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Nonreflecting Boundary Conditions for
Euler Equation Calculations

Michael B. Giles*
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

This paper presents a unified theory for the construction of steady-state and unsteady nonreflecting boundary
conditions for the Euler equations. These allow calculations to be performed on truncated domains without the
generation of spurious nonphysical reflections at the far-field boundaries. The general theory, developed
previously by mathematicians, is presented in a more easily understood form based upon fundamental ideas of
linear analysis. The application to the Eulei equations is given, and the relation to standard ‘‘quasi-one-dimen-
sional”” boundary conditions is explained. Results for turbomachinery problems show the effectiveness of the
new boundary conditions, particularly the steady-state nonreflecting boundary conditions:

1. Introduction

HE objective in formulating nonreflecting boundary con-

ditions is to prevent spurious, nonphysical reflections at
inflow and outflow boundaries, so that the calculated flow-
field is independent of the location of the far-field boundaries.
This leads to greater accuracy and greater computational effi-
ciency, since the computational domain can be made much
smaller.

The theoretical basis for nonreflecting boundary conditions
stems from a paper by Engquist and Majda,! which discusses
both ideal nonreflecting boundary conditions and a method
for constructing approximate forms, and a paper by Kréiss,?
which analyzes the wellposedness of initial boundary value
problems for hyperbolic systems. Many workers have been
active in this area in the last ten years, but their work has been
mainly concerned with scalar partial differential equations,
with only a couple of recent applications to the Euler equa-
tions in specific circumstances.>* Also, almost all of the litera-
ture has beén written by mathematicians, and in their desire to
be absolutely rigorous in their analysis, they use a formalism
and assume a background foundation in advanced differential
equation theory that makes it difficult for the papers to be
appreciated by those with an engineering background.

The author has recently completed a lengthy report on the
formulation of nonreflecting boundary conditions and the
application to the Euler equations.® This report presents a
unified view of the theory, with some extensions required for
the Euler equations, and does so using the simplest approach
possible based upon linear analysis. In taking this approach
some rigor is sacrificed, and the conditions for wellposedness
become necessary, but possibly not sufficient. The report also
shows in full detail the application of the theory to the Euler
equations. Another report describes the details of the imple-
mentation of the numerical boundary conditions® for two-di-
mensional turbomachinery applications.

The purpose of this paper is to summarize the principal
parts of these two reports, and to present results that demon-
strate the effectiveness of the new boundary conditions in
turbomachinery applications. Because of space limitations, all
of the wellposedness analysis, a large amount of algebraic
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detail, some interesting additional applications, and a variety
of helpful comments and insights have been omitted from this
paper; the interested reader is urged to refer to the original two
reports>® to obtain these.

II. General Analysis
A. Fourier Analysis
In two dimensions, the analysis is concerned with the fol-
lowing time-dependent, hyperbolic partial differential equa-
tion:
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where U is an N-component column vector and A and B are
constant N X N matrices. We consider wave-like solutions of
the form

U(ny) t) — ei(kx +ly— wt)uR (2)

where u® is a constant column vector. Substituting this into
the differential equation (1), we find that

(—wl+kA +1BUuR=0 ?3)
which has nontrivial solutions, provided that
det (—wl +kA +IB)=0 4

Equation (4) is called the dispersion relation, and it is a poly-
nomial equation of degree Nin each of w; k, and /. We will be
concerned with the roots k, of this equation for given values
of w and /. By dividing the dispersion relation by w, we obtain
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and so it is clear that k,/w is a function of //w. Thus, the
variable A = [/ w will play a key role in constructing all of the
boundary conditions.

A critical step in the construction and analysis of boundary
conditions is to separate the waves into incoming and outgoing
modes. If w is complex with Im(w)>0 (giving an exponential
growth in time), thén the right-propagating waves are those
for which Im(k)>0. This is because the amplitude of each
wave is proportional to '™ ~x/9 where ¢ = Im(w)/Im(k) is
the apparent velocity of propagation.

If w and k& are real, then a standard result in the analysis of
dispersive wave propagation’ is that the velocity of energy



