in G(u(x, T )) across the shock at the final time.
It can be shown [Ulb02, Ulb03, Gil03] that the adjoint formulation of the linearized

functional perturbation is

J̃ =

∫ 1

0

w(x, 0) ũ(x, 0) dx,

where w(x, t) satisfies the adjoint PDE

∂w

∂t
+ a

∂w

∂x
= 0
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in the smooth regions on either side of the shock, with “initial” conditions at the final
time,

w(x, T ) = γ(x) G′(x, T ),

and along the shock the interior boundary condition

w(xs(t), t) = γ(xs(T )) [G]T /[u]T .

Note that it follows from this that the adjoint solution has the uniform constant value
[G]T /[u]T on all characteristics leading into the shock.

The central objective in this paper is to prove that under certain conditions a
linearized discretization of a regularized PDE yields an approximation to the linear
inviscid solution which is convergent pointwise everywhere except at the shock, and
also gives a convergent approximation to the linearized functional J̃ .

In Part 2 [GU10] we will show that from this it will then follow that the solution to
the corresponding adjoint discretization converges almost everywhere to the inviscid
adjoint solution.

1.3. Numerical discretizations. The nonlinear equation is approximated on
a mesh with uniform spacing h and timestep k by the finite difference equation
(1.6)
k Nj(U

n
j ) ≡ Un+1

j − Un
j + 1

2 r
(
f(Un

j+1)− f(Un
j−1)

)− ε d
(
Un
j+1 − 2Un

j + Un
j−1

)
= 0,

with initial data U0
j = u0(xj), where

r ≡ k

h
, d ≡ k

h2
, Fn

j ≡ f(Un
j ),

and ε = hα for some constant 0 < α < 1. The inequality α > 0 ensures that the
discretization is consistent when the analytic solution u(x, t) is smooth. The inequality
α < 1 ensures that the shock is spread over an increasing number of grid points as
h → 0. It will be proved that stability and monotonicity are achieved for sufficiently
small h by choosing k such that ε d = c for some positive constant c< 1

2 .
Linearizing the nonlinear discretization yields the following approximation of the

linear PDE:

k Lj(U
n
j ) Ũ

n
j

≡ Ũn+1
j − Ũn

j + 1
2r

(
a(Un

j+1) Ũ
n
j+1 − a(Un

j−1) Ũ
n
j−1

)
− ε d

(
Ũn
j+1−2Ũn

j +Ũn
j−1

)
= 0,(1.7)

which is to be solved subject to initial data Ũ0
j = ũ0(xj). Again, this is a consistent

approximation if both u(x, t) and ũ(x, t) are smooth. Note also that if ũ0(x) has
compact support, then summing over j yields the result that

(1.8)

∞∑
j=−∞

Ũn
j = const.

If the nonlinear tracking-type functional is approximated by trapezoidal integra-
tion, then the corresponding discretization of the linearized functional is

J̃h = h
∑
j

γ(xj) G
′(UN

j ) ŨN
j ,
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where Nk = T . The exactly equivalent adjoint formulation for this is

J̃h = h
∑
j

W 0
j Ũ0

j ,

where Wn
j satisfies the discrete adjoint equation [Gil03]

Wn−1
j = Wn

j + 1
2 ra(U

n−1
j )

(
Wn

j+1 −Wn
j−1

)
+ ε d

(
Wn

j+1 − 2Wn
j +Wn

j−1

)
,

with “initial” conditions

WN
j = γ(xj) G

′(UN
j ).

This adjoint formulation follows immediately from the identity∑
j

Wn
j Ũn

j =
∑
j

Wn+1
j Ũn+1

j ,

which is easily verified. In this paper we will prove that J̃h → J̃ as h → 0 for smooth
linear initial perturbations ũ0.

In the particular case of Dirac initial data for the linear discretization,

Ũ0
j =

{
h−1, j = J,
0 otherwise;

then J̃h = W 0
J . Thus, the adjoint solution at a particular point is equal to the linear

functional arising from Dirac initial data for the linearized equations at that same
point. By proving in Part 2 [GU10] that the linearized functional converges to the
correct value also for Dirac initial data, we will also be proving that the adjoint
approximation converges to the analytic solution.

1.4. Outline of paper. This first paper is devoted to the proof of the con-
vergence of the discrete linear functional J̃h to the analytic value J̃ as h → 0. The
convergence is analyzed by using the technique of matched inner and outer asymptotic
expansions [BO78, KC81] to construct approximations to both UN

j and Ũn
j . Discrete

stability estimates are used to bound the errors in the asymptotic approximations.
• Section 2 derives the stability estimates which are used later in section 4 to
bound the errors in the asymptotic approximations.

• Section 3 derives the asymptotic form of the discrete approximation of a
viscous traveling wave on a uniform grid, and then rescales this to obtain
the asymptotic form of the discrete approximation to a moving shock with
uniform conditions on either side.

• Section 4 uses the moving shock approximation to form blended inner/outer
asymptotic approximations of both the nonlinear and linear discrete solutions
for a particular choice of discrete initial data for the nonlinear and linearized
equations. Together with the stability estimates, this proves the convergence
of the linear solution away from the shock.

• Section 5 completes the main analysis by bounding the error in the linearized
discrete functional approximation.

Part 2 [GU10] extends the analysis to linear problems with Dirac initial data,
which implies the convergence of the discrete adjoint solution. Moreover, the results
of this paper are extended to more general nonlinear initial data.
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2. Discrete stability estimates.

2.1. Nonlinear equations.
Theorem 2.1. Suppose that Un

j is a solution of the equation

Un+1
j = Un

j − 1
2 r

(
f(Un

j+1)− f(Un
j−1)

)
+ ε d

(
Un
j+1 − 2Un

j + Un
j−1

)
,

where f(u) is a C∞ function with derivative a(u) = f ′(u), and r = k/h, d = k/h2,
ε=hα, 0<α<1, and subject to specified initial data U0

j with L∞ bound U∞.
Furthermore, let V n

j be an approximation to Un
j which satisfies the equation

V n+1
j = V n

j − 1
2 r

(
f(V n

j+1)− f(V n
j−1)

)
+ ε d

(
V n
j+1 − 2V n

j + V n
j−1

)
+ k τnj ,

and the same initial data U0
j , and let U∞ also be an upper bound on ‖V n

j ‖∞.

Then, provided that h < (2/A∞)1/(1−α) where A∞ = sup|u|<U∞ |a(u)|, and k is

chosen so that εd = c for some constant c < 1
2 , then En

j = V n
j −Un

j satisfies the bound

‖En‖1 ≤ ‖τ‖1,n,
where the l1 norm is defined as ‖En‖1 ≡ h

∑
j |En

j | and ‖τ‖1,n = k
∑n

m=1 ‖τm‖1.
Proof. The conditions on h and k ensure that 1

2rA∞ < c. Hence, the equations
for Un

j are monotone, and therefore |Un
j | ≤ U∞ and |a(Un

j )| ≤ A∞∀ j, n.
Defining

An
j =

⎧⎪⎨
⎪⎩

f(V n
j )− f(Un

j )

V n
j − Un

j

, V n
j �= Un

j ,

a(Un
j ), V n

j = Un
j ,

the difference En
j = V n

j − Un
j satisfies the equation

En+1
j = En

j − 1
2 r

(
An

j+1E
n
j+1 −An

j−1E
n
j−1

)
+ c

(
En

j+1 − 2En
j + En

j−1

)
+ k τnj ,

with homogeneous initial data. An
j satisfies the bound |An

j | ≤ A∞, and hence
1
2 r|An

j | < c ∀j, n.
If ‖τn‖1 is finite, then taking the absolute magnitude and summing over the entire

interval gives ∑
j

h |En+1
j | ≤

∑
j

h
(|En

j |+ k|τnj |
)
,

and hence ‖En‖1 ≤ ‖τ‖1,n.
2.2. Linearized equations.
Theorem 2.2. Given Un

j and V n
j as defined in Theorem 2.1, let Ũn

j be a solution
of the linearized difference equation

Ũn+1
j = Ũn

j − 1
2 r

(
a(Un

j+1) Ũ
n
j+1 − a(Un

j−1) Ũ
n
j−1

)
+ ε d

(
Ũn
j+1 − 2Ũn

j + Ũn
j−1

)
,

and let Ṽ n
j be an approximation to it which satisfies the equation

Ṽ n+1
j = Ṽ n

j − 1
2 r

(
a(V n

j+1) Ṽ
n
j+1 − a(V n

j−1) Ṽ
n
j−1

)
+ ε d

(
Ṽ n
j+1 − 2Ṽ n

j + Ṽ n
j−1

)
+ k τ̃nj ,

with initial data Ṽ 0
j which may differ from Ũ0

j .
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Then, provided h and k satisfy the same conditions as in Theorem 2.1, the dif-
ference Ẽn

j = Ṽ n
j − Ũn

j satisfies the bound

‖Ẽn‖1 ≤ ‖Ẽ0‖1 + h−1tn B∞Ṽ∞‖τ‖1,n + ‖τ̃‖1,n,
where B∞ = sup|u|<U∞ |a′(u)|, and Ṽ∞ is an upper bound for |Ṽ n

j |.
Proof. Defining

Bn
j =

⎧⎪⎨
⎪⎩

a(V n
j )− a(Un

j )

V n
j − Un

j

, V n
j �= Un

j ,

a′(Un
j ), V n

j = Un
j ,

with bound |Bn
j | < B∞, the difference Ẽn

j = Ṽ n
j − Ũn

j satisfies the equation

Ẽn+1
j = Ẽn

j − 1
2 r

(
a(Un

j+1) Ẽ
n
j+1 − a(Un

j−1) Ẽ
n
j−1

)
+ ε d

(
Ẽn

j+1 − 2Ẽn
j + Ẽn

j−1

)
− 1

2 r
(
Bn

j+1E
n
j+1Ṽ

n
j+1 −Bn

j−1E
n
j−1Ṽ

n
j−1

)
+ k τ̃nj .

Taking the absolute magnitude, using the triangle inequality, and then summing over
the entire interval gives∑

j

h |Ẽn+1
j | ≤

∑
j

h
(
|Ẽn

j |+ rB∞|Ṽ n
j | |En

j |+ k|τ̃nj |
)
.

Hence,

‖Ẽn+1‖1 ≤ ‖Ẽn‖1 + r B∞Ṽ∞‖τ‖1,n + k ‖τ̃n‖1,
and therefore

‖Ẽn‖1 ≤ ‖Ẽ0‖1 + h−1tn B∞Ṽ∞‖τ‖1,n + ‖τ̃‖1,n.
3. Analytic and discrete traveling wave solutions.

3.1. Viscous traveling wave. We begin with a theorem which establishes the
existence of a unique traveling wave solution to the viscous convection/diffusion equa-
tion with unit viscosity and a convex flux function.

Theorem 3.1. Given the viscous equation

(3.1)
∂u

∂t
+

∂f

∂x
=

∂2u

∂x2
,

with a C∞ convex flux function f(u) with derivative a(u), then for any values of the
constants ẋs and Δu satisfying the inequalities supu a(u) > ẋs > infu a(u), Δu < 0,
there exists a unique traveling wave solution of the form

u(x, t) = s(ẋs,Δu; x−ẋst),

with the properties that as x∗ → ∞, s(−x∗) → s−∞, s(x∗) → s∞ = s−∞ + Δu for
some constant s−∞, and ∫ x∗

−x∗
s(x) dx → x∗(s−∞ + s∞).

Furthermore, all derivatives of s(x) decay exponentially as |x| → ∞.
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Proof. Substituting the traveling wave ansatz into the PDE gives the equation

(3.2) −ẋs
ds

dx
+

df(s)

dx
=

d2s

dx2
.

Integrating this yields

f(s)− ẋss− ds

dx
= C

for some constant C. Given particular values for ẋs and Δu satisfying the specified
inequalities, because of the convexity of f(u) there exists a unique value s−∞ such
that

(3.3) ẋs =
f(s−∞ +Δu)− f(s−∞)

Δu
.

Defining s∞ = s−∞+Δu, and setting C = f(s∞)−ẋss∞, gives s(x) defined implicitly
by ∫ s

s−∞+
1
2Δu

du

f(u)− ẋsu− C
= x− x0.

The quantity f(u)− ẋsu−C is strictly negative for s∞<u<s−∞, because of the
convexity of f(u), and approaches zero linearly as u → s∞ or u → s−∞. Hence, all
derivatives of s(x) decay exponentially as |x| → ∞.

Finally, the unique value of x0 is determined by the requirement that, as x∗ → ∞,

∫ x∗

−x∗
s(x) dx → x∗(s−∞ + s∞).

Next, we consider linear perturbations to (3.2), under the influence of a source
term g(x), giving the equation

(3.4) −ẋs
ds̃

dx
+

d

dx
(a(s) s̃) =

d2s̃

dx2
+ g(x).

Theorem 3.2. When g(x) = 0, all solutions of (3.4), subject to the boundary
conditions s̃(x) → 0 as |x| → ∞, are of the form

s̃ = c
ds

dx

for some constant c.
When g(x) is not identically zero, but g(x) and its derivatives all decay exponen-

tially as |x| → ∞, there exist nonunique solutions of (3.4), subject to the boundary
conditions s̃(x) → s̃∞ and s̃(−x) → s̃−∞ as x → ∞, iff g(x) satisfies the solvability
condition ∫ ∞

−∞
g(ξ) dξ = (a(s∞)− ẋs) s̃∞ − (a(s−∞)− ẋs) s̃−∞.

Furthermore, the derivatives of s̃(x) all decay exponentially as |x| → ∞.
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Proof. Integrating (3.4) with g(x)=0 gives

(a(s)− ẋs) s̃ =
ds̃

dx
+ const.

Because a(s∞)− ẋs < 0 and a(s−∞)− ẋs > 0, the boundary conditions are satisfied
provided the integration constant is zero.

This equation can then be integrated subject to an arbitrary value of s̃(0) to
give a one-parameter family of homogeneous solutions which satisfy the boundary
conditions as |x| → ∞.

Differentiating (3.2) establishes that ds/dx satisfies the homogeneous version of
(3.4) and the specified boundary conditions. Therefore, ds/dx is a basis for the one-
parameter family of homogeneous solutions with the specified boundary conditions.

When g(x) is not identically zero, the solvability condition arises immediately
from integrating (3.4) and applying the boundary conditions.

The exponential decay in the derivatives of s̃(x) follows from the exponential
decay in g(x) and its derivatives and also the exponential decay in the derivatives of
s(x).

3.2. Discrete traveling wave with unit viscosity. The objective in this sec-
tion is to derive an approximation to the discrete traveling wave solution which arises
when approximating (3.1) using the nonlinear discretization

k Nj(U
n
j ) ≡ Un+1

j − Un
j + 1

2 r
(
f(Un

j+1)− f(Un
j−1)

)− d
(
Un
j+1 − 2Un

j + Un
j−1

)
= 0,

where r = k/h, and d = k/h2 is held fixed as h → 0.
Theorem 3.3. For any values of the constants ẋs and Δu satisfying the condi-

tions of Theorem 3.1, there exists a sequence of functions cn(x), with cn(x) → 0, as
|x| → ∞, such that for all integers M ≥ 0 the function SM (x) defined by

SM (x) = s(x) +

M∑
n=1

h2ncn(x)

has the properties that

Nj (SM (xj − ẋst
n)) = o(h2M ),

and as x∗ → ∞, SM (−x∗) → s−∞, SM (x∗) → s∞ = s−∞+Δu, and∫ x∗

−x∗
SM (x) dx → x∗(s−∞ + s∞).

Furthermore, all derivatives of SM (x) decay exponentially as |x| → ∞.
Proof. The proof is by induction. Suppose that for a given M ≥0 it is true that

there exist functions cn(x) for n ≤ M such that SM (x) has the specified properties.
A truncated Taylor series expansion of f(u) gives

f(u) = f(u0) +

M+1∑
n=1

(u−u0)
n

n!

dnf

dun

∣∣∣∣
u0

+
(u−u0)

M+2

(M + 2)!
fM+2(u0, u),

where

fM+2(u0, u) =

(∫ u

u0

(u− ξ)M+1 dξ

)−1 ∫ u

u0

(u− ξ)M+1 dM+2f

duM+2

∣∣∣∣∣
ξ

dξ

is a weighted average value of dM+2f/duM+2 on the interval [u0, u].
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Using this expansion with u0 = Un
j = SM (xj − ẋst

n) and u = Un
j±1, and then

making similar truncated Taylor series expansions for Un
j±1 and Un+1

j (with k = dh2),

one finds that the residual error has an expansion in even powers of h2 of the form

Nj (SM (xj − ẋst
n)) =

M+1∑
n=1

h2n drn
dx

∣∣∣∣
xj−ẋstn

+ o(h2M+2),

where rn(x) → 0, as |x| → ∞. However, by the inductive hypothesis, this residual
error is o(h2M ). Therefore,

Nj (SM (xj − ẋst
n)) = h2M+2 drM+1

dx

∣∣∣∣
xj−ẋstn

+ o(h2M+2).

Now, let cM+1(x− ẋst) be defined by the linear differential equation

(3.5) L(s(x− ẋst)) cM+1(x− ẋst) = − drM+1

dx

∣∣∣∣
x−ẋst

,

giving the ODE

−ẋs
dcM+1

dx
+

d

dx

(
a(s(x)) cM+1

)
− d2cM+1

dx2
= −drM+1

dx
,

subject to the boundary conditions cM+1(x) → 0, as |x| → ∞. Because the right-hand
side of this equation satisfies the necessary solvability condition of Theorem 3.2, there
exists a solution cM+1(x), and it is unique if we impose the additional constraint that

∫ ∞

−∞
cM+1(x) dx = 0.

Also, due to Theorem 3.2, all derivatives of cM+1 decay exponentially as |x| → ∞.

Finally, we obtain

Nj

(
SM (xj − ẋst

n) + h2M+2cM+1(xj−ẋst
n)
)

= Nj (SM (xj−ẋst
n)) + h2M+2Lj(U

n
j ) cM+1(xj−ẋst

n) + o(h2M+2)

= Nj (SM (xj−ẋst
n)) + h2M+2 Ls(x−ẋst) cM+1

∣∣
xj−ẋstn

+ o(h2M+2)

= o(h2M+2),

and

∫ x∗

−x∗
SM (x) + h2M+2cM+1(x) dx −→

∫ x∗

−x∗
SM (x) dx, as x∗ → ∞,

so the inductive hypothesis is true for M+1. The hypothesis is trivially true for the
initial value M=0, concluding the proof.

Although the above proof has used the shorthand SM (x), we should more properly
express it as SM (d, h, ẋs,Δu;x) to make clear its dependence on the parameters d, h,
ẋs, and Δu.



LINEARIZED AND ADJOINT APPROXIMATIONS, PART 1 893

The next theorem establishes that S′
M (d, h, ẋs,Δu;x) is an approximate solution

of the linearized discrete equations

k Lj(U
n
j ) Ũ

n
j

≡ Ũn+1
j −Ũn

j + 1
2r

(
a(Un

j+1) Ũ
n
j+1 − a(Un

j−1) Ũ
n
j−1

)
− d

(
Ũn
j+1−2Ũn

j +Ũn
j−1

)
= 0,

which are an approximation of the linear differential equation

Lu ũ ≡ ∂ũ

∂t
+

∂

∂x

(
a(u) ũ

)
− ∂2ũ

∂x2
= 0.

Theorem 3.4. If SM (x) is as defined in Theorem 3.3, then

Lj(SM (xj−ẋst
n+X)) S′

M (xj−ẋst
n+X) = o(h2M ).

Proof. Using truncated Taylor series expansions, residual Nj (SM (xj−ẋst
n+X))

can be expressed as a sum of a finite number of terms, each one of the form enh
2n

for n ≥M + 1, with the coefficients en being products of derivatives of s(x) either
evaluated at xj− ẋst

n+X or averaged over a small interval in the neighborhood of
this point, or derivatives of f(u) evaluated at s(xj−ẋst

n+X) or averaged over a small
interval in its neighborhood.

Differentiation with respect to X does not introduce any new powers of h, and
therefore

∂

∂X
Nj

(
SM (xj−ẋst

n+X)
)
= Lj(SM (xj−ẋst

n+X)) S′
M (xj−ẋst

n+X)

= o(h2M ).

3.3. Mesh-dependent viscosity. Switching to the numerical discretization with
ε= hα and εd fixed as h → 0, we come to the key result which will be used in the
general asymptotic analysis.

Theorem 3.5. For constants ẋs and Δu satisfying the inequalities in Theorem
3.1, and with the discrete operators Nj and Lj as defined in (1.6) and (1.7), there
exists a function S(x) (which also depends on the parameters ε d, ε−1h, ẋs,Δu) such
that

(3.6) Nj

(
S(ε−1(xj−ẋst

n))
)
= o(ε)

and

(3.7) Lj

(
S(ε−1(xj−ẋst

n))
)

S′(ε−1(xj−ẋst
n)) = o(ε),

and as x∗ → ∞, S(−x∗) → s−∞, S(x∗) → s∞ = s−∞+Δu, and∫ x∗

−x∗
S(x) dx → x∗(s−∞ + s∞).

Proof. The key is to note that the finite difference equation with ε=hα is identical
to that for unit viscosity if we make the substitutions h = ε hunit, k = ε kunit.

Hence, SM (ε d, ε−1h, ẋs,Δu; ε−1(x− ẋst)) is an approximation to the discrete
solution with residual error o(ε−2M−1h2M ). This residual error can be made o(ε) as
h→0 by choosing M such that (−2M−1)α+ 2M > α ⇐⇒ M > α/(1−α).

Also, for the same value of M , S′
M (ε d, ε−1h, ẋs,Δu; ε−1(x−ẋst)) is an approxi-

mate solution of the linearized discrete equation with residual error o(ε).
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4. Asymptotic approximation of discrete solutions.

4.1. Nonlinear analysis. The numerical examples in Part 2 [GU10] consider
initial data which lead to the formation of a shock after a finite time; however, the
numerical analysis of such a problem would require a detailed analysis of the neigh-
borhood of the shock formation. To simplify the analysis and keep the focus on the
key aspect which is the profile of the numerical solution across the shock, we choose
instead to consider first initial data u0(x) with a finite strength shock at xs(0) = 0.
Based on this, we will be able in Part 2 [GU10] to consider more general initial data.

To be specific, the initial data is assumed to satisfy the following conditions (this
will be relaxed in Part 2 [GU10]).
(A1) Apart from a discontinuity at xs(0), u0(x) is C∞ with all derivatives having a

finite L1 norm over (−∞, xs(0)) and (xs(0),∞).
(A2) The discontinuity has finite strength for the entire time interval [0, T ], and no

other discontinuity is formed during this time interval.
The initial discontinuity raises a new question—how to specify the initial data

for the numerical discretization. The previous section has shown that if the initial
data is piecewise constant, then we can expect the numerical solution to approach the
traveling wave solution S(εd, ε−1h, ẋs, [u]; ε

−1(x − ẋst)). To avoid the requirement
of performing an additional asymptotic analysis of this relaxation process, we will
assume a very particular form of the initial data in the neighborhood of the initial
shock. The details will be given later, but on either side of the shock the initial data
is simply U0

j =u0(xj).
The objective now is to use a matched asymptotic analysis to construct a smooth

function V (x, t) such that V n
j = V (xj , t

n) is a very close approximation to the discrete
solution Un

j . The stability estimate in Theorem 2.1 will be used to bound the difference
V n
j − Un

j based on the magnitude of the residual error Nj(V
n
j ).

The matched asymptotic analysis [BO78, KC81] breaks the domain into three
overlapping regions:

A: xs−x > εβ.
B: |x−xs| < 2εβ.
C: x−xs > εβ.

Here β is a constant just slightly less than unity so that the overlap regions contain
less and less of the exponential tails of the traveling wave profile as h → 0. A lower
bound on β will be determined in Theorem 4.2.

We begin with a result concerning an approximate solution in the outer region.
Theorem 4.1. In outer regions A and C, there exists a function Vo(x, t), with

a parametric dependence on h and satisfying initial data Vo(x, 0) = u0(x), such that
Nj (Vo(xj , t

n)) = o(h2+α).
Proof. In the outer regions, the leading order term in Vo(x, t) is the inviscid

solution u(x, t) which gives a residual error whose leading order term is

−ε
∂2u

∂x2
.

Following the same procedure as in the proof of Theorem 3.3, this residual error can
be eliminated to leading order through the addition of a correction term ε Vo,1(x, t)
which satisfies the equation

∂Vo,1

∂t
+

∂

∂x

(
a(u)Vo,1

)
=

∂2u

∂x2
,
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subject to homogeneous initial conditions. Continuing with this process, it can be
proved inductively that each correction term is O(hmα+2n) for integers m,n with
m≥0, n≥0,m+n > 0, with the powers of h2 arising from the second order accuracy
of the central finite difference approximations. Therefore, after a finite number of
steps this process gives an approximate solution Vo(x, t) of the form

(4.1) Vo(x, t) = u(x, t) + ε Vo,1(x, t) +
∑

α<mα+2n≤α+2

hmα+2nVo,m,n(x, t),

which satisfies the initial data Vo(x, 0) = u0(x) and has a residual error which is
o(h2+α).

The next theorem considers the more difficult construction of an approximate
solution in the inner region, using an inner coordinate X ≡ ε−1(x−xs(t)). The fi-
nite difference discretization can be viewed as approximating the viscous differential
equation

∂u

∂t
+

∂f

∂x
= ε

∂2u

∂x2
,

with ε=hα. Changing to the new inner coordinate, this equation becomes

ε
∂u

∂t
− ẋs(t)

∂u

∂X
+

∂f

∂X
=

∂2u

∂X2
,

and small linearized perturbations of this equation due to the introduction of an
inhomogeneous source term s(x, t) satisfy the equation

ε
∂ũ

∂t
+

∂

∂X

(
(a(u)− ẋs(t)) ũ

)
− ∂2ũ

∂X2
= s(x, t).

Neglecting the O(ε) unsteady term, this gives the equation

(4.2)
∂

∂X

(
(a(u)− ẋs(t)) ũ

)
− ∂2ũ

∂X2
= s(x, t),

which plays a central role in the proof of the following theorem.
Theorem 4.2. In the inner region B, there exists a function Vi(x, t), with a para-

metric dependence on h, such that Nj (Vi(xj , t
n)) = o(h2+α), and Vi(x, t)−Vo(x, t)=

o(h2+α) in the region of overlap with the outer regions A and C, provided α > 2
3 and

β < 1 is sufficiently large.
Proof. In the overlap between regions A and B, a Taylor series expansion of

Vo(x, t) gives

Vo(x, t) = Vo(x
−
s , t) +

3∑
p=1

hpαXp

p!

∂pVo

∂xp

∣∣∣∣
(x−

s (t),t)

+O(h4αX4).

Note that Vo(x, t) itself has an asymptotic expansion in h given by (4.1), and inserting
this into the above will give an expansion in powers of hmα+2n for m≥0, n≥0.

A similar expression holds for the overlap between regions B and C, with x−
s

replaced by x+
s . These form the boundary conditions for the asymptotic expansion in

the inner region. To leading order, they give

Vi,0(X, t) →
{

u(x−
s (t), t), X → −∞,

u(x+
s (t), t), X → ∞,
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and hence the leading term in the asymptotic expansion in inner region B is

Vi,0(X, t) = S
(
εd, ε−1h, ẋs(t), [u(t)];X −Xs(t)

)
,

where Xs(t) is initially an arbitrary function of time. Vi,0(X, t) satisfies the boundary
conditions since ẋs(t), u(x

−
s (t), t), u(x

+
s (t), t) satisfy the jump condition (1.2) which

matches the jump condition (3.3) in Theorem 3.1 (with s−∞ ≡ u(x−
s (t), t) and s∞ ≡

u(x+
s (t), t)), which in turn is the basis for the construction of the discrete traveling

wave solution in Theorem 3.5.

The nonuniqueness due to Xs(t) in the leading order inner solution is typical of
interior boundary layers (see [HY01] and page 160 in [KC81]) and is resolved through
a solvability condition for a later term in the asymptotic expansion.

From (3.6) in Theorem 3.5, we have

Nj

(
S
(
εd, ε−1h, ẋs,Δu; ε−1(xj−ẋst

n)−Xs

))
= o(ε),

when ẋs,Δu, and Xs are constant, so writing

V n
j = S

(
εd, ε−1h, ẋs(t

n), [u(tn)]; ε−1(xj−xs(t
n))−Xs(t

n)
)
,

one obtains

V n
j − 1

2r
(
f(V n

j+1)− f(V n
j−1)

)
+ εd

(
V n
j+1 − 2V n

j + V n
j−1

)
= S

(
εd, ε−1h, ẋs(t

n), [u(tn)]; ε−1(xj−xs(t
n)−kẋs(t

n))−Xs(t
n)
)
+ o(kε)

= S
(
εd, ε−1h, ẋs(t

n), [u(tn)]; ε−1(xj−xs(t
n+1))−Xs(t

n)
)
+ o(kε),

since k = o(ε2). Hence, it follows that

Nj

(
S
(
εd, ε−1h, ẋs(t

n), [u(tn)]; ε−1(x−xs(t
n))−Xs(t

n)
))

= k−1
(
S
(
εd, ε−1h, ẋs(t

n+1), [u(tn+1)]; ε−1(xj−xs(t
n+1))−Xs(t

n+1)
)

− S
(
εd, ε−1h, ẋs(t

n), [u(tn)]; ε−1(xj−xs(t
n+1))−Xs(t

n)
) )

+ o(ε)

=
∂Vi,0

∂t

∣∣∣∣
Xj ,tn

+ o(ε).

Following the methodology of the proof of Theorem 3.3, this O(1) residual error
can be corrected by the addition of a term εVi,1(x, t) which must satisfy the equation

(4.3)
∂

∂X

((
a(Vi,0)−ẋs

)
Vi,1

)
− ∂2Vi,1

∂X2
= −∂Vi,0

∂t
,

subject to the boundary conditions

Vi,1(X, t) −→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X
∂u

∂x

∣∣∣∣
(x−

s (t),t)

+ Vo,1(x
−
s (t), t), X → −∞,

X
∂u

∂x

∣∣∣∣
(x+

s (t),t)

+ Vo,1(x
+
s (t), t), X → ∞.
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As with Theorem 3.2, there is a solvability condition which must be satisfied,
and this is found by integrating (4.3) over the interval [−X∗, X∗]. Using the integral
property in Theorem 3.5, as X∗ → ∞,

∫ X∗

−X∗
Vi,0 dX → X∗ (u(x−

s (t), t) + u(x+
s (t), t)

)−Xs(t) [u],

and hence the integral of the right-hand side of (4.3) asymptotically approaches

−X∗ d

dt

(
u(x−

s (t), t) + u(x+
s (t), t)

)
+

d

dt

(
Xs(t) [u]

)
.

Using the boundary conditions as X∗ → ∞, the integral of the left-hand side of (4.3)
becomes[(

a(Vi,0)−ẋs

)
Vi,1 − ∂Vi,1

∂X

]X∗

−X∗
−→

[(
a(u)−ẋs

)
Vo,1 − ∂u

∂x

]

+ X∗
(
a(u(x+

s , t))−ẋs

) ∂u

∂x
(x+

s , t)

+ X∗
(
a(u(x−

s , t))−ẋs

) ∂u

∂x
(x−

s , t).

Now, noting that

d

dt
u(x±

s (t), t) = −
(
a(u(x±

s , t))− ẋs(t)
) ∂u

∂x
(x±

s , t),

it follows that the X∗ components on the two sides of the integrated equation are
equal. Equating the other components gives the equation

d

dt

(
Xs [u]

)
=

[(
a(u)−ẋs

)
Vo,1 − ∂u

∂x

]
,

governing the evolution of Xs(t) from the initial value Xs(0) = 0. Equation (4.3)
can now be integrated to obtain Vi,1, with uniqueness being determined through the
solvability condition for the O(ε2) correction term.

By continuing the asymptotic expansion and analysis, we eventually obtain an
inner solution Vi(x, t) of the form

Vi(x, t) = Vi,0(X, t) + ε Vi,1(X, t) +
∑

α<mα+2n≤α+2

hmα+2nVi,m,n(X, t),

which matches all of the terms in the asymptotic expansion of the outer solution Vo

up to and including terms proportional to h2+α, and also has a residual error which
is o(h2+α).

In the overlap region, the exponential tails of the traveling wave solution behave
like exp(−c|X |) for some constant c. Since |X | = O(εβ−1) = O(h−α(1−β)), these
exponential tails are o(hq) ∀ q > 0. Furthermore, noting that 4α > 2 + α because of
the lower bound on α, let γ, satisfying the inequalities 4α ≥ γ > 2 + α, be the lowest
power of h for which the corresponding term in the asymptotic expansion of the outer
solution given at the beginning of this proof does not have a matching counterpart in
the inner expansion. In this case, at worst the mismatch between the inner and outer
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solutions in the overlap region is O(hγX4) = O(hγ−4α(1−β)). Provided β satisfies the
lower bound given by the condition

γ − 4α(1− β) > 2 + α =⇒ β > 1− γ − 2− α

4α
,

it then follows that the inner and outer approximate solutions match to within
O(h2+α).

We can now combine these approximate solutions to form a patched solution
which gives an accurate approximation of a discrete solution.

Theorem 4.3. There exists a function V (x, t) with parametric dependence on
h, and initial data U0

j ≡ V (xj , 0) producing the numerical solution Un
j , such that

‖U0
j − u0(xj)‖1 = O(hα) and ‖Un

j − V (xj , t
n)‖1 = o(h2+α).

Proof. The patched solution V (x, t) is defined using a C∞ blending function P (x)
which has constant value P (x)=1 for |x|<1 and P (x)=0 for |x|>2. Using this, we
define V (x, t) through

V (x, t) = Vi(x, t) +
(
1− P

(
ε−β(x−xs(t))

)) (
Vo(x, t) − Vi(x, t)

)
= Vo(x, t) + P

(
ε−β(x−xs(t))

) (
Vi(x, t) − Vo(x, t)

)
.

Setting V n
j = V (xj , t

n), the residual error Nj(V
n
j ) is o(h2+α) outside the overlap

regions. Within the overlap region, defining Pn
j = P

(
ε−β(xj−xs(t

n))
)
and ΔV n

j =
Vi(xj , t

n)− Vo(xj , t
n), it can be verified that

Nj(V
n
j ) = Pn

j Nj(V
n
i,j) + (1−Pn

j )Nj(V
n
o,j)

+
1

k

(
Pn+1
j −Pn

j

)
ΔV n+1

j

+
1

2h

(
Pn
j+1−Pn

j

) [
f(V n

i,j+1)− f(V n
o,j+1)

]
+

1

2h

(
Pn
j −Pn

j−1

) [
f(V n

i,j−1)− f(V n
o,j−1)

]
+

1

2h

[
f(V n

j+1)− Pn
j+1 f(V

n
i,j+1)− (1−Pn

j+1) f(V
n
o,j+1)

]
− 1

2h

[
f(V n

j−1)− Pn
j−1 f(V

n
i,j−1)− (1−Pn

j−1) f(V
n
o,j−1)

]
− ε

h2

(
Pn
j+1−2Pn

j +Pn
j−1

)
ΔV n

j

− ε

h2

[ (
Pn
j+1−Pn

j

) (
ΔV n

j+1 −ΔV n
j

)
+
(
Pn
j −Pn

j−1

) (
ΔV n

j −ΔV n
j−1

)]
.

On line 1 of this equation, the linear interpolation of the residual errors is o(h2+α).
Since k−1(Pn+1

j −Pn
j ) = O(ε−β) and ΔV = o(h2+α), the term on line 2 is o(h−αβ+2+α).

Similarly, the terms on lines 3 and 4 are also o(h−αβ+2+α). Due to standard quadratic
error bounds for linear interpolation, the terms on lines 5 and 6 are o(h−1+2(2+α)).
The terms on lines 7 and 8 are o(hα−2αβ+2+α), since each derivative of P and ΔV
introduces a factor h−αβ . Since the overlap regions have measure O(hαβ), it follows
that the l1 norm of the residual on the overlap regions is o(h2+α).

From the above, plus assumption (A1) which gives a finite bound for the L1 norm
of the derivatives in the residual, we conclude that ‖Nj(V

n
j )‖1 = o(h2+α). Hence,
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since Un
j is the numerical solution corresponding to initial data U0

j = V 0
j , then by the

stability estimate in Theorem 2.1 it follows that

‖Un
j − V n

j ‖1 = o(h2+α).

4.2. Linear analysis. We now construct a matched asymptotic approximation
to the numerical solution of the linear discrete equations subject to the initial data
Ũ0
j = ũ0(xj), where throughout this subsection ũ0 is C∞.

Theorem 4.4. In outer regions A and C, there exists a function Ṽo(x, t), with

parametric dependence on h, satisfying initial data Ṽo(x, 0) = ũ0(x), such that

Lj(Vo(xj , t
n)) Ṽo(xj , t

n) = o(ε).

Proof. As with the nonlinear analysis, the leading order term in the asymptotic
expansion for the linear solution is the analytic solution ũ(x, t) which gives a residual
error which is O(ε). By matching all residual error terms which are O(ε), including
those coming from the asymptotic expansion of the nonlinear discrete solution, this
can be compensated for through the addition of a correction ε Ṽo,1(x, t) satisfying the
equation

∂Ṽo,1

∂t
+

∂

∂x

(
a(u) Ṽo,1

)
=

∂2ũ

∂x2
− ∂

∂x

(
a′(u)Vo,1 Ṽo,0

)
,

subject to homogeneous initial data. Setting Ṽo(x, t) = ũ(x, t)+ ε Ṽo,1(x, t) then gives
an outer solution with the required properties.

Theorem 4.5. In the inner region B, there exists a function Ṽi(x, t), with para-

metric dependence on h, such that Lj(Vi(xj , t
n)) Ṽi(xj , t

n) = O(ε) and Ṽi(x, t) −
Ṽo(x, t) = o(ε) in the region of overlap with the outer regions A and C.

Proof. Because the shock width is O(ε), a linearized displacement of the shock of
unit magnitude corresponds to an O(ε−1) linear solution. Accordingly, in region B,
the leading term in the asymptotic expansion is

ε−1Ṽi,−1(x, t) = −X̃s(t)
∂Vi,0

∂x

= −ε−1 X̃s(t) S
′(ẋs(t), [u(t)]; ε

−1(x−xs(t))−Xs(t))

for some as yet undetermined function X̃s(t), and with the parametric dependence of
S′ on the constants εd, ε−1h omitted for brevity.

Since, from (3.7) in Theorem 3.5,

Lj

(
S(ẋs,Δu; ε−1(xj−ẋst

n)−Xs)
)
S′ (ẋs,Δu; ε−1(xj−ẋst

n)−Xs

)
= o(ε)

when ẋs,Δu, and Xs are constant, it follows that

Lj

(
Vi,0(xj , t

n) + εVi,1(xj , t
n)
)

Ṽi,−1(xj , t
n)

= − k−1
(
X̃s(t

n+1)S′ (ẋs(t
n+1), [u(tn+1)]; ε−1(xj−xs(t

n+1))−Xs(t
n+1)

)
− tX(tn) S′ (ẋs(t

n), [u(tn)]; ε−1(xj−xs(t
n+1))−Xs(t

n)
) )

+ ε
∂

∂x

(
a′(Vi,0(xj , t

n)) Vi,1(xj , t
n) Ṽi,−1(xj , t

n)
)

+ o(ε)

=
∂

∂t
Ṽi,−1(Xj , t

n) +
∂

∂X

(
a′(Vi,0(xj , t

n)) Vi,1(xj , t
n) Ṽi,−1(xj , t

n)
)

+ o(ε).
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This O(1) residual error can be corrected by the addition of a term Ṽi,0(x, t) which
must satisfy (see (4.2))

∂

∂X

((
a(Vi,0)−ẋs

)
Ṽi,0

)
− ∂2Ṽi,0

∂X2
= − ∂Ṽi,−1

∂t
− ∂

∂X

(
a′(Vi,0) Vi,1 Ṽi,−1

)
,

subject to the boundary conditions

Ṽi,0(X, t) →
{

ũ(x−
s (t), t), X → −∞,

ũ(x+
s (t), t), X → ∞.

Again, as in Theorem 3.2, there is a solvability condition which is found by integrating
over an interval [−X∗, X∗], and then taking the limit X∗ → ∞ to obtain

d

dt

(
X̃s [u]

)
=

[
(a(u)−ẋs) ũo,0

]
,

subject to initial condition X̃s(0) = 0. This shows that X̃s(t) satisfies the same
equation as the inviscid linearized shock displacement x̃s(t), (1.4), and so is identical
to it.

Continuing in this way with a further level of additional correction, we obtain an
inner solution Ṽi(x, t) of the form

Ṽi(x, t) = ε−1Ṽi,−1(X, t) + Ṽi,0(X, t) + ε Ṽi,1(X, t)

which has a residual error which is O(ε), and whose value and derivatives match the
outer solution in the overlap regions to within o(ε).

We can now construct a patched asymptotic approximation Ṽ (x, t) over the whole
interval.

Theorem 4.6. Given the nonlinear initial conditions U0
j as defined in Theorem

4.3, there exists a function Ṽ (x, t) such that ‖Ũn
j − Ṽ (xj , t

n)‖1 = o(ε).

Proof. Ṽ (x, t) is defined using the same blending function as in the proof of
Theorem 4.3 to give

Ṽ (x, t) = Ṽi(X, t) +
(
1− P

(
ε−β(x−xs(t))

)) (
Ṽo(x, t) − Ṽi(X, t)

)
= Ṽo(x, t) + P

(
ε−β(x−xs(t))

) (
Ṽi(x, t)− Ṽo(X, t)

)
.

Setting Ṽ n
j = Ṽ (xj , t

n), following the same approach as in the proof of Theorem 4.3

it can be proved that the l1 norm of the residual error Lj(V
n
j ) Ṽ n

j is o(ε). Hence,
combining the stability estimate in Theorem 2.2 and the result in Theorem 4.3, we
obtain

‖Ũn
j − Ṽ n

j ‖1 = o(ε).

5. Functional errors. We now come to the main theorem of the paper, proving
the convergence of the numerical approximation to the linear functional.

Theorem 5.1. If Un
j satisfies the nonlinear discrete equations subject to the

initial data U0
j specified in Theorem 4.3, and Ũn

j satisfies the linear discrete equations

with initial data Ũ0
j = ũ0(xj), and if J̃ and J̃h are as defined in the introduction, then

|J̃h − J̃ | = O(ε).
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Proof. Taking V n
j and Ṽ n

j to be as defined in Theorems 4.3 and 4.6, the difference
between the true value of the linear functional

J̃ =

∫ xs(T )

−∞
γ(x) G′(u(x, T )) ũ(x, T ) dx − x̃s(T ) γ(xs(T )) [G]T

+

∫ ∞

xs(T )

γ(x) G′(u(x, T )) ũ(x, T ) dx

and the discrete approximation

J̃h = h
∑
j

γ(xj) G
′(UN

j ) ŨN
j

can be bounded by the sum of three terms:

∣∣∣J̃h − J̃
∣∣∣ ≤

∣∣∣∣∣∣h
∑
j

γ(xj)
(
G′(UN

j ) ŨN
j −G′(V N

j ) Ṽ N
j

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ h
∑
j

γ(xj) G
′(V N

j ) Ṽ N
j −

∫ ∞

−∞
γ(x) G′(V (x, T )) Ṽ (x, T ) dx

∣∣∣∣∣∣
+

∣∣∣∣
∫ ∞

−∞
γ(x) G′(V (x, T )) Ṽ (x, T ) dx − J̃

∣∣∣∣ .
(i) Considering the first term,

G′(UN
j ) ŨN

j −G′(V N
j ) Ṽ N

j = G′(UN
j )

(
ŨN
j − Ṽ N

j

)
+
(
G′(UN

j )−G′(V N
j )

)
Ṽ N
j ,

and hence∣∣∣∣∣∣h
∑
j

γ(xj)
(
G′(UN

j ) ŨN
j −G′(V N

j ) Ṽ N
j

)∣∣∣∣∣∣
≤ ‖γ‖∞

(
g1 ‖ŨN − Ṽ N‖1 + g2 ‖UN − V N‖1 ‖Ṽ N‖∞

)
,

where

g1 = sup
|v|≤‖u‖∞

G′(v), g2 = sup
|v|≤‖u‖∞

G′′(v).

Theorems 4.3, 4.5, and 4.6 give ‖ŨN − Ṽ N‖1 = o(ε), ‖UN − V N‖1 = o(h2+α) =

o(h2ε), and ‖Ṽ N‖∞ = O(ε−1), and hence this first term is o(ε).

(ii) Since V N
j = V (xj , T ) and Ṽ N

j = Ṽ (xj , T ), the second term corresponds to
the error in using trapezoidal integration to approximate the integral of

f(x) ≡ γ(x) G′(V (x, T )) Ṽ (x, T ).

V (x, T ) and Ṽ (x, T ) are both smooth, so the error is bounded by the Euler–Maclaurin
error formula [SB80]∣∣∣∣∣∣h

∑
j

f(xj)−
∫ ∞

−∞
f(x) dx

∣∣∣∣∣∣ ≤
h2M

(2M)!

∫ ∞

−∞

∣∣∣B2m

(x
h

)
f (2M)

∣∣∣ dx
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for any integer M , with B2m(x) being the periodic extension of Bernoulli polyno-
mials on [0, 1] [SB80]. Since ‖f (2M)‖∞ = O(h−(2M+1)α), it is possible to choose M
sufficiently large so that 2M − (2M+1)α > α, and hence this second term is o(ε).

(iii) For the third term, we start by evaluating the leading order behavior of the
integral in the inner region:∫

B

γ(x) G′(V (x, T )) Ṽ (x, T ) dx

=

∫
B

γ(x) G′
(
Vi,0(x, T )+εVi,1(x, T )

) (
−x̃s

∂Vi,0

∂x
(x, T ) + Ṽi,0(x, T )

)
dx+ o(ε)

= − x̃s γ(xs(T ))

∫
B

G′(Vi,0(x, T ))
∂Vi,0

∂x
(x, T ) dx

− ε x̃s

∫
B

γ(x) G′′(Vi,0(x, T )) Vi,1(x, T )
∂Vi,0

∂x
(x, T ) dx

− x̃s

∫
B

(
γ(x)− γ(xs(T ))

)
G′(Vi,0(x, T ))

∂Vi,0

∂x
(x, T ) dx

+

∫
B

γ(x) G′(Vi,0(x, T )) Ṽi,0(x, T ) dx + o(ε).

In this final expression, the first integral gives [G(u)]T . The second integral is O(1)

since
∂Vi,0

∂x (x, T ) = O(ε−1) in the innermost region of size O(ε) and tails off expo-

nentially outside this, and hence ‖∂Vi,0

∂x (x, T )‖1 = O(1). The third integral is O(ε)

since the product (γ(x)− γ(xs(T )))
∂Vi,0

∂x (x, T ) is O(1) in the innermost region and
tails off exponentially. Finally, noting that G′(Vi,0(x, T )) − G′(u(x, T )) = O(1) and

Ṽi,0(x, T )− ũo,0(x, T ) = O(1) uniformly in the innermost region and tail off exponen-
tially to an O(εβ) value outside this, the fourth integral is equal to∫

B

γ(x) G′(u(x, T )) ũo,0 dx+ O(ε).

Adding the contributions from the outer regions then gives∫ ∞

−∞
γ(x) G′(V (x, T )) Ṽ (x, T ) dx

= −x̃s γ(xs(T )) [G(u)]T +

∫ ∞

−∞
γ(x) G′(u(x, T )) ũo,0(x, T ) dx + O(ε)

= J̃ + O(ε).

Hence the third term is O(ε), giving the dominant contribution of the three terms.

This concludes the proof that the error in the discrete approximation to
the linearized functional is O(ε), as it would be for a model problem without a
shock.

6. Conclusions. This paper has analyzed the convergence of approximate linear
solutions for a class of convex flux functions using a particular modified Lax–Friedrichs
discretization. It has been proved that in the case of a single shock, the linear solution
converges pointwise everywhere except at the shock, and the shock itself is treated
correctly in the sense that the value of integral output functionals also converges.
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The proofs rely upon the facts that (1) the linear discretization is a linearization
of the nonlinear discretization; and (2) the number of mesh points across the smeared
shock increases as h → 0.

In Part 2 [GU10] we will continue our analysis and present numerical results that
confirm our analytical findings. Moreover, we will show that the results of the present
paper hold also for Dirac initial data for the linearized equation. From this we deduce
that the adjoint approximation also converges pointwise everywhere except along the
two characteristics at which it is discontinuous. Finally, the convergence of the adjoint
solution will be extended to cases with multiple shocks.

The modified Lax–Friedrichs discretization which is analyzed in this paper is not a
great choice as a practical numerical method, since it provides only O(hα) convergence
for 0<α<1. A better numerical method would use adaptive smoothing, reducing the
magnitude of ε or switching to a fourth difference smoothing in the smooth regions
on either side of the shocks, together with adaptive grid resolution to reduce the
magnitude of the grid spacing h in the vicinity of the shock. Thus, the contribution
of this paper and Part 2 [GU10] is to prove convergence of a simplified discretization,
in order to provide insight and guidance to those trying to construct more accurate,
practical methods.
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