Abstract

A multigrid method has been developed for the Euler and Navier-
Stokes equations on unstructured hybrid grids in two and three dimen-
sions. The coarse grids are automatically generated from the finest grid
through element collapsing. This has been used in preference to a previ-
ous edge-collapsing technique to preserve as much structure as possible
within semi-structured grids. The performance of the multigrid is sig-
nificantly improved through the use of Jacobi preconditioning within
a Runge-Kutta iterative smoother. Results are presented for a variety
of two-dimensional and three-dimensional problems, both inviscid and
viscous with the Spalart-Allmaras turbulence model.
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1 Introduction

CFD has to respond to the need for accurate, efficient and robust algo-
rithms for solving complete descriptions of fluid motion over complex
geometries. When using the Reynolds-averaged Navier-Stokes equations
with an appropriate turbulence model, the computational mesh has to
be highly resolved in the direction normal to the wall to accurately rep-
resent the steep gradients in a high Reynolds number boundary layer.
This results in highly stretched computational cells which limit the ef-
fectiveness of the numerical algorithms, and increase considerably the
size of the problem to solve, both in term of memory requirements and
computational cost. With the continuing rapid development of comput-
ers, the size of the problems being addressed is becoming ever larger.
Therefore, the challenge is to obtain an iterative convergence rate which
is grid-independent. Multigrid is the most popular approach to achieve
this, and it has been very successful for the Fuler equations as well as
most elliptic equations. It is also a very common approach for solving
the Navier-Stokes equations [12, 2, 18, 28], despite the problems caused
by the presence of highly stretched cells in the boundary layer.
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The central idea of multigrid is to transfer the low frequency solu-
tion errors onto a sequence of coarser meshes where they become high
frequency errors that are more effectively smoothed by traditional iter-
ative methods. The choice of an iterative smoother is very important,
and a popular explicit multigrid smoother is the semi-discrete scheme
proposed by Jameson et al [10] which uses multi-stage Runge-Kutta
time-stepping with coefficients chosen to promote rapid damping and
propagation of error modes. However, for Navier-Stokes computations
of high Reynolds number flows, the convective error modes in the bound-
ary layer are not efficiently eliminated because of the high aspect ratio
cells inside the boundary layer. The resulting numerical stiffness in con-
junction with the stiffness associated with the turbulence model, results
in much poorer convergence than obtained with the Euler equations.

To overcome this, one approach is to use a matrix time step, or pre-
conditioner, to cluster the eigenvalues of the residual operator away from
the origin into a region of the complex plane for which the multi-stage
scheme provides rapid damping and propagation of the corresponding
error modes [1, 31, 24]. Pierce and Giles have shown that for tur-
bulent Navier-Stokes calculations on structured grids, the combination
of a block-Jacobi preconditioner and a multigrid method with semi-
coarsening across the boundary layer provides very effective damping of
all modes inside the boundary layer, both in theory and in practice. The
preconditioner damps all of the convective modes, while the multigrid
strategy, in which the grids are coarsened only in the direction across
the boundary layer, ensures that all acoustic modes disappear [29, 30].

However, the task of automatically generating block-structured grids
for complex geometries is very challenging. An alternative is to use un-
structured grids which are much more easily generated, but using purely
tetrahedral grids in 3D leads to a lower accuracy (because it is much
harder to formulate high order discretisations) and greater computa-
tional cost per grid point (on a hexahedral mesh of N vertices, an edge-
based finite volume scheme leads to the evaluation of 3N fluxes, whereas
the same mesh subdivided into a tetrahedral mesh requires the evalua-
tion of 7N fluxes, the effects of the boundaries being neglected). The
compromise, which to some extent offers the best of both approaches,
is to use hybrid grids in which the grid is treated as an unstructured
collection of different cell types (tetrahedra, pyramids, prisms and hex-
ahedra). This gives maximum geometric flexibility, and at the same
time allows one to use grids which in certain regions are structured or
semi-structured, giving improved accuracy and cost per grid point. For
example, Kallinderis et al have developed viscous grid generation meth-
ods which start with a surface triangulation and then use advancing
normals to produce a boundary layer grid composed of prismatic ele-
ments [11, 20]. These very thin prismatic elements are very suitable for
the accurate evaluation of the normal shear stress in the high Reynolds



number boundary layer. Outside the boundary layer, the grid reverts to
tetrahedra to fill the rest of the domain in which the flow is essentially
inviscid.

The drawback of using hybrid grids is that it can complicate the
multigrid procedure, depending on the details of the multigrid strat-
egy. If one follows the approach of Mavriplis in using an edge-based
discretisation and an agglomeration multigrid which is closely related
to algebraic multigrid [15, 14], the discrete equations on coarser grid
levels are assembled automatically without the explicit creation of a
coarse grid. For this method, the use of a hybrid grid does not intro-
duce any significant additional difficulties. Agglomeration multigrid is a
very powerful approach offering simplicity and robustness, but with the
Navier-Stokes equations there is the problem that the sum of the order
of accuracy of multigrid restriction and prolongation violates the con-
dition established by Hackbusch [9] (see section Scheme Description) as
being necessary for grid-independent convergence. Using an ad hoc fix,
Mavriplis has nevertheless obtained impressive results [16, 19, 17], but
in our research we have preferred the alternative approach of explicitly
constructing coarse grids from the finest grid, so that we can achieve
first order restriction and second order prolongation in the multigrid.

Our research started from the edge-collapsing multigrid approach
introduced by Crumpton and Giles, which has been shown to be highly
successful for inviscid flows on tetrahedral meshes [6, 5]. For high
Reynolds number viscous flows, modifications had to be introduced to
prevent the grid in the boundary layer becoming over-coarsened in the
direction across the boundary layer. The result is essentially equivalent
to a semi-coarsening strategy as used on highly stretched structured
grids [34, 29], and it gives a multigrid algorithm which is efficient, ro-
bust and applicable to complex geometries in two and three dimensions
[7, 22].

The subject of this paper is the extension of the edge-collapsing idea
to hybrid grids. This proved to be more difficult than initially expected.
Ideally, what one would like is a collapsing technique which preserves
as much as possible of the structure within the grid. For example, if
the fine grid consists of prisms in the boundary layer, then one would
ideally like the first coarse grid to consist of semi-coarsened prisms in the
boundary layer. However, Crumpton’s edge-collapsing algorithm works
by collapsing an edge, combining its two nodes into one, and connecting
the new node to the faces of the cavity formed by the removal of the
edge and all associated cells. When starting from a prismatic grid, this
quickly results in a grid consisting solely of tetrahedra. Even worse,
with a hexahedral grid it can result in a coarse grid which has fewer
nodes, but an increased number of cells, many of which are tetrahedra
[25].

We will show that these problems are avoided by modifying the



algorithm to collapse cells rather than edges, ensuring that the number
of cells and edges is always reduced, as well as the number of nodes. The
use of heap-based dynamic sorting to select the next cell for collapse,
and limits to prevent excess collapsing, lead to patterns of collapse which
result in the coarsened grid retaining most of the inherent structure
of the original grid in highly stretched regions. The multigrid CFD
algorithm is also described and results are presented for a range of test
cases to show the multigrid convergence rates which are achieved.

2 Edge-collapsing Multigrid

The coarser meshes used in the calculations have been generated using
an element-collapsing algorithm [25] that primarily considers the graph
of edges of the mesh. In this graph, any set of edges can be collapsed if
the geometry is still valid after the collapse and none of the neighboring
edges exceeds a certain multiple of its original length. The first criterion
is obvious; we cannot tolerate negative volumes due to folded grids. The
second criterion expresses the design principle of multigrid to increase
the mesh spacing in order to drop the high frequency components which
the relaxation scheme successfully smoothened.

In a triangular or tetrahedral mesh, collapsing a single edge removes
all elements that are formed with that edge. In a hybrid mesh this is not
the case; in order to make an element disappear we may have to collapse
several edges. In our current implementation we choose to collapse the
shortest edge of an element and the other edges which are topologically
“parallel” that is they connect the same two faces. An element collapse
then happens by two faces of an element falling onto each other.

The implementation of this algorithm for isotropic meshes is straight-
forward. Given a fine mesh, we tag each edge with its length times a
growth factor, say 2, as maximum length. The elements are sorted in
a heap list for smallest volume and we try to collapse the shortest edge
and its parallel siblings. Fixing a certain maximum angle for the ele-
ments in the collapsed geometry, in the 2D examples 135°, guarantees
a minimum quality of the coarser mesh as well as positive volumes.
This test is done by looping over all elements that are formed with
any of the collapsed edges and considering the ”"remainder” of each ele-
ment which still has a non-zero volume. Other edges on these elements
may have been collapsed in earlier steps. E.g. a quadrilateral with one
collapsed edge becomes a triangle, a doubly collapsed quadrilateral van-
ishes. Various collapsed shapes derived from a hexahedron are shown
in figure 1. The algorithm terminates once there are no edges left to be
collapsed. All remaining elements and nodes are then identified and a
coarsened grid is created.

The algorithm has to be modified to achieve directional coarsening in
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Figure 1: Collapsing edges on a hexahedron.

stretched layers. All long edges in stretched regions have to be prevented
from collapsing. For this we need to identify short edges in stretched
regions. A first criterion is that these edges are shorter by a given
factor, say 3, compared to the largest neighboring edge. Additionally
we require that there is at least one other neighboring edge that is
short and points in the same direction, to within some tolerance. This
criterion ensures that single short edges in very irregular unstructured
grids do not define a stretched region.

If an element is in a stretched region, all neighboring long edges
of the ones to be collapsed are prevented from any collapse. In two-
dimensional grids one only has to deal with only two length scales, for
example streamwise and in the direction normal to a boundary layer.
In three-dimensional there can be different grid resolutions in three di-
rections, e.g. in a wing body junction where boundary layers on the
wing and on the body are resolved differently. In the described form
the algorithm does select the correct edges to be collapsed also in these
cases. A hexahedron at the leading edge of a wing in viscous flow
would exhibit a nearly square cross-section perpendicular to the span-
wise direction, while the span-wise resolution would be much larger. In
this case only the 4 span-wise edges would be classified as ”long” and
”two-dimensional” coarsening applies allowing the collapse of the other
8 edges. Conversely, a cell near the wing tip could have a long stream-
wise extension, a medium one span-wise to capture wing-tip effects, say
b < 1/3a, and a small one perpendicular to the wing surface to capture
the boundary layer, ¢ < 1/3b. In this case ”one-dimensional” coarsening
only in the surface-normal direction would apply.

Once the stretched regions have been directionally coarsened in this
way, the isotropic process collapses the rest of the domain. Figures 9
and 10 show the results of the grid coarsening for a hybrid grid around
a RAE 2822 airfoil. Tt can be seen that the stretched part of the grid
close to the airfoil remains regular and is coarsened exactly 1:2. The
outer part of the structured region which is not stretched loses some
regularity and the quadrilaterals collapse into larger quadrilaterals and



triangles.

3 Scheme Description

The pre-conditioned semi-discrete Navier-Stokes equation appears as

199
where @) denotes the set of conservative variables, R(Q) the residual
vector of the spatial discretisation and P~! the local preconditioner
which is a point-implicit block-Jacobi preconditioner [23, 1].
Using a finite volume approach, the discrete approximation of the
residual for an interior grid point is
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where V; is the measure of the control volume (the median-dual [3])
associated with index j, E; the set of all nodes connected to node j
via an edge, As;; a distance (2D) or area (3D) associated with the
edge, and Fj; is the numerical flux. In a previous paper [26], we argued
that a desirable feature of discretisations on hybrid grids was that all
spatial operators should be ‘linear preserving’, giving the exact integral
for any linear function. However, to obtain this for grids which are
not tetrahedral requires the addition of many new edges, and so here
we have assumed that in structured or semi-structured regions there is
sufficient smoothness in the grid to use the simple median-dual edge
weights with negligible loss of accuracy.

At a solid wall, an extra term from the boundary faces associated
with the node is added. Tangency and no-slip wall conditions are en-
forced by zeroing out the momentum components associated with the
corresponding wall condition, whereas the far field boundary is treated
by adding an extra upwinded flux difference. The inviscid flux dis-
cretization is based on the flux-differencing ideas of Roe [32], combining
central differencing of the non-linear inviscid fluxes with a smoothing
term based on one-dimensional characteristic variables. This numeri-
cal dissipation is a blend of second and fourth characteristic differences
with a limiter [7]. The viscous flux is approximated half-way along each
edge and uses the usual integration rule around each volume (i.e. in-
tegration over the control volume using the divergence theorem [21]),
giving a consistent finite volume treatment of the inviscid and viscous
terms. To account for the effect of turbulence, the one equation tur-
bulence model of Spalart and Allmaras [33] is used with a first order
spatial discretisation. Other than an implicit treatment of the source



term, it is solved using the same 5-stage Runge-Kutta method [13] as
used for the flow equations.

The preconditioner P is based on a local linearisation of the 3D
Navier-Stokes equations about a uniform flow, and built by extracting
the terms corresponding to the central node. As the flux can be split into
inviscid and viscous parts, the matrix preconditioner has contributions
coming from both, and is written as

_ -1 -1

Pj ' = (PJI) + (PJ'V) )

where the superscripts I and V' stand for Inviscid and Viscous, respec-
tively. Even though a high-order method with limiters is used to define
the residual, the preconditioner is based on a first order characteristic
smoothing. This approximation is acceptable since the resulting matrix
timestep will be only underestimated. This is slightly different from the
structured approach, where the block-Jacobi preconditioner remains the
same for both schemes [29]. The viscous contribution is only calculated
for interior grid points since there is no viscous contribution for a node
which lies on a adiabatic solid wall. Following a linearizing procedure,
a key factor for the implementation is that all cross derivatives are
neglected in the preconditioner. On the coarse grids for which the pre-
conditioner is also evaluated, the deterioration of the mesh does not
influence this assumption since these cross derivatives are viscous terms
and on these levels the flow is mainly inviscid.

To form the block-Jacobi preconditioner, the inviscid and viscous
Jacobians need to be calculated at each node of the grid. However, at
the wall, as already mentioned, the viscous Jacobian does not have to
be evaluated. In fact, only a no-slip condition has to be satisfied which
is achieved by setting all momentum components in the residual to zero.
For Euler calculations, the procedure is slightly different. In addition
to the corrections made on the residual, the preconditioner is modified
at the wall in order that the condition u.n = 0 is satisfied; u and
n denote respectively the velocity vector and the unit normal vector
to the wall. This is accomplished by re-evaluating the matrix in the
coordinate system (i, 4, , ¢, ), by using a rotation matrix 7' from the
original (z,y, z) coordinate system to the new one. x,, is the coordinate
in the direction normal to the surface and the other two are mutually
orthogonal tangential coordinates. Once done, it is transformed back
to the original coordinate system. Thus, the original equation becomes

[P~ —T7'ST(P™! —I)] % = MR(Q) ,
where M = (I — T~'ST) with S the matrix which sets the normal
momentum component to zero. T~'ST only involves the unit normal
vector, and so is easily constructed [8].



As explained in the previous section, the multigrid uses a sequence of
coarse grids generated from an initial fine grid by an automatic element
removal algorithm. This algorithm produces a pointer from each fine
grid node to the coarse grid node into which it has collapsed. The
multigrid restriction uses this to compute a volume-weighted average of
the flow. In a similar way, the most obvious choice for the restriction
of the residual is volume weighting

h ph
! ZiEKJ‘ V;h ’

where H and h refer to a coarse and a fine grid, respectively. This
assumes that VJH R D ik, Vih, which is true for the majority of the
J

. ey o5 W . . '
rids, however, near boundaries where the surface is constrained, V]H

can be considerably larger than K; Vih. Consequently the following
limited volume weighting is used,

h ph
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For the prolongation, a linear interpolation is used through the recon-
struction of the gradient of the corrections. The accuracy of the transfer
operators thus defined is sufficient to guarantee good convergence rates,
since it satisfies the necessary relation for ensuring multigrid efficiency

[9]
Op+Ogr>0g ,

where Op and Op are defined as the highest degree plus one of the
polynomials that are interpolated exactly by the prolongation and re-
striction operator and Op is the order of the differential equation, which
equals 2 for the Navier-Stokes equations.

All of the results to be presented were obtained using V-cycle multi-
grid, with Full Multigrid startup, and one iteration of the Runge-Kutta
smoother before restriction and after prolongation, except where oth-
erwise stated. Thus, one multigrid cycle on the finest grid level has
a computational cost which is approximately double that of a single
5-stage time-step on the finest grid.

In their experience with the coarsening algorithm the authors have
not found a pronounced sensitivity of the convergence rate to the cut-off
parameter for the stretching. Any values between 2 and 5 give very sim-
ilar results. Values much larger than 10 often led to convergence prob-
lems with Euler calculations on structured meshes where stretching in
the far-field occurs due to the constraints on the mesh. The lengthening
parameter can be adjusted to values between 2 and 2.5 without having
a significant effect on the convergence rate or the resulting grid sizes.



Table 1: Grid sizes; number of vertices

1st collapse 2nd collapse 3rd collapse 4th collapse

fine mesh (20800 vert.) 9200 4000 1600 680

The value of 2.2 worked most robustly and was adopted as a default.
One can however increase this value by improving the smoothing rate of
the relaxation scheme. Since a first order accurate smoother is applied
on the coarser grids the lengthening factor could be increased there. In
our examples the lengthening factor was ramped with a factor of 1.1 to
1.2 for the generation of each coarser level.

4 Results

In this section we present results for a set of inviscid and viscous flows
over geometries of varying complexity. First, results are presented for a
two-dimensional problem. The performance of the collapsing multigrid
algorithm with the hybrid approach is compared with previous results
obtained by Pierce using structured grids [27]. The test case is a stan-
dard transonic NACA0012 case with M, = 0.8 and o = 1.25°, giving
a strong shock on the suction surface and a weak shock on the pressure
surface. The fine grid, shown in Figure 2, contains 20480 quadrilaterals
and is exactly the same as used by Pierce. A sequence of four coarser
hybrid meshes was generated following the element collapsing proce-
dure; the first and last of these is shown in Figures 3 and 4. The size
of each grids is listed in Table 1.

It can been seen that the coarsening procedure maintains the gen-
eral topology of the domain, with the coarse grids composed mainly
of quadrilaterals. The computed pressure distribution and the con-
vergence history using both methods are presented in figures 5 and 6.
Both methods converge similarly to machine accuracy with very little
difference in the asymptotic convergence rate.

We next present a calculation over a geometry of increased complex-
ity. It involves the solution of inviscid transonic flow over a business
jet. The geometry consists of a half complete aircraft configuration
bounded by a symmetry plane. The fine grid has 156000 vertices and
847000 tetrahedra. Two coarser grids are derived by the element col-
lapsing algorithm and contain respectively, 58500 and 9800 grid points.
The collapsing algorithm is based on several criterion driving the col-
lapsing procedure. In this case, the low coarsening ratio between the
finest and the first coarser mesh is due to the poor quality of the initial
mesh which has elements with a dihedral angle of more than 180°. The
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freestream conditions are My, = 0.85 and a = 2°. Figures 7 and 8 show
the convergence history and the Mach contour plot where the shock
patterns are evident. Convergence to machine accuracy is achieved in
249 multigrid iterations.

The first test case involving a turbulent flow is over a single airfoil.
The geometry is an RAE2822 airfoil, with My, = 0.73, Re = 6.5 million,
and o = 2.8°.

In order to make a qualitative study of our multigrid efficiency, we
have used two meshes of different sizes and generated in each case a
sequence of four coarser levels. The first mesh contains 5400 grid points
and the second one 19100. The latest is depicted in Figure 9 along with
its first collapse. These two meshes are hybrid and have a structured
part, with elements stretched in the direction along the airfoil, the rest
of the domain being filled with triangles. The size of each grid is listed
in Table 2. Figure 14 shows the computed pressure distributions. As
expected, a fine mesh is necessary to well resolve the boundary layer,
so that the final results compare well with the experimental data [4],
although the turbulence model produces here a shock location forward
of the experimental location, behaviour which has been previously ob-
served [33, 27]. The shock induces a separation bubble measuring about
5% of chord. Convergence history for the first mesh is shown, in Fig-
ure 11. Here we compare the convergence when using the block-Jacobi
preconditioner and when using the standard approach of scalar precon-
ditioning, with semi-coarsened multigrid. Both methods converge to
machine accuracy, along with the turbulence model. The Jacobi ap-
proach converges quite smoothly and rapidly to engineering accuracy
in approximately 50 multigrid iteration, but starts degrading after 4 or-
ders of magnitude. Overall in term of CPU time, the Jacobi approach
is approximately 3.6 times faster. A similar result is observed with the
second mesh for which the degradation of the convergence after 4 or-
ders of magnitude is a lot more severe (Fig. 12). Freezing the values
of the turbulence model at a certain point in the calculation provides
the second convergence history in the same figure. This indicates it is
the turbulence model which is largely responsible for the convergence
degradation in the first calculation.

Finally, in Fig. 13 we are plotting the multigrid convergence of the
two meshes in order to assess the grid-independent convergence rate of
our multigrid algorithm. Although particular attention to the design of
the restriction and prolongation operators has been made to meet the
necessary accuracy conditions, the results seem to show that grid inde-
pendency is not achieved, even when looking at the first four orders of
convergence for which the turbulence model should not cause too much
trouble. This is attributed to the well-known flow alignment problem
which causes some convective modes to decouple preventing certain os-
cillatory modes from being damped. In areas such as a boundary layer,
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Table 2: Grid sizes; number of vertices

1st collapse 2nd collapse 3rd collapse 4th collapse

first mesh (19100 vert.) 2500 1200 1000 400
second mesh (5400 vert.) 8900 4400 2300 1400

the viscosity eliminates a large fraction of these error modes, but in
other areas such as in the wake where this mechanism does not occur,
and where there is a high concentration of high aspect ratio cells, this
problem still persists and is thought to be responsible for the degrada-
tion of the convergence rate. It can be noted that for the first orders
of magnitude, where the acoustic error modes are the dominant ones,
the algorithm is highly efficient and convergence is grid independent.
More investigation would be necessary if one wanted to improve the
asymptotic convergence rate.

The final example is the flow through the 3D bypass duct of a tur-
bofan engine. The geometry is composed of ten struts and a pylon.
The fine grid has 274000 grid points and is constructed by stacking
a sequence of 2D grids. Convergence history and Mach contours can
be seen in Figures 15 and 16. From the fine grid, two coarser grids
are produced containing respectively 138000 and 79300 vertices. The
coarsening ratio is low because the multigrid semi-coarsening strategy
is essentially only removing points in one-dimension in the areas of high
stretching, which is both through the boundary layer and radially. The
radial stretching is a consequence of the grid being composed of stacked
2D grids with a fixed radial step. This leaves a high aspect ratio in the
radial direction in all regions of the 2D grid that have a much smaller
mesh spacing than the radial step. For an inflow Mach number of 0.55,
with zero incidence and a Reynolds number of 6 million around the
struts, convergence to 6 orders of magnitude is reached in 250 multi-
grid cycles (the pylon is here treated as inviscid, because the purpose
of studying this geometry did not require the pylon boundary layer to
be resolved).

5 Conclusions

In this paper we have presented a new multigrid method for the solution
of the Euler and Navier-Stokes equations on unstructured hybrid grids.
Unlike the agglomeration multigrid method, it involves the construction
of a sequence of coarse hybrid grids on which the same residual operator
can be applied. The benefit of this approach is that linear corrections
can be prolonged exactly, thereby satisfying a key requirement for grid
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independent convergence of the Navier-Stokes equations.

The coarse grids are generated through an element collapsing pro-
cedure which preserves much of the structure in semi-structured grids,
and in particular gives semi-coarsening in boundary layer grids which
are created by the method of advancing normals.

Numerical results for a variety of two-dimensional and three-dimensional
problems show that the multigrid convergence rate is excellent. An im-
portant contributing factor is the use of Jacobi preconditioning for the
Runge-Kutta iteration, which overcomes much of the numerical stiffness
associated with the Navier-Stokes equations in the highly stretched cells
in the boundary layer.
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Figure 2: NACAO0012; fine grid

16




Figure 3: NACAO0012; first coarsening
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Figure 4: NACA0012; fourth coarsening
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Figure 5: NACAO0012; coefficient of pressure
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Figure 6: NACA0012; convergence history
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Figure 7: Business jet, convergence history
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Figure 8: Business jet, Mach number contours
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Figure 10: RAE2822; first collapse
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Figure 11: RAE2822; convergence history - First mesh.
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Figure 12: RAE2822; convergence history - Second mesh.
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Figure 13: RAE2822; assesment of the multigrid convergence regarding to the
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28

____ Num. coarse

,,,,,, Num. fine

M M Exp.

1.20



______ Jacobi

300.

200.
29

iteration

100.
Figure 15: 3D Bypass duct; convergence history

-6.0

log res






