
Post SAROD Workshop-2005

Using Automatic Differentiation

for Adjoint CFD Code Development

M.B. Giles † D. Ghate † M.C. Duta †

Abstract

This paper addresses the concerns of CFD code developers who are facing the task of creating a
discrete adjoint CFD code for design optimisation. It discusses how the development of such a
code can be greatly eased through the selective use of Automatic Differentiation, and how each
stage of the software development process can be subjected to a sequence of checks to ensure the
correctness of the final software.

Key Words: Discrete adjoint, design optimisation, automatic differentiation

1 Introduction

The use of adjoint methods for design optimisation
has been a major research area in the last few years.
Pironneau first introduced the idea of using an adjoint
approach in fluid dynamic context [18] but the appli-
cation to aeronautical design optimisation has been
pioneered by Jameson [14, 15, 19].

Jameson uses the “continuous” adjoint approach in
which the adjoint equation is formulated at the differ-
ential equation level, and it is then discretised. In
contrast to this, Elliott and Peraire [5] and others
[1, 9] follow a “discrete” adjoint approach in which one
starts with nonlinear discrete equations, and then for-
mulates the corresponding discrete adjoint equations.

There is no fundamental reason to prefer one ap-
proach over the other. Proponents of the discrete ap-
proach sometimes point to the fact that the contin-
uous approach yields a design gradient (the gradient
of the objective function with respect to the design
variables) which is not quite consistent with the dis-
crete objective function being optimised. However, it
is as good an approximation to the true design gra-
dient as the discrete gradient, and provided one uses
an optimisation strategy (e.g. preconditioned steepest
descent) which simply drives the continuous gradient
to zero, then it will yield results as good as the discrete
approach.

†Oxford University Computing Laboratory, Oxford, U.K.

c©Mike Giles, Devendra Ghate & Mihai Duta
SAROD-2005
Published in 2005 by Tata McGraw-Hill

Our strong preference for the discrete approach is
pragmatic in nature, and based on the following key
points:

• There is a clear prescriptive process for constructing
the discrete adjoint equations and boundary condi-
tions;
• In most cases, if an adjoint iterative solution tech-
nique is used then it is guaranteed to give an iter-
ative convergence rate equal to that of the original
nonlinear code;
• Automatic Differentiation can be used to substan-
tially ease the development of the adjoint CFD code.

The purpose of this paper is to explain these three
points, with particular emphasis on the final point.
One of the earliest applications which motivated the
development of “reverse mode” AD (which can stand
for either Algorithmic Differentiation [11] or Auto-
matic Differentiation [12]) was in fluid dynamics, an
adjoint version of an ocean circulation model being
developed at MIT [6]. In the aeronautical context,
perhaps the first application was by Mohammadi [16].
In simple, small applications, it is sometimes possible
to use AD as a “black-box”, feeding in a nonlinear
code and obtaining a corresponding linear perturba-
tion (forward mode AD) or adjoint (reverse mode AD)
code. However, in real applications with very large
codes in which one wants to minimise the CPU and
memory requirements, it is usually necessary to apply
the AD very selectively. This is particularly the case
in design optimisation in which one is using a fixed
point iteration to solve the original nonlinear equa-
tions [7, 8].



2 M.B. Giles, D. Ghate and M.C. Duta

2 Mathematical overview

2.1 Linear and adjoint sensitivity

propagation

Suppose we have a design process in which a set of de-
sign parameters α, leads to a computational grid with
coordinates X, producing a discrete flow solution U ,
and hence a scalar output J which is to be optimised:

α −→ X −→ U −→ J.

In order to use a gradient-based optimisation method,
one wishes to compute the derivative of J with respect
to α. Adopting the notation used in the AD commu-
nity, let α̇, Ẋ, U̇ , J̇ denote the derivative with respect
to one particular component of α (or more generally
in one particular direction in the design space).

If at each stage in the process the output is an ex-
plicit function of the input, then straightforward dif-
ferentiation gives

Ẋ =
∂X

∂α
α̇, U̇ =

∂U

∂X
Ẋ, J̇ =

∂J

∂U
U̇,

and hence

J̇ =
∂J

∂U

∂U

∂X

∂X

∂α
α̇,

Again following the notation used in the AD com-
munity the adjoint quantities α,X,U, J denote the
derivatives of J with respect to α,X,U, J , respec-
tively, with J = 1 by definition. Differentiating again,
(and with a superscript T denoting a matrix or vector
transpose) one obtains

α
def
=

(

∂J

∂α

)T

=

(

∂J

∂X

∂X

∂α

)T

=

(

∂X

∂α

)T

X,

and similarly

X =

(

∂U

∂X

)T

U, U =

(

∂U

∂J

)T

J,

giving

α =

(

∂X

∂α

)T (
∂U

∂X

)T (
∂U

∂J

)T

J.

Note that whereas the linear sensitivity analysis
proceeds forwards through the process (forward mode
in AD terminology)

α̇ −→ Ẋ −→ U̇ −→ J̇ ,

the adjoint analysis proceeds backwards (reverse mode
in AD terminology),

α ←− X ←− U ←− J.

Given these definitions, the sensitivity of the output
J to the inputs α can be evaluated in a number of
ways,

J̇ = U
T
U̇ = X

T
Ẋ = αT α̇,

so it is possible to proceed forwards through part of
the process and combine this with going backwards
through the other part of the process. This is use-
ful in applications in which part of the process is a
black-box which cannot be touched. For example, if
the step α → X involves a proprietary CAD system
or grid generator, then the only option may be to ap-
proximate the forward mode linear sensitivity through
a central finite difference using X(α±∆α).

The advantage of using the adjoint approach as far
as possible is that its computational cost is indepen-
dent of the number of design variables, whereas the
cost of the forward linear sensitivity analysis increases
linearly with the number of design variables.

2.2 Fixed point iteration

2.2.1 Nonlinear and linear equations

In CFD applications, the flow solution U is not an
explicit function of the grid coordinates X, but instead
is defined implicitly through the solution of a set of
nonlinear discrete flow equations of the form

N(U,X) = 0. (1)

To solve these equations, many CFD algorithms use
iterative methods which can be written as

Un+1 = Un − P (Un, X)N(Un, X), (2)

where P is a non-singular square matrix which is a
differentiable function of its arguments. If P were de-
fined to be L−1 where

L =
∂N

∂U
,

is the non-singular Jacobian matrix, this would be the
Newton-Raphson method which converges quadrati-
cally. However, in the iterative methods used in CFD,
P is a poor approximation to L−1 and therefore gives
linear convergence asymptotically, with the final rate
of convergence being given by the magnitude of the
largest eigenvalue of the matrix I − P (U,X)L(U,X),
where I is the identity matrix.

Differentiating Equation (1) gives

L U̇ + Ṅ = 0, (3)

where Ṅ is defined as

Ṅ =
∂N

∂X
Ẋ,



Using Automatic Differentiation for Adjoint CFD Code Development 3

with both derivatives being evaluated based on the
implicitly-defined baseline solution U(X).

Similarly, differentiating Equation (2) around a
fully-converged baseline solution in which Un = U
gives

U̇n+1 = U̇n − P
(

L U̇n + Ṅ
)

, (4)

with P based on U(X). This will converge to the so-
lution of Equation (3) with exactly the same terminal
rate of convergence as the nonlinear iteration.

To be more specific, the simple predictor/corrector
time-marching used in the model application to be
discussed later has the linearisation

U̇∗ = U̇n − T
(

L U̇n + Ṅ
)

,

U̇n+1 = U̇n − T
(

L U̇∗ + Ṅ
)

,

where T is a diagonal matrix containing the
area/timestep values for each cell. This can be ex-
pressed in the form of Equation (4) with

P = T (I − LT ).

2.2.2 Adjoint equations

Since
U̇ = −L−1Ṅ ,

the adjoint sensitivities satisfy the equation

N = − (LT )−1U,

which implies that

LTN + U = 0.

This equation can be solved iteratively using the ad-
joint iteration

N
n+1

= N
n
− PT

(

LT N
n
+ U

)

. (5)

Note the use of the transposed preconditioner P T . In
the case of the predictor/corrector time-marching,

PT = (I − TLT )T = T (I − LTT ).

Thus the adjoint iteration can be implemented using
exactly the same predictor/corrector time-marching.

The adjoint iteration converges at exactly the same
rate as the linear iteration, since I−P TLT has the
same eigenvalues as I−PL. Furthermore, if the linear
and adjoint iterations both start from zero initial con-

ditions (U̇0 =N
0
=0) then they give identical values

for the overall objective function gradient after equal
numbers of iterations since

(N
n
)T Ṅ = U

T
U̇n. (6)

This equivalence is a consequence of the following two
results which can be proved inductively:

U̇n = −

n−1
∑

m=0

(I − PL)
m

P Ṅ

N
n
= −

n−1
∑

m=0

(

I − PTLT
)m

PT U

2.2.3 Other iterative solvers

Not all iterative schemes of the form given by Equa-
tions (2) and (4) are naturally self-adjoint, in the sense
that the adjoint iteration is essentially the same as the
linear iteration. Reference [7] constructs the adjoint
iteration for multi-step Runge-Kutta methods with a
partial update of viscous terms (a popular method in-
troduced by Jameson) and also discusses the use of
multigrid for which the adjoint restriction operator
has to be the transpose of the original prolongation
operator, and vice versa.

There are also some iterative solution methods
which are not of the form given by Equations (2) and
(4), for example the use of GMRES to solve Equations
(1) and (3). In these cases, the iterative solution of the
discrete adjoint equations can probably still be solved
with the same final convergence rate, but the proof of
this will depend on the fact that L and LT have the
same eigenvalues. If a preconditioner P is used to ac-
celerate the convergence of the linear solver, then P T

should be used as the preconditioner for the adjoint
solver, since again PL and P TLT have the same eigen-
values. However, the feature of equivalence between
the linear and adjoint solutions after equal numbers
of iterations is unlikely to exist for these methods.

2.3 More general outputs

A final comment is that most objective functions of
interest depend on X as well as U . In the forward
linear analysis, the only modification this introduces
is to the final calculation,

J̇ =
∂J

∂U
U̇ +

∂J

∂X
Ẋ,

while in the reverse adjoint calculation the equation
for X is

X =

(

∂N

∂X

)T

N +

(

∂J

∂X

)T

.



4 M.B. Giles, D. Ghate and M.C. Duta

3 Automatic Differentiation

The previous section outlined the mathematics of the
discrete adjoint approach, and tried to substantiate
the first two of the key points presented in the Intro-
duction, that there is a clear prescriptive process to
constructing the discrete adjoint equations and solu-
tion procedure, and in most cases it is guaranteed to
converge at exactly the same rate as the terminal con-
vergence of the original nonlinear solver. This means
that the adjoint solver benefits immediately from all
of the research and hard work that has gone into the
rapid solution of the nonlinear discrete flow equations.

This section now addresses the third point, how the
process of creating the adjoint program can be sim-
plified through the use of Automatic Differentiation.
To do this, we begin by looking at the mathematics
of adjoint sensitivity calculation at the lowest possi-
ble level to understand how automatic differentiation
works.

Consider a computer program which starts with a
number of input variables ui, i = 1, . . . I which can be
represented collectively as an input vector u0. Each
step in the execution of the computer program com-
putes a new value as a function of two previous val-
ues; unitary functions such as exp(x) can be viewed as
a binary function with no dependence on the second
parameter. Appending this new value to the vector
of active variables, the nth execution step can be ex-
pressed as

un = fn(un−1) ≡







un−1

fn(u
n−1)






, (7)

where fn is a scalar function of two of the elements
of un−1. The result of the complete N steps of the
computer program can then be expressed as the com-
position of these individual functions to give

uN = fN ◦ fN−1 ◦ . . . ◦ f2 ◦ f1(u0). (8)

Defining u̇n to be the derivative of the vector un

with respect to one particular element of u0, differen-
tiating (7) gives

u̇n = Ln u̇n−1, Ln =







In−1

∂fn/∂u
n−1






, (9)

with In−1 being the identity matrix with dimension
equal to the length of the vector un−1. The derivative
of (8) then gives

u̇N = LN LN−1 . . . L2 L1 u̇0, (10)

which gives the sensitivity of the entire output vector
to the change in one particular element of the input
vector. The elements of the initial vector u̇0 are all
zero except for a unit value for the particular element
of interest. If one is interested in the sensitivity to NI

different input elements, then (10) must be evaluated
for each one, at a cost which is proportional to NI .

The above description is of the forward mode of AD
sensitivity calculation, which is intuitively quite natu-
ral. The reverse, or adjoint, mode is computationally
much more efficient when one is interested in the sen-
sitivity of a small number of output quantities with
respect to a large number of input parameters. Defin-
ing the column vector un to be the derivative of a
particular element of the output vector uN

i with re-
spect to the elements of un, then through the chain
rule of differentiation we obtain

(

un−1
)T

=
∂uN

i

∂un−1
=

∂uN
i

∂un

∂un

∂un−1
=
(

un
)T

Ln,

=⇒ un−1 =
(

Ln
)T

un. (11)

Hence, the sensitivity of the particular output element
to all of the elements of the input vector is given by

u0 =
(

L1
)T (

L2
)T

. . .
(

LN−1
)T (

LN
)T

uN . (12)

Note that the reverse mode calculation proceeds back-
wards from n=N to n=1. Therefore, it is necessary
to first perform the original calculation forwards from
n = 1 to n = N , storing all of the partial derivatives
needed for Ln, before then doing the reverse mode
calculation.

If one is interested in the sensitivity of NO different
output elements, then (12) must be evaluated for each
one, at a cost which is proportional to NO. Thus the
reverse mode is computationally much more efficient
than the forward mode when NO ¿ NI .

Looking in more detail at what is involved in (9)
and (11), suppose that the nth step of the original
program involves the computation

c = f(a, b).

The corresponding forward mode step will be

ċ =
∂f

∂a
ȧ+

∂f

∂b
ḃ

at a computational cost which is no more than a fac-
tor 3 greater than the original nonlinear calculation.
Looking at the structure of (Ln)T , one finds that the
corresponding reverse mode step consists of two cal-
culations:

a = a+
∂f

∂a
c



Using Automatic Differentiation for Adjoint CFD Code Development 5

b = b+
∂f

∂b
c.

At worst, this has a cost which is a factor 4 greater
than the original nonlinear calculation.

The above description outlines a clear algorithmic
approach to the reverse mode calculation of sensitivity
information. However, the programming implemen-
tation can be tedious and error-prone. Fortunately,
tools have been developed to automate this process,
either through operator overloading involving a pro-
cess known as “taping” which records all of the par-
tial derivatives in the nonlinear calculation then per-
forms the reverse mode calculations [12], or through
source code transformation which takes as an input
the original program and generates a new program to
perform the necessary calculations [6]. Further infor-
mation about AD tools and publications is available
from the AD community website www.autodiff.org
which includes links to all of the major groups working
in this field.

In the present work, we are using Tapenade, devel-
oped by Hascoët and Pascual at INRIA [4, 13]. The
software is written in Java, and it applies source trans-
formation to codes written in FORTRAN77; work is
in progress to extend the software to C and C++ but
there are technical difficulties because of their use of
pointers.

4 Example application

The example application is a 2D inviscid airfoil code
using an unstructured grid. The full source code is
available [10], including the files generated by Tape-
nade.

The nonlinear code uses a cell-centred discretisation
together with a simple predictor/corrector timemarch-
ing, using local timesteps which are also involved in
the definition of a simple first order accurate numer-
ical smoothing. The schematic of the nonlinear flow
code is given in Figure 1. There are four key nonlinear
routines which are called from within loops over cell
or faces:

• TIME_CELL:
computes the local area/timestep for a single cell
• FLUX_FACE:
computes the flux through a single regular face
• FLUX_WALL:
computes the flux for a single airfoil wall face
• LIFT_WALL:
computes the lift contribution from a single airfoil
wall face

Figure 2 shows the schematic of the linear sensitiv-
ity flow code. The part of the code before the main

time-marching loop computes the quantity Ṅ ; since
this remains constant throughout the time-marching
it is much more efficient to compute it just once
rather then re-evaluate it at each iteration. The time-
marching loop then iterates to compute U̇ , and the
final section then evaluates J̇ . The seven subroutines
called by the linear flow code are all linearisations of
the four nonlinear routines, and are generated auto-
matically by Tapenade.

As an example, Figure 3 shows the arguments for
the nonlinear routine FLUX_WALL; the inputs are the
coordinates of the two nodes at either end of the wall
face, and the flow variables in the cell next to the face,
and the output is an increment to the flux residual
for that same cell. The routines FLUX_WALL_D and
FLUX_WALL_DX are the two forward mode linearisa-
tions of FLUX_WALL. In the case of FLUX_WALL_D, the
extra input is qd which represents U̇ in the mathemat-
ical formulation, and the extra output is resd which is
the consequential perturbation to res. The suffix “D”
in the function name and the suffix “d” in the variable
names both stand for “dot”. FLUX_WALL_DX is similar
but also includes perturbations to each of the coordi-
nates. Which variables are considered “active”, and
which are treated as being fixed, is controlled by the
command line arguments supplied to Tapenade when
it creates the new routines.

The forward mode linearisation is relatively natu-
ral, but the reverse mode adjoint code in Figure 4 is
much less intuitive. The first thing to note is that
the order in which the different routines is called is
the opposite to the linear code. The first section has
the calls necessary to compute U , the time-marching
loop iterates to find the value of U , and then the final
section computes X and then evaluates the product

J̇=X
T
Ẋ.

Within the time-marching loop, the reversal of the
order in which the flux and timestep routines are
called can be explained by noting that L can be viewed
as the product of two matrices FA, where A is the ef-
fect of the timestep calculation which determines a
timestep perturbation in addition to carrying over the
flow perturbations, and then F is the effect of the lin-
earised flux calculation. The adjoint operator is then
LT = (FA)T = ATFT . Thus the fact that the trans-
pose of a product of matrices is equal to the product of
the transposed matrices in the opposite order, leads to
the reversal in the order in which the adjoint routines
are called. A similar behaviour is seen in adjoint vis-
cous codes in which a flow gradient is first computed
in one loop over edges, and then the viscous flux is
computed in a second loop over edges [9].



6 M.B. Giles, D. Ghate and M.C. Duta

define grid and initialise flow field

begin predictor/corrector time-marching loop
loop over cells to calculate timestep

call TIME_CELL
loop over regular faces to calculate flux

call FLUX_FACE
loop over airfoil faces to calculate flux

call FLUX_WALL
loop over cells to update solution

end time-marching loop

calculate lift
loop over boundary faces

call LIFT_WALL

Fig.1: Schematic of the nonlinear flow code

define grid and initialise flow field

define grid perturbation

loop over cells -- perturbed timestep
call TIME_CELL_DX

loop over regular faces -- perturbed flux
call FLUX_FACE_DX

loop over airfoil faces -- perturbed flux
call FLUX_WALL_DX

begin predictor/corrector time-marching loop
loop over cells to calculate timestep

call TIME_CELL_D
loop over regular faces to calculate flux

call FLUX_FACE_D
loop over airfoil faces to calculate flux

call FLUX_WALL_D
loop over cells to update solution

end time-marching loop

calculate lift
loop over boundary faces -- perturbed lift

call LIFT_WALL_DX

Fig.2: Schematic of the linear flow code

FLUX_WALL(x1,x2,q,res)

FLUX_WALL_D(x1,x2,q,qd,res,resd)

FLUX_WALL_DX(x1,x1d,x2,x2d,q,qd,res,resd)

FLUX_WALL_B(x1,x2,q,qb,res,resb)

FLUX_WALL_BX(x1,x1b,x2,x2b,q,qb,res,resb)

Fig.3: The arguments of the nonlinear subroutine
FLUX WALL and its Tapenade-generated derivatives

define grid and initialise flow field

calculate adjoint lift sensitivity
loop over boundary faces
call LIFT_WALL_BX

begin predictor/corrector time-marching loop
loop over airfoil faces -- adjoint flux
call FLUX_WALL_B

loop over regular faces -- adjoint flux
call FLUX_FACE_B

loop over cells -- adjoint timestep calc
call TIME_CELL_B

loop over cells to update solution
end time-marching loop

loop over airfoil faces -- adjoint flux
call FLUX_WALL_BX

loop over regular faces -- adjoint flux
call FLUX_FACE_BX

loop over cells -- adjoint timestep calc
call TIME_CELL_BX

loop over nodes to evaluate lift sensitivity

Fig.4: Schematic of the adjoint flow code



Using Automatic Differentiation for Adjoint CFD Code Development 7

Looking now in detail at the adjoint versions of
FLUX_WALL in Figure 3, these too operate in reverse.
While the linear version FLUX_WALL_D computes

˙res = ˙res +K q̇,

for some matrix K, the adjoint version FLUX_WALL_B
computes

q = q +KT res.

The suffix “B” in the function name and the suf-
fix “b” in the variable names qb and resb all stand
for “bar”. Thus resb is an unchanged input to
FLUX_WALL_B, and qb is incremented appropriately by
the routine. FLUX_WALL_BX is the version which in-
cludes variations in the coordinates; this is used to
evaluate (∂N/∂X)TN as part of the calculation of X.

The generation of the linear and adjoint ver-
sions of the four nonlinear routines is handled au-
tomatically by the Unix Makefile used to create
the executables. For example, when the object file
flux_wall_bx.o is needed for the adjoint executable
air_adj, the Makefile runs Tapenade with an ap-
propriate set of command line arguments, compiles
the file flux_wall_bx.f which it generates, and then
deletes the FORTRAN source file; in practice it
is rarely helpful to look at the Tapenade-generated
source except to better understand how Tapenade
works.

The trickiest part of using Tapenade is correctly
specifying the status of active variables:

• input only – it is never used again after the routine
is finished, so its output value is irrelevant;
• output only – it is assigned a value within the rou-
tine, so its input value is irrelevant;
• input and output – in practice the most common
case, since “input” variables such as the flow vari-
ables will be used again later, and “output” vari-
ables such as the flux residual are in fact increments
added to pre-existing values.

Figure 5 shows the part of the Makefile which uses
Tapenade to generate the four linear and adjoint rou-
tines which are derived from the routine FLUX_WALL
within the file routines.F. In each case, there is an
initial step which uses the C preprocessor to produce
pure FORTRAN code. This is processed by Tape-
nade to produce the desired output code, which is then
compiled, and finally all unwanted intermediate files
are deleted. The Tapenade flags are fairly obvious;
-forward and -reverse specify whether to generate
linear or adjoint code, -vars and -outvars specify the
input and output active variables, and -funcsuffix
gives the function suffix to be used in place of the de-
fault " d" or " b", depending on the AD mode. For
more information, see the documentation [13].

flux_wall_d.o: routines.F
${GCC} -E -C -P routines.F > routines.f;
${TPN} -forward \

-head flux_wall \
-output flux_wall \
-vars "q res" \
-outvars "q res" \
routines.f;

${FC} ${FFLAGS} -c flux_wall_d.f;
/bin/rm routines.f flux_wall_d.f *.msg

flux_wall_dx.o: routines.F
${GCC} -E -C -P routines.F > routines.f;
${TPN} -forward \

-head flux_wall \
-output flux_wall \
-vars "x1 x2 q res" \
-outvars "x1 x2 q res" \
-funcsuffix "_dx" \
routines.f;

${FC} ${FFLAGS} -c flux_wall_dx.f;
/bin/rm routines.f flux_wall_dx.f *.msg

flux_wall_b.o: routines.F
${GCC} -E -C -P routines.F > routines.f;
${TPN} -backward \

-head flux_wall \
-output flux_wall \
-vars "q res" \
-outvars "q res" \
routines.f;

${FC} ${FFLAGS} -c flux_wall_b.f;
/bin/rm routines.f flux_wall_b.f *.msg

flux_wall_bx.o: routines.F
${GCC} -E -C -P routines.F > routines.f;
${TPN} -backward \

-head flux_wall \
-output flux_wall \
-vars "x1 x2 q res" \
-outvars "x1 x2 q res" \
-funcsuffix "_bx" \
routines.f;

${FC} ${FFLAGS} -c flux_wall_bx.f;
/bin/rm routines.f flux_wall_bx.f *.msg

Fig.5: Part of Makefile with Tapenade instructions for
generating linear and adjoint versions of FLUX WALL;
GCC, TPN, FC and FFLAGS correspond to the Gnu C
compiler, Tapenade, the FORTRAN compiler and its
compilation flags. respectively.



8 M.B. Giles, D. Ghate and M.C. Duta

5 Validation checks

Although we have complete confidence in the correct-
ness of the linear and adjoint code produced by Tape-
nade, it is nevertheless good programming practice to
implement validation checks to ensure the software is
performing correctly; in the past, this has helped to
identify cases in which we have incorrectly specified
the status of active variables when using Tapenade.
This is particularly important in much larger applica-
tions than the model one considered in this paper.

5.1 Individual routines

One set of checks can be performed at the level of
the individual routines generated by Tapenade. In
concept, we have

• a nonlinear routine which computes a vector output
f(u) given a vector input u;

• a linear routine which computes

(

∂f

∂u

)

u̇;

• and an adjoint routine which computes

(

∂f

∂u

)T

f .

By calling the linear and adjoint routines for a se-
quence of different unit vectors u̇ and f , each one zero
except for a unit value for one element, it is possible to
construct the matrix ∂f/∂u which each is effectively
using, and check that these are in agreement.

Checking for consistency against the original non-
linear code is possible by using the complex Taylor
series expansion method [20, 2]. If f(u) is assumed to
be a complex analytic function, then a Taylor series
expansion gives

lim
ε→0

I {f(u+iεu̇)}

ε
=

∂f

∂u
u̇.

In this equation, the notation I{. . .} denotes the imag-
inary part of a complex quantity. The convergence to
the limiting value is second order in ε so numerical
evaluation with ε < 10−8 yields double precision ac-
curacy. In practice, we use ε = 10−20. Unlike the
usual finite difference approximation of a linear sen-
sitivity, there is no cancellation effect from the sub-
traction of two quantities of similar magnitude, and
therefore no unacceptable loss of accuracy due to ma-
chine rounding error. Applying this technique to a
FORTRAN code requires little more than replacing
all REAL*8 declarations by COMPLEX*16, and defining
appropriate complex analytic versions of the intrinsic
functions min,max,abs.

The source code [10] includes a test program
testlinadj which performs all of these checks for all
four of the nonlinear routines and their associated lin-
ear and adjoint derivatives.

5.2 Complete codes

A second set of checks can be applied to the complete
codes,

• a nonlinear code which computes J(α);

• a linear code which computes J̇ ;
• and an adjoint code which also computes J̇ .

The first thing is to check that the linear and ad-
joint codes produce the same value for J̇ . Not only
should the values agree once both codes have fully
converged, they should also agree after performing
the same number of iterations if they use an itera-
tive solution method of the type described earlier in
the mathematical overview. This is very helpful when
debugging very large codes which may run for a long
time; checking for full agreement down to machine ac-
curacy after 10 iterations takes much less CPU time
than checking after 10,000 iterations.

It is usually impractical to apply the complex Taylor
series method to the entire nonlinear code because it
requires too much intervention in the code, so instead
the final test is to check the linear sensitivity J̇ against
the finite difference approximation

1

2∆α

(

J(α+∆α)− J(α−∆α)
)

.

Typical results from such a check are shown in Figure
6. For extremely small values of ∆α, the dominant
error is due to machine accuracy in computing J(α)
and has a magnitude which is O(ε/∆α) where ε here
represents the level of machine accuracy. For larger
values of ∆α, the dominant error is O(∆α2) due to
the second order accuracy of central finite differences.

10−10 10−8 10−6 10−4 10−2 100

10−8

10−6

10−4

10−2

∆ α

re
la

tiv
e 

er
ro

r

Fig.6: Relative error in finite difference sensitivity as
a function of the step size ∆α.



Using Automatic Differentiation for Adjoint CFD Code Development 9

6 Conclusions

Although the example application in this paper is very
simple, the same approach is also being used for a set
of turbomachinery codes called HYDRA. HYDRA in-
cludes a nonlinear analysis code [17], a linear code for
the analysis of flutter and unsteady forced response
[3], and an adjoint code for design optimisation [9].
The use of Tapenade is essential in keeping the linear
and adjoint codes consistent with the latest changes
to the nonlinear code, and Tapenade handles with-
out any difficulty the complicated nonlinearities and
conditional branching in the turbulence modelling and
the characteristic-based numerical smoothing. As in
the model application, an extensive set of validation
checks is employed to verify the correctness of the lin-
ear and adjoint routines and codes.

It is our hope that the mathematical overview and
software development process outlined in this paper
will help and encourage those who are interested in
developing industrial scale adjoint codes for design op-
timisation. It is strongly recommended that those who
are interested in this should download the source code
and Makefile [10] and obtain a copy of Tapenade [13]
in order to try out the codes and run through the
whole development process and validation checks.

Acknowledgements

This research was performed as part of the MCDO
project funded by the UK Department for Trade and
Industry and Rolls-Royce plc, and coordinated by
Yoon Ho, Leigh Lapworth and Shahrokh Shahpar.

We are very grateful to Laurent Hascoët for making
Tapenade available to us, and for being so responsive
to our queries.

REFERENCES

[1] W.K. Anderson and D.L. Bonhaus. Airfoil design
on unstructured grids for turbulent flows. AIAA
J., 37(2):185–191, 1999.

[2] W.K. Anderson and E. Nielsen. Sensitivity anal-
ysis for Navier-Stokes equations on unstructured
grids using complex variables. AIAA J., 39(1):56–
63, 2001.

[3] M.S. Campobasso and M.B. Giles. Effect of flow
instabilities on the linear analysis of turboma-
chinery aeroelasticity. AIAA J. Propulsion and
Power, 19(2), 2003.

[4] F. Courty, A. Dervieux, B. Koobus, and L. Has-
coet. Reverse automatic differentiation for op-
timum design: from adjoint state assembly to
gradient computation. Opt. Meth. and Software,
18(5):615–627, 2003.

[5] J. Elliott and J. Peraire. Practical 3D aerody-
namic design and optimization using unstructured

meshes. AIAA J., 35(9):1479–1485, 1997.
[6] R. Giering and T. Kaminski. Recipes for adjoint

code construction. ACM Trans. Math. Software,
24(4):437–474, 1998.

[7] M.B. Giles. On the use of Runge-Kutta time-
marching and multigrid for the solution of steady
adjoint equations. Technical Report NA00/10,
Oxford University Computing Laboratory, 2000.

[8] M.B. Giles. On the iterative solution of adjoint
equations. In G. Corliss, C. Faure, A. Griewank,
L. Hascoët, and U. Naumann, editors, Automatic
Differentiation: From Simulation to Optimiza-
tion, pages 145–152. Springer-Verlag, 2001.

[9] M.B. Giles, M.C. Duta, J.-D. Müller, and N.A.
Pierce. Algorithm developments for discrete ad-
joint methods. AIAA J., 42(2), 2003.

[10] M.B. Giles and D. Ghate. Source code for
airfoil testcase for forward and reverse mode
automatic differentiation using Tapenade, 2005.
http://www.comlab.ox.ac.uk/mike.giles/airfoil/.

[11] A. Griewank. Evaluating derivatives : princi-
ples and techniques of algorithmic differentiation.
SIAM, 2000.

[12] A. Griewank, D. Juedes, and J. Utke. ADOL-C:
a package for the automatic differentiation of al-
gorithms written in C/C++. ACM Trans. Math.
Software, 22(2):437–474, 1996.

[13] L. Hascoët and V. Pascual. Tapenade 2.1 user’s
guide. Technical Report 0300, INRIA, 2004
http://www-sop.inria.fr/tropics/.

[14] A. Jameson. Aerodynamic design via control the-
ory. J. Sci. Comput., 3:233–260, 1988.

[15] A. Jameson, N. Pierce, and L. Martinelli. Opti-
mum aerodynamic design using the Navier-Stokes
equations. J. Theor. Comp. Fluid Mech., 10:213–
237, 1998.

[16] B. Mohammadi and O. Pironneau. Mesh adap-
tion and automatic differentiation in a CAD-free
framework for optimal shape design. Internat. J.
Numer. Methods Fluids, 30(2):127–136, 1999.

[17] P. Moinier, J.-D. Müller, and M.B. Giles. Edge-
based multigrid and preconditioning for hybrid
grids. AIAA J., 40(10):1954–1960, 2002.

[18] O. Pironneau. On optimum design in fluid me-
chanics. J. Fluid Mech., 64:97–110, 1974.

[19] J. Reuther, A. Jameson, J.J. Alonso, M.J. Rem-
linger, and D. Saunders. Constrained multipoint
aerodynamic shape optimisation using an adjoint
formulation and parallel computers, parts 1 and
2. J. Aircraft, 36(1):51–74, 1999.

[20] W. Squire and G. Trapp. Using complex variables
to estimate derivatives of real functions. SIAM
Rev., 10(1):110–112, 1998.


