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ABSTRACT
This paper discusses the implementation of one-factor and
three-factor PDE models on GPUs. Both explicit and im-
plicit time-marching methods are considered, with the lat-
ter requiring the solution of multiple tridiagonal systems of
equations.

Because of the small amount of data involved, one-factor
models are primarily compute-limited, with a very good
fraction of the peak compute capability being achieved. The
key to the performance lies in the heavy use of registers
and shuffle instructions for the explicit method, and a non-
standard hybrid Thomas/PCR algorithm for solving the tridi-
agonal systems for the implicit solver.

The three-factor problems involve much more data, and
hence their execution is more evenly balanced between com-
putation and data communication to/from the main graph-
ics memory. However, it is again possible to achieve a good
fraction of the theoretical peak performance on both mea-
sures. The high performance requires particularly careful
attention to coalescence in the data transfers, using local
shared memory for small array transpositions, and padding
to avoid shared memory bank conflicts.

Computational results include comparisons to computa-
tions on Sandy Bridge and Haswell Intel Xeon processors,
using both multithreading and AVX vectorisation.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical linear algebra;
G.4 [Mathematical Software]: Parallel and vector im-
plementations

General Terms
Algorithms, Performance

Keywords
Computational finance, GPU computing, vectorisation, tridi-
agonal equations

1. INTRODUCTION
Monte Carlo simulation are naturally parallel, and so ex-

cellent performance has been achieved on GPUs using well-
established random number generation libraries from NVIDIA
[10] or NAG [8]. Previous research on Monte Carlo methods
has addressed the challenges of the least-squares regression
in the Longstaff-Schwartz algorithm for American options
[4] and the parallel reductions required in local-vol surface
adjoint computations [3].

This paper addresses the challenges in implementing fi-
nancial finite difference methods. There is already a consid-
erable literature on the use of GPUs for a wide range of finite
difference methods (for example see [13]) in engineering and
science, in areas such as computational fluid dynamics, elec-
tromagnetics and acoustics. The particular focus here is on

• the percentage of peak performance achievable for fi-
nancial applications which involve relatively few oper-
ations per word;

• the best way to implement the tridiagonal solutions
which are a key part of the implicit time-marching
methods commonly used in finance;

• the data transposition techniques used to maximise the
achieved memory bandwidth for 3D applications.

2. ONE-FACTOR MODELS

2.1 Explicit time-marching
A standard approximation of a 1D PDE, such as the Black-

Scholes PDE, leads to an explicit finite difference equation
of the form

un+1
j = un

j + aj u
n
j−1 + bj u

n
j + cj u

n
j+1, j = 0, 1, . . . J−1

with u−1 = uJ = 0. Here n is the timestep index which in-
creases as the computation progresses, so un+1

j is a simple
combination of the values at the nearest neighbours at the
previous timestep. All of the numerical results are for a grid
of size J = 256 which corresponds to a fairly high resolu-
tion grid in financial applications. Additional parallelism
is achieved by solving multiple one-factor problems at the
same time, with each one having different model constants,
or a different financial option payoff.

Each individual calculation is sufficiently small so that it
can be performed within a single thread block, with all data
held in the registers or local shared memory of a single SMX
unit within an NVIDIA Kepler GPU, as illustrated in Figure
1 [12]. In this way, a single kernel written in CUDA [9] can
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Figure 1: Kepler GPU with 8 SMX units

carry out all of the timesteps required, returning the final
result to the global graphics device memory.

The first GPU implementation explicit1 uses blocks of
256 threads, with each thread responsible for the computa-
tions of one particular grid point. Shared memory is used
so that threads may obtain the data from neighbouring grid
points, but this then requires the use of thread synchronisa-
tion to ensure that one set of shared memory reads/writes
is completed before the next takes place:

__shared__ float u[258];

...

u[0] = 0.0f; u[257] = 0.0f;

i = threadIdx.x + 1

utmp = u[i];

for (int n=0; n<N; n++) {

utmp = utmp + a*u[i-1] + b*utmp + c*u[i+1];

__syncthreads();

u[i] = utmp;

__syncthreads();

}

To improve the performance, it is necessary to avoid the
cost of moving data to/from shared memory, and also the
cost of thread synchronisation. In Kepler GPUs, the 256
threads are divided into 8 warps of 32 threads, with each
warp acting in lockstep with all of its threads performing
the same computation at the same time but with different
data, except that some threads may be masked by condi-
tional predicates. In the second implementation, explicit2,
each warp handles a different 1D problem, with each thread
handling the data for 8 grid points.

No synchronisation is now required between the warps,
and the data transfer between neighbouring threads within a
warp is preformed using shuffle commands, a new hardware
capability introduced in the Kepler generation of GPUs [12].

for (int n=0; n<N; n++) {

um = __shfl_up(u[7], 1);

up = __shfl_down(u[0], 1);

for (int i=0; i<7; i++) {

u0 = u[i];

u[i] = u[i] + a[i]*um + b[i]*u0 + c[i]*u[i+1];

um = u0;

}

u[7] = u[7] + a[7]*um + b[7]*u[7] + c[7]*up;

}

Table 1: One-factor results on a K40 GPU. The
timings are for 50000 (explicit) or 2500 (implicit)
timesteps, for 2048 options each on a grid of size
256.

single prec. double prec.
msec GFlop/s msec GFlop/s

explicit1 224 700 258 610
explicit2 52 3029 107 1463
implicit1 19 1849 57 892
implicit2 23 1979 63 951
implicit3 9 1605 22 687

The performance achieved by explicit1 and explicit2

is documented in Table 1 on an NVIDIA Tesla K40 GPU
clocked at 875 MHz, that is capable of achieving 5.04 TFlops
in single precision or 1.68 TFlops in double precision, which
is higher than in the datasheet [11] which gives values for
the base clock of 745 MHz. The theoretical bandwidth is
288GB/s but the measured bandwidth on a standard test is
235 GB/s. To obtain accurate timing results, the codes per-
formed 2048 separate option calculations, each using 50000
timesteps. explicit2 achieves 2.5 - 4 times the performance
of explicit1, and approximately 60% of the SP peak and
87% of the DP peak performance.

The results in the table are for the execution of the GPU
kernel which performs the calculations. This includes the
transfer from the CPU to the GPU of the parameters re-
quired for the calculation, but does not include the transfer
back of the results, which are taken as a single data point
(for the at-the-money option value). However, this adds less
than 0.1 msec to the execution time, and so is negligible.

2.2 Tridiagonal solution algorithms
Before discussing the implementation of implicit time-

marching approximations, we first review a number of differ-
ent algorithms for solving tridiagonal systems of linear equa-
tions. This builds on a substantial body of prior research [1,
14, 16, 18, 19], but the particular hybrid algorithm we use
in this paper seems to be a novel combination due to the
specifics of the GPU hardware.

2.2.1 Thomas algorithm
The Thomas algorithm is the single-thread sequential al-

gorithm which is described in every textbook [17]. It is sim-
ply a customisation of Gaussian elimination to the case in
which the matrix is tridiagonal. If the tridiagonal system is
represented as

ajuj−1 + bjuj + cjuj+1 = dj , j = 0, 1, . . . , J−1

with u−1 =uJ =0, then the Thomas algorithm has a forward
pass in which the lower diagonal elements aj are eliminated
by adding a multiple of the row above. This is then followed
by a reverse pass to compute the final solution using the
modified cj values.

The full Thomas algorithm is given in Algorithm 1. Note
that this does not perform any pivoting; it is assumed the
matrix is diagonally dominant, or at least sufficiently close to
diagonal dominance so that the solution is well-conditioned.
The computational cost per row is approximately three FMA
(Fused Multiply-Add) operations, one reciprocal and two



Algorithm 1 Thomas algorithm, returning solution in d
array

d0 := d0/b0
c0 := c0/b0

for j = 1, . . . , J−1 do
r := 1 / (bj − aj cj−1)
dj := r (dj − aj dj−1)
cj := r cj

end for

for j = J−2, . . . , 0 do
dj := dj − cj uj+1

end for

Algorithm 2 PCR algorithm, returning solution in d(P )

array

for p = 1, . . . , P do
s := 2p−1

for j = 0, . . . , N−1 do

r := 1 / (1− a
(p−1)
j c

(p−1)
j−s − c

(p−1)
j a

(p−1)
j+s )

a
(p)
j := −r a(p−1)

j a
(p−1)
j−s

c
(p)
j := −r c(p−1)

j c
(p−1)
j+s

d
(p)
j := r (d

(p−1)
j − a

(p−1)
j d

(p−1)
j−s − c

(p−1)
j d

(p−1)
j+s )

end for
end for

multiplications. If we treat the cost of the reciprocal as be-
ing equivalent to five FMAs (which is the approximate cost
on a GPU for a double precision reciprocal), then the total
cost is equivalent to 10 FMAs.

However, if this is executed by a single thread, it will re-
quire a lot of data transfer to/from the main graphics mem-
ory, and so the performance is likely to be to be memory-
bandwidth limited. Hence, it is better to use a different
algorithm which avoids the memory traffic, but possibly at
the cost of an increased number of floating point operations.

2.2.2 Parallel Cyclic Reduction
PCR (Parallel Cyclic Reduction) is an inherently parallel

algorithm which is ideal when using multiple threads to solve
each tridiagonal system. If we start with the same tridiago-
nal system of equations, but normalised so that bj = 1,

ajuj−1 + uj + cjuj+1 = dj , j = 0, 1, . . . , J−1,

with uj =0 for j < 0 and j ≥ J . Subtracting the appropriate
multiples of rows j ± 1, and re-normalising, gives

a′juj−2 + uj + c′juj+2 = d′j , j = 0, 1, . . . , J−1.

Repeating this by subtracting the appropriate multiples of
rows j ± 2 gives

a′′j uj−4 + uj + c′′j uj+4 = d′′j , j = 0, 1, . . . , J−1,

and after P such steps, where 2p ≥ J , we obtain the final
solution since j−2P < 0 and j+2P ≥ J .

The PCR algorithm is given in Algorithm 2. Note that any
reference to a value with index j outside the range 0≤j<J
is taken to be zero. If the computations within each step
are performed simultaneously for all j, then it is possible to
reuse the storage so that a(p+1) and c(p+1) are held in the
same storage (e.g. the same registers) as a(p) and c(p).

The following code implements it for a single warp, with
one unknown per thread, and using shuffle instructions to
exchange data between threads:

__forceinline__ __device__

float trid1_warp(float a, float c, float d) {

float b; uint s=1;

for (int n=0; n<5; n++) {

b = 1.0f / (1.0f - a*__shfl_up(c,s)

- c*__shfl_down(a,s));

d = ( d - a*__shfl_up(d,s)

- c*__shfl_down(d,s) ) * b;

a = - a*__shfl_up(a,s) * b;

c = - c*__shfl_down(c,s) * b;

s = s<<1;

}

return d;

}

The computational cost per row is approximately equiva-
lent to 14 FMAs in each step, so the total cost is 14 log2 N .
This is clearly much greater than the cost of the Thomas
algorithm, but there is no data transfer to/from the main
memory if a, c and d can be held in registers.

2.2.3 Hybrid algorithm
The hybrid Thomas/PCR algorithm is a combination

of the Thomas and PCR algorithms. Suppose the tridiag-
onal system is broken into a number of sections of size M ,
each of which will be handled by a separate thread. Within
each of these pieces, using local indices ranging from 0 to
M−1, a slight modification to the Thomas algorithm oper-
ating on rows 1 to M−2 enables one to obtain an equation
of the form

aj u1 + uj + ci uM = dj , i = 1, 2, . . . ,M−2 (1)

expressing the central values as a linear function of the two
end values. Using these to eliminate the u1 and uJ−2 entries
in the equations for rows 0 and M−1, leads to a reduced
tridiagonal system of equations involving the first and last
variables within each section. This reduced tridiagonal sys-
tem can be solved using PCR, and then (1) gives the interior
values.

Algorithm 3 gives the algorithm for the first part of this
process to compute the coefficients aj , cj , dj in (1). The cost
of this, plus the back solve once the end values are known, is

Algorithm 3 First phase of hybrid algorithm

d1 := d1/b1
a1 := a1/b1
c1 := c1/b1

for j = 2, . . . ,M−2 do
r := 1 / (bj − aj cj−1)
dj := r (dj − aj dj−1)
aj := −r aj aj−1

cj := r cj
end for

for j = M−3, . . . , 1 do
dj := dj − cj uj+1

aj := aj − cj aj+1

cj := −cj cj+1

end for



approximately 14 FMAs per point, about 40% more than the
cost of the Thomas algorithm for the testcases considered in
this paper, with M =8 and N =256.

2.3 Implicit time-marching
A standard implicit time-marching approximation leads

to a tridiagonal set of equations of the form

aj u
n+1
j−1 + bj u

n+1
j + cj u

n+1
j+1 = un

j , j = 0, 1, . . . J−1

with u−1 =uJ =0.
The first implementation, implicit1, follows the data lay-

out of explicit2 with each warp handling one financial op-
tion, and each thread in the warp handling 8 grid points.
The hybrid Thomas/PCR algorithm is used, with M = 8,
and the warp-based PCR is used to solve the reduced sys-
tem.
implicit2 re-arranges the system of equations to compute

the change ∆uj = un+1
j − un

j using the equation

aj ∆uj−1+bj ∆uj+cj ∆uj+1 = un
j −aj u

n
j−1−bj un

j −cj un
j+1.

The computational cost is slightly higher, but the accuracy
is significantly better, with the single precision floating point
errors reduced from 5e-5 to 1e-6.

Finally, implicit3 exploits the fact that the coefficients
aj , bj , cj in the test application do not vary with n, and
therefore some steps in the computation can be performed
just once by moving code outside the main time-marching
loop. The runtime is reduced significantly due to the smaller
number of operations, even though the GFlop/s is poorer
due to higher register use.

One important detail in the implementation concerns the
computation of reciprocals. The single precision code uses
the fast reciprocal provided by the SFU (Special Function
Unit) which is not IEEE-compliant but provides compara-
ble accuracy. The double precision uses a fast reciprocal
in which the SFU computes an approximate reciprocal, and
this is then refined to full double precision by an extension
to Newton iteration in 3 FMAs.

static __forceinline__ double __rcp(double a)

{

double e, y;

asm("rcp.approx.ftz.f64 %0,%1;":"=d"(y):"d"(a));

e = __fma_rn (-a, y, 1.0);

e = __fma_rn ( e, e, e);

y = __fma_rn ( e, y, y);

return y;

}

3. THREE-FACTOR MODELS
The three-factor test application uses the Black-Scholes

PDE for 3 underlying assets, each corresponding to Geomet-
ric Brownian Motion and with positive correlation between
the 3 driving Brownian motions. This leads to a parabolic
PDE which spatial cross-derivative terms with positive co-
efficients. The spatial approximation of this leads to a 13-
point stencil involving offsets ±(1, 0, 0), ±(0, 1, 0), ±(0, 0, 1),
±(1, 1, 0), ±(0, 1, 1) and ±(1, 0, 1), relative to a point with
3D indices (i, j, k), as illustrated in Figure 2.

The test case uses a grid of size 2563, with all data stored
in the main graphics device memory in 1D arrays with mem-
ory location

id = i + 256 j + 2562 k,

��
�
��
�

��
�
��
�

��
�
��
�

�
��

�
��

�
��

�
��

�
��

�
��

��
��

��

��
��

��

��
��

��

vv v
v vv vj vv v

v vv

Figure 2: Finite difference stencil for 3D explicit
time-marching

Table 2: Three-factor performance as reported by
nvprof, the NVIDIA Profiler on a K40. The timings
are for 500 (explicit) or 100 (implicit) timesteps, on
a grid of size 2563.

single prec. double prec.
msec GFlop/s GB/s msec GFlop/s GB/s

explicit1 747 597 100 1200 367 127
explicit2 600 760 132 923 487 144
implicit1 447 406 146 889 243 144

so the data is contiguous in the x-direction. Note that this
gives natural cache-alignment at the beginning of each row
in the x-direction. If the size in the x-direction was not a
multiple of 32, then array padding up to the next multiple
of 32 would probably be desirable.

The computational grid in the x/y-plane is subdivided
into blocks of 32 × 8 which are handled by separate thread
blocks. Each thread corresponds to a unique index pair
(i, j), and performs the computations for all values of k,
working upwards from k = 0 to k = 255. The 32 threads in
a warp process neighbouring values of i, and therefore when
loading the values ui,j,k the warp read addresses all of an
integer number of cache lines (the precise number depend-
ing on the cache line size and whether the data is SP or
DP). This is known as a coalesced data access, and gives the
maximum possible data transfer speed. The same occurs for
other read/write operations except when dealing with i±1
in which case things are slightly misaligned.

The first implementation of the explicit solver, explicit1,
relies entirely on the cache for data reuse as k increases. The
second implementation, explicit2, holds data in registers
so that, for example, the old data for (i, j, k+1) which is
loaded in when computing (i, j, k) can then be re-used for
the computations for (i, j, k+1) and (i, j, k+2).

Table 2 shows that this leads to slightly higher perfor-
mance, at the cost of slightly more complex programming.
Unlike the table for the one-factor results, Table 2 includes
device memory bandwidths as measured by the NVIDIA
Profiler. It can be seen that we are obtaining 35-50% of the
peak memory bandwidth, and 15-30% of the peak GFlop/s
performance. Hence, the application is relatively balanced
between computation and communication, but is slightly



more bandwidth-limited overall.
The times shown in the table are again just for the execu-

tion of the kernel performing the calculation. In this case the
data transfer cost is more significant, approximately 30 msec
in single precision and 50 msec in double precision. This
is because the initial values are set on the CPU and then
transferred to the GPU, and at the end the entire solution
is brought back to the CPU for comparison with separate
CPU results to validate the GPU computations. In a real
application code, the initialisation would be performed by a
separate kernel on the GPU, and only a few at-the-money
values would be transferred back to the CPU, and so the
transfer cost would again become negligible.

Table 2 also shows the performance for the implicit solver
implicit1, but the development and optimisation of this
was a much harder task than the two explicit solvers.

Mathematically, an ADI (alternating-direction-implicit)
approximate factorisation is used, which leads to a system
of implicit equations of the form:

Ax Ay Az∆U = Dn

where ∆U represents the vector of increment ∆Ui,j,k ≡
Un+1

i,j,k − Un
i,j,k. The matrix Ax corresponds to a set of tridi-

agonal equations along each grid line in the x-direction, and
Ay and Az are similar in the other two directions.

Computationally, each timestep is performed by 4 kernels,
one to compute the r.h.s. Dn, and then one kernel for the
tridiagonal solutions in each coordinate direction.

Ax V (1) = Dn,

Ay V (2) = V (1),

Az ∆U = V (2).

Each of the tridiagonal solutions uses the same hybrid
solver approach as the 1D implicit solver, with each thread
responsible for 8 grid elements. However, the details are
different because of the data layout, and these details are
crucial to achieving the performance shown in Table 2.

The solution in the x-direction is the simplest of the three.
Each warp is responsible for one line, and as usual each
thread is responsible for 8 data elements. The problem is
that the data is stored contiguously, so a natural coalesced
read will lead to thread 0 having elements 0, 32, 64, . . . , 224,
but mathematically it needs elements 0, 1, 2, . . . , 8. The so-
lution to this problem is a data transposition, following the
approach explained in the Appendix, which is a generalisa-
tion of a technique described by Harris [6].

The implementation in the y-direction is trickier. Here
we have a thread block of 256 threads, consisting of 8 warps
of 32 threads, and collectively the thread block will perform
the tridiagonal solutions for 8 lines in the y-direction, with
the 8 lines being neighbours in the x-direction. The tricky
bit is that threads work on different lines at different times.

In the first phase, in the first read by the 32 threads in
warp 0:

• threads 0-7 load element 0 of the 8 lines

• threads 8-15 load element 8 of the 8 lines

• threads 16-23 load element 16 of the 8 lines

• threads 24-31 load element 24 of the 8 lines

Each quarter of the warp is loading 8 consecutive data el-
ements, since the 8 lines are neighbours in the x-direction.
This is not perfectly coalesced when working in single pre-
cision, but it does achieve a high percentage of cache line
re-use. Subsequent reads shift in the y-direction by one po-
sition, so that thread 0 ends up with elements 0 − 7 of the
first line, and can then carry out the calculation for the first
stage of the hybrid solution algorithm.

In this way, the first warp is performing the calculations
for the first 32 elements in each of the 8 lines, the second
warp is doing the next 32 elements, and so on. The problem
is when we come to the PCR step in the hybrid solution.
Now, the data for the first line is spread across all of the
warps, and so the PCR calculation cannot be carried out
using warp shuffles.

The solution is to use data transposition again, so that
warp 0 ends up the data for the first line, wrap 1 has the
data for the second line, and so on. Once the PCR step
is completed, the solution data is transposed back, and the
hybrid algorithm is completed.

This is undoubtedly a complex implementation, but it is
required to achieve the best performance. Those interested
should read the code to fully understand the details [5].

The solution in the z-direction is essentially the same as
in the y-direction, with the 8 lines in the z-direction being
neighbours in the x-direction.

4. INTEL CPU IMPLEMENTATIONS
Tables 3 and 4 report the performance of the CPU imple-

mentations of the same one-factor and three-factor applica-
tions on two systems:

• a server with two 8-core 2.9 GHz Intel Xeon E5-2690
(Sandy Bridge) CPUs, each with 32kB L1 cache and
256kB L2 cache per core, a shared 20MB L3 cache and
up to 51.2GB/s memory bandwidth (but 66GB/s total
bandwidth over the two sockets is the best achieved on
our system by the STREAM benchmark [7]);

• a workstation with one 3.6GHz 4-core Intel i7-4770K
(Haswell) CPU, with 32kB L1 cache and 256kB L2
cache per core and a 8MB L3 cache and up to 25.6GB/s
memory bandwidth (23GB/s bandwidth is achieved on
our system by the STREAM benchmark).

With full vectorisation, each of the Xeon E5-2690 CPUs is
capable of delivering 318 GFlop/s (SP) or 171 GFlop/s (DP)
in the standard S/DGEMM matrix-matrix multiply bench-
mark [2]. Despite its smaller number of cores, the i7-4770 is
capable of 343 GFlop/s (SP) or 184 GFlop/s (DP) because
of its new AVX2 instruction set which includes the ability
to perform vector FMA (Fused Multiply-Add) operations.

The performance metrics reported in Tables 3 and 4 are
based on the theoretical number of floating point operations
that have to be carried out, divided by execution time. We
have also used Likwid [15] to verify these numbers; this
showed a close match (within 10-15%), however, several
counters are unsupported or unreliable on our platforms,
according to the documentation, and therefore these are not
reported here.

OpenMP multithreading is used in combination with AVX
vectorisation. For the one-factor application, explicit1

uses compiler auto-vectorisation applied to the loop over the
256 grid points. explicit2 uses the same technique as the



Table 3: One-factor performance on a pair of Intel
Xeon E5-2690 (Sandy Bridge) CPUs and an Intel
i7-4770K (Haswell) CPU. The timings are for 50000
(explicit) or 2500 (implicit) timesteps, for 2048 op-
tions each on a grid of size 256.

Dual-socket Intel Xeon E5-2690
single prec. double prec.

msec GFlop/s msec GFlop/s
explicit1 563 279 1188 132
explicit2 398 394 781 201
explicit3 806 194 1570 100
implicit1 187 139 470 48
implicit2 157 166 473 47

Intel i7-4770
single prec. double prec.

msec GFlop/s msec GFlop/s
explicit1 1069 147 1845 85
explicit2 749 209 1531 102
explicit3 1443 109 2890 54
implicit1 505 51 844 26
implicit2 256 102 775 29

CUDA implementation, with threads corresponding to vec-
tor lanes and a warp mapping to a full AVX vector, there-
fore each lane processes either 32 or 64 grid points in single
or double precision respectively. explicit2 is implemented
using the low-level AVX vector intrinsics, and the permute
intrinsic is used in place of CUDA’s shuffle. explicit3 uses
compiler auto-vectorisation over different options. The per-
formance results clearly show the advantage of vectorisation
over just a single option – this is because all the data can
be contained in the L1 cache whereas it spills to L2 when
vectorising over multiple options. Furthermore, the manual
vectorisation over just a single option (explicit2) is signifi-
cantly faster than the compiler auto-vectorisation, achieving
62% of peak compute performance in single and 59% in dou-
ble precision on the Sandy Bridge server chip, and 61% and
55% on the Haswell chip.

For the implicit time-marching, implicit1 and implicit2

use the Thomas algorithm and vectorise over options, so
that each lane corresponds to a different financial option.
implicit1 uses icc auto-vectorisation over options, whereas
implicit2 uses vector intrinsics to explicitly assign options
to different lanes. Furthermore, the single precision imple-
mentation uses fast reciprocals and a subsequent correction
step, which is much faster than the generic division instruc-
tion. The amount of memory these approaches require leads
to data being spilled to the L2 cache, but the penalty from
this is much lower than the spills to graphics device memory
which would have resulted from using the Thomas algorithm
for the GPU implementation.

Note that the permute instructions used to communicate
between lanes (the equivalent of CUDA’s shuffles) do not
support arbitrary shuffles on Sandy Bridge, but they do on
Haswell as part of the new AVX2 instruction set, and there-
fore the relative performance of implicit2 is much better
on the Haswell CPU.

Overall, the one-factor results show a performance differ-

Table 4: Three-factor performance on a pair of Intel
Xeon E5-2690 (Sandy Bridge) CPUs, and an Intel
i7-4770K (Haswell) CPU. The timings are for 500
(explicit) or 100 (implicit) timesteps, for a single
option on a grid of size 2563.

Dual-socket Intel Xeon E5-2690
single prec. double prec.

msec GFlop/s GB/s msec GFlop/s GB/s
explicit1 1903 233 34 3911 114 33
implicit1 2561 82 23 4966 42 23

Intel i7-4770
single prec. double prec.

msec GFlop/s GB/s msec GFlop/s GB/s
explicit1 4538 99 14 11140 40 11
implicit1 6883 30 8 11816 18 9

Table 5: Execution times for best explicit/implicit
one-factor (1F) and three-factor (3F) implementa-
tions on K40 GPU and Intel E5-2690 Xeon CPUs.

K40 GPU 2 Xeon CPUs
SP DP SP DP

1F explicit 52 107 398 781
1F implicit 19 57 157 473
3F explicit 600 923 1903 3911
3F implicit 447 889 2561 4966

ence of approximately 2× between the two Xeons and the
single i7, in line with their computational capabilities.

The three-factor explicit time-marching implementation
uses auto-vectorisation in the x-direction in which data is
stored contiguously. For the ADI implicit time-marching,
vectorisation in the x-direction is used for the solution in
the y- and z-directions, but no vectorisation is used for the
solution in the x-direction because of the unfavourable data
layout in that direction.

The GFlop/s and GB/s performance documented in Table
4 are estimates based on the execution time, the number of
floating point operations required, and the amount of data
which was be transferred at least once between the main
memory and the CPU(s). Because performance is much
more limited by bandwidth to off-chip memory, the differ-
ence between the two Xeons and the single i7 is 2.5−3×, cor-
responding to the larger difference in available bandwidth.

The poorer performance of the implicit implementations,
measured as either GFlop/s or GB/s, indicates that there
may be scope for further improvement. More detailed tim-
ing shows that around half the execution time is for the
x-direction tridiagonal solution which is currently not vec-
torised. Vectorising over multiple financial options is cer-
tainly possible, in principle, but it would require careful
hand-coding to perform vector register data transposition,
analogous to that used in the GPU implementation.



5. CONCLUSIONS
The primary conclusion is that it is possible to achieve

excellent performance with both explicit and implicit com-
putational finance PDE approximations on GPUs. On an
absolute basis, the performance is approximately 50-90% of
the peak capability of the NVIDIA K40 GPU, based on ei-
ther its computational or bandwidth capabilities. Further-
more, Table 5 shows that on a relative basis it is a factor
3−8× better than using a pair of Intel E5-2690 Xeon CPUs
which together have a similar cost and power consumption.
The performance ratio is 7−8× for the one-factor application
which is compute-limited, and 3− 5.5× for the three-factor
application which is primarily bandwidth-limited.

With one-factor models, the key is to use one warp per fi-
nancial option, and compute all timesteps within one CUDA
kernel avoiding all intermediate data transfer to/from the
graphics memory. For explicit methods, the implementation
is fairly straightforward, using warp shuffles instructions to
move data between threads. For implicit methods, the im-
plementation is significantly harder, using a hybrid solution
method for the tridiagonal equations, combining the classic
Thomas algorithm with the highly-parallel PCR algorithm.

With three-factor models the data has to be held in the
main graphics memory, and therefore separate kernels have
to be called for each timestep. The mathematical approach
is the same as for the one-factor problem, but because the
performance is bandwidth-limited great care has to be taken
with data transposition in the implicit solver implementa-
tion.

The paper has not considered two-factor and four-factor
models. Assuming that a four-factor model fits within the
12GB graphics memory in a K40, the implementation would
be very similar to the three-factor model. With two-factor
models, it is possible that a single two-factor model would fit
inside a single SMX unit, in which case the implementation
would be similar to the one-factor implementation, but with
just a single two-factor model per thread block. However,
it is more likely that a two-factor model will have too much
data for a single SMX, and therefore the implementation will
need to be more like the three-factor implementation, but
with multiple financial options being solved simultaneously
to increase the degree of natural parallelism.
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Figure 3: Illustration of shared memory array to be written into, and read from, for different widths I

APPENDIX
A. ARRAY TRANSPOSITION

As illustrated in Figure 3, we want to work with a shared
memory array which is mathematically of width I, and height
32 (equal to the warp size).

We want to effectively transpose some data by writing
into it with the threads in the thread block filling it row-
wise, working across the first row, then the second, and so
on in ascending order of i+ jI, and then (after a synchroni-
sation) reading data out of it column-wise, working up the
first column, then the second and so in in ascending order of
j + 32i. Or, vice versa, we might want to fill it by columns,
and then read it out by rows.

The challenge is to come up with a mapping (i, j)→ k to
an index k in the linear shared memory array so that there
are no memory bank conflicts when accessing the data in
either direction.

When I is odd we can define

k = i + j I.

This naturally gives no bank conflicts when reading row-
wise, since each warp gets 32 contiguous addresses and cur-
rent NVIDIA GPUs have 32 shared memory banks.

Furthermore, there are no bank conflicts in each column,
because j = 32 is the smallest strictly positive integer such
that

j I mod 32 = 0

which would lead to a bank conflict with the element j=0.
When I is a power of 2, then the definition

k = i + j I

would lead to bank conflicts along each column. The first
bank conflict is when i = 0, j = 8, k = 32. This suggests

the idea of padding by 1 after every 32 elements, giving the
mapping

k = i + j I + (i + jI)/32

where the division is interpreted in the integer sense (i.e. dis-
carding the remainder).

Having handled the two extreme cases, we now consider
the general case in which I = P F , where P is a power of 2,
and F is odd. In this case

k = i + j I

leads to the first bank conflict when i = 0 and

j I mod 32 = 0.

If P < 32 then this implies

j F mod (32/P ) = 0,

which happens first when j = 32/P , and hence jI = 32F .
Thus, the padded definition to avoid conflicts is

k = i + j I + (i + j I)/(32F ).

Note: when I=F , then (i + j I)/(32F ) = 0 which correctly
gives us back the unpadded version.

If P ≥ 32 then the first bank conflict occurs when j = 1,
and an appropriate padding is

k = i + j I + j.

As well as being useful for the application in this paper,
this data transposition is also very useful for application in
which data is stored as an Array-of-Structs, each of size I.
Threads can load in contiguous vectors from device memory
and fill the shared memory array by rows, and then, after
synchronisation, read it back into registers from columns so
that each thread gets its required struct data. The process
would be reversed for writing back to device memory.


