
Abstra
tA multigrid method has been developed for the Euler and Navier-Stokes equations on unstru
tured hybrid grids in two and three dimen-sions. The 
oarse grids are automati
ally generated from the �nest gridthrough element 
ollapsing. This has been used in preferen
e to a previ-ous edge-
ollapsing te
hnique to preserve as mu
h stru
ture as possiblewithin semi-stru
tured grids. The performan
e of the multigrid is sig-ni�
antly improved through the use of Ja
obi pre
onditioning withina Runge-Kutta iterative smoother. Results are presented for a varietyof two-dimensional and three-dimensional problems, both invis
id andvis
ous with the Spalart-Allmaras turbulen
e model.
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1 Introdu
tionCFD has to respond to the need for a

urate, eÆ
ient and robust algo-rithms for solving 
omplete des
riptions of 
uid motion over 
omplexgeometries. When using the Reynolds-averaged Navier-Stokes equationswith an appropriate turbulen
e model, the 
omputational mesh has tobe highly resolved in the dire
tion normal to the wall to a

urately rep-resent the steep gradients in a high Reynolds number boundary layer.This results in highly stret
hed 
omputational 
ells whi
h limit the ef-fe
tiveness of the numeri
al algorithms, and in
rease 
onsiderably thesize of the problem to solve, both in term of memory requirements and
omputational 
ost. With the 
ontinuing rapid development of 
omput-ers, the size of the problems being addressed is be
oming ever larger.Therefore, the 
hallenge is to obtain an iterative 
onvergen
e rate whi
his grid-independent. Multigrid is the most popular approa
h to a
hievethis, and it has been very su

essful for the Euler equations as well asmost ellipti
 equations. It is also a very 
ommon approa
h for solvingthe Navier-Stokes equations [12, 2, 18, 28℄, despite the problems 
ausedby the presen
e of highly stret
hed 
ells in the boundary layer.�Resear
h OÆ
er, email: moinier�
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The 
entral idea of multigrid is to transfer the low frequen
y solu-tion errors onto a sequen
e of 
oarser meshes where they be
ome highfrequen
y errors that are more e�e
tively smoothed by traditional iter-ative methods. The 
hoi
e of an iterative smoother is very important,and a popular expli
it multigrid smoother is the semi-dis
rete s
hemeproposed by Jameson et al [10℄ whi
h uses multi-stage Runge-Kuttatime-stepping with 
oeÆ
ients 
hosen to promote rapid damping andpropagation of error modes. However, for Navier-Stokes 
omputationsof high Reynolds number 
ows, the 
onve
tive error modes in the bound-ary layer are not eÆ
iently eliminated be
ause of the high aspe
t ratio
ells inside the boundary layer. The resulting numeri
al sti�ness in 
on-jun
tion with the sti�ness asso
iated with the turbulen
e model, resultsin mu
h poorer 
onvergen
e than obtained with the Euler equations.To over
ome this, one approa
h is to use a matrix time step, or pre-
onditioner, to 
luster the eigenvalues of the residual operator away fromthe origin into a region of the 
omplex plane for whi
h the multi-stages
heme provides rapid damping and propagation of the 
orrespondingerror modes [1, 31, 24℄. Pier
e and Giles have shown that for tur-bulent Navier-Stokes 
al
ulations on stru
tured grids, the 
ombinationof a blo
k-Ja
obi pre
onditioner and a multigrid method with semi-
oarsening a
ross the boundary layer provides very e�e
tive damping ofall modes inside the boundary layer, both in theory and in pra
ti
e. Thepre
onditioner damps all of the 
onve
tive modes, while the multigridstrategy, in whi
h the grids are 
oarsened only in the dire
tion a
rossthe boundary layer, ensures that all a
ousti
 modes disappear [29, 30℄.However, the task of automati
ally generating blo
k-stru
tured gridsfor 
omplex geometries is very 
hallenging. An alternative is to use un-stru
tured grids whi
h are mu
h more easily generated, but using purelytetrahedral grids in 3D leads to a lower a

ura
y (be
ause it is mu
hharder to formulate high order dis
retisations) and greater 
omputa-tional 
ost per grid point (on a hexahedral mesh of N verti
es, an edge-based �nite volume s
heme leads to the evaluation of 3N 
uxes, whereasthe same mesh subdivided into a tetrahedral mesh requires the evalua-tion of 7N 
uxes, the e�e
ts of the boundaries being negle
ted). The
ompromise, whi
h to some extent o�ers the best of both approa
hes,is to use hybrid grids in whi
h the grid is treated as an unstru
tured
olle
tion of di�erent 
ell types (tetrahedra, pyramids, prisms and hex-ahedra). This gives maximum geometri
 
exibility, and at the sametime allows one to use grids whi
h in 
ertain regions are stru
tured orsemi-stru
tured, giving improved a

ura
y and 
ost per grid point. Forexample, Kallinderis et al have developed vis
ous grid generation meth-ods whi
h start with a surfa
e triangulation and then use advan
ingnormals to produ
e a boundary layer grid 
omposed of prismati
 ele-ments [11, 20℄. These very thin prismati
 elements are very suitable forthe a

urate evaluation of the normal shear stress in the high Reynolds3



number boundary layer. Outside the boundary layer, the grid reverts totetrahedra to �ll the rest of the domain in whi
h the 
ow is essentiallyinvis
id.The drawba
k of using hybrid grids is that it 
an 
ompli
ate themultigrid pro
edure, depending on the details of the multigrid strat-egy. If one follows the approa
h of Mavriplis in using an edge-baseddis
retisation and an agglomeration multigrid whi
h is 
losely relatedto algebrai
 multigrid [15, 14℄, the dis
rete equations on 
oarser gridlevels are assembled automati
ally without the expli
it 
reation of a
oarse grid. For this method, the use of a hybrid grid does not intro-du
e any signi�
ant additional diÆ
ulties. Agglomeration multigrid is avery powerful approa
h o�ering simpli
ity and robustness, but with theNavier-Stokes equations there is the problem that the sum of the orderof a

ura
y of multigrid restri
tion and prolongation violates the 
on-dition established by Ha
kbus
h [9℄ (see se
tion S
heme Des
ription) asbeing ne
essary for grid-independent 
onvergen
e. Using an ad ho
 �x,Mavriplis has nevertheless obtained impressive results [16, 19, 17℄, butin our resear
h we have preferred the alternative approa
h of expli
itly
onstru
ting 
oarse grids from the �nest grid, so that we 
an a
hieve�rst order restri
tion and se
ond order prolongation in the multigrid.Our resear
h started from the edge-
ollapsing multigrid approa
hintrodu
ed by Crumpton and Giles, whi
h has been shown to be highlysu

essful for invis
id 
ows on tetrahedral meshes [6, 5℄. For highReynolds number vis
ous 
ows, modi�
ations had to be introdu
ed toprevent the grid in the boundary layer be
oming over-
oarsened in thedire
tion a
ross the boundary layer. The result is essentially equivalentto a semi-
oarsening strategy as used on highly stret
hed stru
turedgrids [34, 29℄, and it gives a multigrid algorithm whi
h is eÆ
ient, ro-bust and appli
able to 
omplex geometries in two and three dimensions[7, 22℄.The subje
t of this paper is the extension of the edge-
ollapsing ideato hybrid grids. This proved to be more diÆ
ult than initially expe
ted.Ideally, what one would like is a 
ollapsing te
hnique whi
h preservesas mu
h as possible of the stru
ture within the grid. For example, ifthe �ne grid 
onsists of prisms in the boundary layer, then one wouldideally like the �rst 
oarse grid to 
onsist of semi-
oarsened prisms in theboundary layer. However, Crumpton's edge-
ollapsing algorithm worksby 
ollapsing an edge, 
ombining its two nodes into one, and 
onne
tingthe new node to the fa
es of the 
avity formed by the removal of theedge and all asso
iated 
ells. When starting from a prismati
 grid, thisqui
kly results in a grid 
onsisting solely of tetrahedra. Even worse,with a hexahedral grid it 
an result in a 
oarse grid whi
h has fewernodes, but an in
reased number of 
ells, many of whi
h are tetrahedra[25℄.We will show that these problems are avoided by modifying the4



algorithm to 
ollapse 
ells rather than edges, ensuring that the numberof 
ells and edges is always redu
ed, as well as the number of nodes. Theuse of heap-based dynami
 sorting to sele
t the next 
ell for 
ollapse,and limits to prevent ex
ess 
ollapsing, lead to patterns of 
ollapse whi
hresult in the 
oarsened grid retaining most of the inherent stru
tureof the original grid in highly stret
hed regions. The multigrid CFDalgorithm is also des
ribed and results are presented for a range of test
ases to show the multigrid 
onvergen
e rates whi
h are a
hieved.2 Edge-
ollapsing MultigridThe 
oarser meshes used in the 
al
ulations have been generated usingan element-
ollapsing algorithm [25℄ that primarily 
onsiders the graphof edges of the mesh. In this graph, any set of edges 
an be 
ollapsed ifthe geometry is still valid after the 
ollapse and none of the neighboringedges ex
eeds a 
ertain multiple of its original length. The �rst 
riterionis obvious; we 
annot tolerate negative volumes due to folded grids. These
ond 
riterion expresses the design prin
iple of multigrid to in
reasethe mesh spa
ing in order to drop the high frequen
y 
omponents whi
hthe relaxation s
heme su

essfully smoothened.In a triangular or tetrahedral mesh, 
ollapsing a single edge removesall elements that are formed with that edge. In a hybrid mesh this is notthe 
ase; in order to make an element disappear we may have to 
ollapseseveral edges. In our 
urrent implementation we 
hoose to 
ollapse theshortest edge of an element and the other edges whi
h are topologi
ally\parallel" that is they 
onne
t the same two fa
es. An element 
ollapsethen happens by two fa
es of an element falling onto ea
h other.The implementation of this algorithm for isotropi
 meshes is straight-forward. Given a �ne mesh, we tag ea
h edge with its length times agrowth fa
tor, say 2, as maximum length. The elements are sorted ina heap list for smallest volume and we try to 
ollapse the shortest edgeand its parallel siblings. Fixing a 
ertain maximum angle for the ele-ments in the 
ollapsed geometry, in the 2D examples 135Æ, guaranteesa minimum quality of the 
oarser mesh as well as positive volumes.This test is done by looping over all elements that are formed withany of the 
ollapsed edges and 
onsidering the "remainder" of ea
h ele-ment whi
h still has a non-zero volume. Other edges on these elementsmay have been 
ollapsed in earlier steps. E.g. a quadrilateral with one
ollapsed edge be
omes a triangle, a doubly 
ollapsed quadrilateral van-ishes. Various 
ollapsed shapes derived from a hexahedron are shownin �gure 1. The algorithm terminates on
e there are no edges left to be
ollapsed. All remaining elements and nodes are then identi�ed and a
oarsened grid is 
reated.The algorithm has to be modi�ed to a
hieve dire
tional 
oarsening in5



Figure 1: Collapsing edges on a hexahedron.stret
hed layers. All long edges in stret
hed regions have to be preventedfrom 
ollapsing. For this we need to identify short edges in stret
hedregions. A �rst 
riterion is that these edges are shorter by a givenfa
tor, say 3, 
ompared to the largest neighboring edge. Additionallywe require that there is at least one other neighboring edge that isshort and points in the same dire
tion, to within some toleran
e. This
riterion ensures that single short edges in very irregular unstru
turedgrids do not de�ne a stret
hed region.If an element is in a stret
hed region, all neighboring long edgesof the ones to be 
ollapsed are prevented from any 
ollapse. In two-dimensional grids one only has to deal with only two length s
ales, forexample streamwise and in the dire
tion normal to a boundary layer.In three-dimensional there 
an be di�erent grid resolutions in three di-re
tions, e.g. in a wing body jun
tion where boundary layers on thewing and on the body are resolved di�erently. In the des
ribed formthe algorithm does sele
t the 
orre
t edges to be 
ollapsed also in these
ases. A hexahedron at the leading edge of a wing in vis
ous 
owwould exhibit a nearly square 
ross-se
tion perpendi
ular to the span-wise dire
tion, while the span-wise resolution would be mu
h larger. Inthis 
ase only the 4 span-wise edges would be 
lassi�ed as "long" and"two-dimensional" 
oarsening applies allowing the 
ollapse of the other8 edges. Conversely, a 
ell near the wing tip 
ould have a long stream-wise extension, a medium one span-wise to 
apture wing-tip e�e
ts, sayb < 1=3a, and a small one perpendi
ular to the wing surfa
e to 
apturethe boundary layer, 
 < 1=3b. In this 
ase "one-dimensional" 
oarseningonly in the surfa
e-normal dire
tion would apply.On
e the stret
hed regions have been dire
tionally 
oarsened in thisway, the isotropi
 pro
ess 
ollapses the rest of the domain. Figures 9and 10 show the results of the grid 
oarsening for a hybrid grid arounda RAE 2822 airfoil. It 
an be seen that the stret
hed part of the grid
lose to the airfoil remains regular and is 
oarsened exa
tly 1:2. Theouter part of the stru
tured region whi
h is not stret
hed loses someregularity and the quadrilaterals 
ollapse into larger quadrilaterals and6



triangles.3 S
heme Des
riptionThe pre-
onditioned semi-dis
rete Navier-Stokes equation appears asP�1dQdt +R(Q) = 0;where Q denotes the set of 
onservative variables, R(Q) the residualve
tor of the spatial dis
retisation and P�1 the lo
al pre
onditionerwhi
h is a point-impli
it blo
k-Ja
obi pre
onditioner [23, 1℄.Using a �nite volume approa
h, the dis
rete approximation of theresidual for an interior grid point isRj = 1Vj Xi2Ej Fij 4 sij 8j;where Vj is the measure of the 
ontrol volume (the median-dual [3℄)asso
iated with index j, Ej the set of all nodes 
onne
ted to node jvia an edge, 4sij a distan
e (2D) or area (3D) asso
iated with theedge, and Fij is the numeri
al 
ux. In a previous paper [26℄, we arguedthat a desirable feature of dis
retisations on hybrid grids was that allspatial operators should be `linear preserving', giving the exa
t integralfor any linear fun
tion. However, to obtain this for grids whi
h arenot tetrahedral requires the addition of many new edges, and so herewe have assumed that in stru
tured or semi-stru
tured regions there issuÆ
ient smoothness in the grid to use the simple median-dual edgeweights with negligible loss of a

ura
y.At a solid wall, an extra term from the boundary fa
es asso
iatedwith the node is added. Tangen
y and no-slip wall 
onditions are en-for
ed by zeroing out the momentum 
omponents asso
iated with the
orresponding wall 
ondition, whereas the far �eld boundary is treatedby adding an extra upwinded 
ux di�eren
e. The invis
id 
ux dis-
retization is based on the 
ux-di�eren
ing ideas of Roe [32℄, 
ombining
entral di�eren
ing of the non-linear invis
id 
uxes with a smoothingterm based on one-dimensional 
hara
teristi
 variables. This numeri-
al dissipation is a blend of se
ond and fourth 
hara
teristi
 di�eren
eswith a limiter [7℄. The vis
ous 
ux is approximated half-way along ea
hedge and uses the usual integration rule around ea
h volume (i.e. in-tegration over the 
ontrol volume using the divergen
e theorem [21℄),giving a 
onsistent �nite volume treatment of the invis
id and vis
ousterms. To a

ount for the e�e
t of turbulen
e, the one equation tur-bulen
e model of Spalart and Allmaras [33℄ is used with a �rst orderspatial dis
retisation. Other than an impli
it treatment of the sour
e7



term, it is solved using the same 5-stage Runge-Kutta method [13℄ asused for the 
ow equations.The pre
onditioner P is based on a lo
al linearisation of the 3DNavier-Stokes equations about a uniform 
ow, and built by extra
tingthe terms 
orresponding to the 
entral node. As the 
ux 
an be split intoinvis
id and vis
ous parts, the matrix pre
onditioner has 
ontributions
oming from both, and is written asP�1j = �P Ij ��1 + �P Vj ��1 ;where the supers
ripts I and V stand for Invis
id and Vis
ous, respe
-tively. Even though a high-order method with limiters is used to de�nethe residual, the pre
onditioner is based on a �rst order 
hara
teristi
smoothing. This approximation is a

eptable sin
e the resulting matrixtimestep will be only underestimated. This is slightly di�erent from thestru
tured approa
h, where the blo
k-Ja
obi pre
onditioner remains thesame for both s
hemes [29℄. The vis
ous 
ontribution is only 
al
ulatedfor interior grid points sin
e there is no vis
ous 
ontribution for a nodewhi
h lies on a adiabati
 solid wall. Following a linearizing pro
edure,a key fa
tor for the implementation is that all 
ross derivatives arenegle
ted in the pre
onditioner. On the 
oarse grids for whi
h the pre-
onditioner is also evaluated, the deterioration of the mesh does notin
uen
e this assumption sin
e these 
ross derivatives are vis
ous termsand on these levels the 
ow is mainly invis
id.To form the blo
k-Ja
obi pre
onditioner, the invis
id and vis
ousJa
obians need to be 
al
ulated at ea
h node of the grid. However, atthe wall, as already mentioned, the vis
ous Ja
obian does not have tobe evaluated. In fa
t, only a no-slip 
ondition has to be satis�ed whi
his a
hieved by setting all momentum 
omponents in the residual to zero.For Euler 
al
ulations, the pro
edure is slightly di�erent. In additionto the 
orre
tions made on the residual, the pre
onditioner is modi�edat the wall in order that the 
ondition u:n = 0 is satis�ed; u andn denote respe
tively the velo
ity ve
tor and the unit normal ve
torto the wall. This is a

omplished by re-evaluating the matrix in the
oordinate system (xn; xt1 ; xt2), by using a rotation matrix T from theoriginal (x; y; z) 
oordinate system to the new one. xn is the 
oordinatein the dire
tion normal to the surfa
e and the other two are mutuallyorthogonal tangential 
oordinates. On
e done, it is transformed ba
kto the original 
oordinate system. Thus, the original equation be
omes�P�1 � T�1ST (P�1 � I)� dQdt =MR(Q) ;where M = (I � T�1ST ) with S the matrix whi
h sets the normalmomentum 
omponent to zero. T�1ST only involves the unit normalve
tor, and so is easily 
onstru
ted [8℄.8



As explained in the previous se
tion, the multigrid uses a sequen
e of
oarse grids generated from an initial �ne grid by an automati
 elementremoval algorithm. This algorithm produ
es a pointer from ea
h �negrid node to the 
oarse grid node into whi
h it has 
ollapsed. Themultigrid restri
tion uses this to 
ompute a volume-weighted average ofthe 
ow. In a similar way, the most obvious 
hoi
e for the restri
tionof the residual is volume weightingRHj = Pi2Kj V hi RhiPi2Kj V hi ;where H and h refer to a 
oarse and a �ne grid, respe
tively. Thisassumes that V Hj � Pi2Kj V hi , whi
h is true for the majority of thegrids, however, near boundaries where the surfa
e is 
onstrained, V Hj
an be 
onsiderably larger than Pi2Kj V hi . Consequently the followinglimited volume weighting is used,RHj = Pi2Kj V hi Rhjmax(V Hj ;Pi2Kj V hi ) :For the prolongation, a linear interpolation is used through the re
on-stru
tion of the gradient of the 
orre
tions. The a

ura
y of the transferoperators thus de�ned is suÆ
ient to guarantee good 
onvergen
e rates,sin
e it satis�es the ne
essary relation for ensuring multigrid eÆ
ien
y[9℄ OP +OR > OE ;where OP and OR are de�ned as the highest degree plus one of thepolynomials that are interpolated exa
tly by the prolongation and re-stri
tion operator and OE is the order of the di�erential equation, whi
hequals 2 for the Navier-Stokes equations.All of the results to be presented were obtained using V-
y
le multi-grid, with Full Multigrid startup, and one iteration of the Runge-Kuttasmoother before restri
tion and after prolongation, ex
ept where oth-erwise stated. Thus, one multigrid 
y
le on the �nest grid level hasa 
omputational 
ost whi
h is approximately double that of a single5-stage time-step on the �nest grid.In their experien
e with the 
oarsening algorithm the authors havenot found a pronoun
ed sensitivity of the 
onvergen
e rate to the 
ut-o�parameter for the stret
hing. Any values between 2 and 5 give very sim-ilar results. Values mu
h larger than 10 often led to 
onvergen
e prob-lems with Euler 
al
ulations on stru
tured meshes where stret
hing inthe far-�eld o

urs due to the 
onstraints on the mesh. The lengtheningparameter 
an be adjusted to values between 2 and 2:5 without havinga signi�
ant e�e
t on the 
onvergen
e rate or the resulting grid sizes.9



Table 1: Grid sizes; number of verti
es1st 
ollapse 2nd 
ollapse 3rd 
ollapse 4th 
ollapse�ne mesh (20800 vert.) 9200 4000 1600 680The value of 2:2 worked most robustly and was adopted as a default.One 
an however in
rease this value by improving the smoothing rate ofthe relaxation s
heme. Sin
e a �rst order a

urate smoother is appliedon the 
oarser grids the lengthening fa
tor 
ould be in
reased there. Inour examples the lengthening fa
tor was ramped with a fa
tor of 1:1 to1:2 for the generation of ea
h 
oarser level.4 ResultsIn this se
tion we present results for a set of invis
id and vis
ous 
owsover geometries of varying 
omplexity. First, results are presented for atwo-dimensional problem. The performan
e of the 
ollapsing multigridalgorithm with the hybrid approa
h is 
ompared with previous resultsobtained by Pier
e using stru
tured grids [27℄. The test 
ase is a stan-dard transoni
 NACA0012 
ase with M1 = 0:8 and � = 1:25o, givinga strong sho
k on the su
tion surfa
e and a weak sho
k on the pressuresurfa
e. The �ne grid, shown in Figure 2, 
ontains 20480 quadrilateralsand is exa
tly the same as used by Pier
e. A sequen
e of four 
oarserhybrid meshes was generated following the element 
ollapsing pro
e-dure; the �rst and last of these is shown in Figures 3 and 4. The sizeof ea
h grids is listed in Table 1.It 
an been seen that the 
oarsening pro
edure maintains the gen-eral topology of the domain, with the 
oarse grids 
omposed mainlyof quadrilaterals. The 
omputed pressure distribution and the 
on-vergen
e history using both methods are presented in �gures 5 and 6.Both methods 
onverge similarly to ma
hine a

ura
y with very littledi�eren
e in the asymptoti
 
onvergen
e rate.We next present a 
al
ulation over a geometry of in
reased 
omplex-ity. It involves the solution of invis
id transoni
 
ow over a businessjet. The geometry 
onsists of a half 
omplete air
raft 
on�gurationbounded by a symmetry plane. The �ne grid has 156000 verti
es and847000 tetrahedra. Two 
oarser grids are derived by the element 
ol-lapsing algorithm and 
ontain respe
tively, 58500 and 9800 grid points.The 
ollapsing algorithm is based on several 
riterion driving the 
ol-lapsing pro
edure. In this 
ase, the low 
oarsening ratio between the�nest and the �rst 
oarser mesh is due to the poor quality of the initialmesh whi
h has elements with a dihedral angle of more than 180o. The10



freestream 
onditions are M1 = 0:85 and � = 2o. Figures 7 and 8 showthe 
onvergen
e history and the Ma
h 
ontour plot where the sho
kpatterns are evident. Convergen
e to ma
hine a

ura
y is a
hieved in249 multigrid iterations.The �rst test 
ase involving a turbulent 
ow is over a single airfoil.The geometry is an RAE2822 airfoil, withM1 = 0:73, Re = 6:5 million,and � = 2:8o.In order to make a qualitative study of our multigrid eÆ
ien
y, wehave used two meshes of di�erent sizes and generated in ea
h 
ase asequen
e of four 
oarser levels. The �rst mesh 
ontains 5400 grid pointsand the se
ond one 19100. The latest is depi
ted in Figure 9 along withits �rst 
ollapse. These two meshes are hybrid and have a stru
turedpart, with elements stret
hed in the dire
tion along the airfoil, the restof the domain being �lled with triangles. The size of ea
h grid is listedin Table 2. Figure 14 shows the 
omputed pressure distributions. Asexpe
ted, a �ne mesh is ne
essary to well resolve the boundary layer,so that the �nal results 
ompare well with the experimental data [4℄,although the turbulen
e model produ
es here a sho
k lo
ation forwardof the experimental lo
ation, behaviour whi
h has been previously ob-served [33, 27℄. The sho
k indu
es a separation bubble measuring about5% of 
hord. Convergen
e history for the �rst mesh is shown, in Fig-ure 11. Here we 
ompare the 
onvergen
e when using the blo
k-Ja
obipre
onditioner and when using the standard approa
h of s
alar pre
on-ditioning, with semi-
oarsened multigrid. Both methods 
onverge toma
hine a

ura
y, along with the turbulen
e model. The Ja
obi ap-proa
h 
onverges quite smoothly and rapidly to engineering a

ura
yin approximately 50 multigrid iteration, but starts degrading after 4 or-ders of magnitude. Overall in term of CPU time, the Ja
obi approa
his approximately 3:6 times faster. A similar result is observed with these
ond mesh for whi
h the degradation of the 
onvergen
e after 4 or-ders of magnitude is a lot more severe (Fig. 12). Freezing the valuesof the turbulen
e model at a 
ertain point in the 
al
ulation providesthe se
ond 
onvergen
e history in the same �gure. This indi
ates it isthe turbulen
e model whi
h is largely responsible for the 
onvergen
edegradation in the �rst 
al
ulation.Finally, in Fig. 13 we are plotting the multigrid 
onvergen
e of thetwo meshes in order to assess the grid-independent 
onvergen
e rate ofour multigrid algorithm. Although parti
ular attention to the design ofthe restri
tion and prolongation operators has been made to meet thene
essary a

ura
y 
onditions, the results seem to show that grid inde-penden
y is not a
hieved, even when looking at the �rst four orders of
onvergen
e for whi
h the turbulen
e model should not 
ause too mu
htrouble. This is attributed to the well-known 
ow alignment problemwhi
h 
auses some 
onve
tive modes to de
ouple preventing 
ertain os-
illatory modes from being damped. In areas su
h as a boundary layer,11



Table 2: Grid sizes; number of verti
es1st 
ollapse 2nd 
ollapse 3rd 
ollapse 4th 
ollapse�rst mesh (19100 vert.) 2500 1200 1000 400se
ond mesh (5400 vert.) 8900 4400 2300 1400the vis
osity eliminates a large fra
tion of these error modes, but inother areas su
h as in the wake where this me
hanism does not o

ur,and where there is a high 
on
entration of high aspe
t ratio 
ells, thisproblem still persists and is thought to be responsible for the degrada-tion of the 
onvergen
e rate. It 
an be noted that for the �rst ordersof magnitude, where the a
ousti
 error modes are the dominant ones,the algorithm is highly eÆ
ient and 
onvergen
e is grid independent.More investigation would be ne
essary if one wanted to improve theasymptoti
 
onvergen
e rate.The �nal example is the 
ow through the 3D bypass du
t of a tur-bofan engine. The geometry is 
omposed of ten struts and a pylon.The �ne grid has 274000 grid points and is 
onstru
ted by sta
kinga sequen
e of 2D grids. Convergen
e history and Ma
h 
ontours 
anbe seen in Figures 15 and 16. From the �ne grid, two 
oarser gridsare produ
ed 
ontaining respe
tively 138000 and 79300 verti
es. The
oarsening ratio is low be
ause the multigrid semi-
oarsening strategyis essentially only removing points in one-dimension in the areas of highstret
hing, whi
h is both through the boundary layer and radially. Theradial stret
hing is a 
onsequen
e of the grid being 
omposed of sta
ked2D grids with a �xed radial step. This leaves a high aspe
t ratio in theradial dire
tion in all regions of the 2D grid that have a mu
h smallermesh spa
ing than the radial step. For an in
ow Ma
h number of 0:55,with zero in
iden
e and a Reynolds number of 6 million around thestruts, 
onvergen
e to 6 orders of magnitude is rea
hed in 250 multi-grid 
y
les (the pylon is here treated as invis
id, be
ause the purposeof studying this geometry did not require the pylon boundary layer tobe resolved).5 Con
lusionsIn this paper we have presented a new multigrid method for the solutionof the Euler and Navier-Stokes equations on unstru
tured hybrid grids.Unlike the agglomeration multigrid method, it involves the 
onstru
tionof a sequen
e of 
oarse hybrid grids on whi
h the same residual operator
an be applied. The bene�t of this approa
h is that linear 
orre
tions
an be prolonged exa
tly, thereby satisfying a key requirement for grid12



independent 
onvergen
e of the Navier-Stokes equations.The 
oarse grids are generated through an element 
ollapsing pro-
edure whi
h preserves mu
h of the stru
ture in semi-stru
tured grids,and in parti
ular gives semi-
oarsening in boundary layer grids whi
hare 
reated by the method of advan
ing normals.Numeri
al results for a variety of two-dimensional and three-dimensionalproblems show that the multigrid 
onvergen
e rate is ex
ellent. An im-portant 
ontributing fa
tor is the use of Ja
obi pre
onditioning for theRunge-Kutta iteration, whi
h over
omes mu
h of the numeri
al sti�nessasso
iated with the Navier-Stokes equations in the highly stret
hed 
ellsin the boundary layer.6 A
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Figure 2: NACA0012; �ne grid
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                                                                                Figure 3: NACA0012; �rst 
oarsening
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                                                                                Figure 4: NACA0012; fourth 
oarsening
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Figure 5: NACA0012; 
oeÆ
ient of pressure
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Figure 6: NACA0012; 
onvergen
e history
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Figure 7: Business jet, 
onvergen
e history
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                                                                                Figure 8: Business jet, Ma
h number 
ontours
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Figure 9: RAE2822; �ne grid.
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Figure 10: RAE2822; �rst 
ollapse
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Figure 11: RAE2822; 
onvergen
e history - First mesh.
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Figure 12: RAE2822; 
onvergen
e history - Se
ond mesh.
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Figure 13: RAE2822; assesment of the multigrid 
onvergen
e regarding to themesh size.
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Figure 14: RAE2822; 
oeÆ
ient of pressure
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Figure 15: 3D Bypass du
t; 
onvergen
e history

29



                                                                                Figure 16: 3D Bypass du
t; Ma
h number 
ontours
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