
ELSEVIER

Advances in Engineering Software 28 (1997) 189-201
0 1997 Elsevier Science Limited

0965-9978(96)00039-7
Printed in Great Britain. All rights reserved

0965-9978/97/%17.00

Renumbering unstructured grids to improve the
performance of codes on hierarchical memory

machines

D. A. Burgess* & M. B. Giles
Numerical Analysis Group, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OXI, 3QD, UK

(Received 28 June 1995; accepted 29 February 1996)

The performance of unstructured grid codes on workstations and distributed
memory parallel computers is substantially affected by the efficiency of the
memory hierarchy. This efficiency essentially depends on the order of computa-
tion and numbering of the grid. Most grid generators do not take into account the
effect of the memory hierarchy when producing grids so application programmers
must renumber grids to improve the performance of their codes. To design a good
renumbering scheme a detailed runtime analysis of the data movement in an
application code is needed. Thus, a memory hierarchy simulator has been
developed to analyse the effect of existing renumbering schemes such as band-
width reduction, the Greedy method, colouring, random numbering and the
original numbering produced by the grid generator. The renumbering is applied
to either vertices, edges, faces or cells and two algorithms are proposed to
consistently renumber the other entities used in the solver. The simulated and
actual timings show that bandwidth reduction and Greedy methods give the best
performance on IBM RS/6000, SGI Indy, SGI Indigo and SGI Power Challenge
machines for three-dimensional Poissons’s, Maxwell’s and the Euler equations
solvers. The improvement in performance is over a factor of two for applications
with large grids and a high ratio of memory-accesses to computation. This factor
is even higher for memory hierarchies with small caches. 0 1997 Elsevier Science
Limited. All rights reserved.

1 INTRODUCTION

The trend in computing is towards workstations and
distributed memory parallel machines. These computers
are designed with memory hierarchies that supply the
processor with data. The processor is usually faster than
the speed at which the largest, slowest memory level can
provide data, so it is essential to utilise the memory
hierarchy effectively. Significant improvements in the
rate of computation can often be gained by simple
changes to the csde or to the order of accessing data.
Memory hierarchy performance is going to be a limiting
constraint on the performance of future generation
processors’ so it is essential to optimise memory usage.

This paper concentrates on data ordering to optimise
the speed of unstructured grid codes on hierarchical

*To whom all correspondence should be addressed at: SCCM,
CS Department, Gates Building 2B, Stanford University,
Stanford, CA 94305-9025, USA.

memory machines. Unstructured grid generators usually
create numbers for vertices and cells as they produce
them. For a frontal grid generator2 the vertices are often
numbered in a spiral fashion whereas a Delaunay
generator3 or a grid adaption generator4 effectively has
random numbering. Many grid generators do not
renumber the vertices and cells before handing the grid
to the user. Therefore, grid renumbering algorithms that
improve locality of data to optimise code performance
on all types of hierarchical memory machines need to be
used.

Ineffective use of the memory hierarchy in parallel
computing can often be observed if super-linear speedup
occurs. This happens when the serial computation
spends relatively more time accessing the whole grid
from memory compared to the distributed parallel
processors that access smaller grid partitions from
local memories. This paper shows, by observing
simulations, that renumbering produces the same rate
of accessing data from memory for all grid sizes.

189

190 D. A. Burgess, M. B. Giles

Therefore, a more informative speedup graph can be
obtained by renumbering the whole grid in the serial
case and the individual grid partitions generated for the
parallel cases.

This paper concentrates on two renumbering strate-
gies that improve the locality of data. One is based on a
bandwidth reduction algorithm developed by Cuthill-
McKee5 and the other is a variant of the Greedy
Method.6 To find the optimal renumbering strategy the
behaviour of the memory hierarchy needs to be
analysed. A memory hierarchy simulator can supply
detailed information on a code’s performance for classes
of machines. Therefore, a memory hierarchy simulator
has been developed to follow the exact movement of
data between memory and the processor’s registers, and
predict execution times. The memory hierarchy of
workstations is described in Section 2, the simulator in
Section 3 and the two renumbering strategies are
discussed in Section 4. These renumbering strategies
are evaluated in three three-dimensional test cases: a
Jacobi solver for solving Poisson’s equation; a conjugate
gradient solver used to solve Maxwell’s equation7 and
an edge-based algorithm to solve the Euler equations.*
The first two test cases are simulated for an IBM RS/
6000 model 350, and all cases are timed on IBM RS/
6000 model 350, SGI Indy, SGI Indigo and SGI Power
Challenge machines. The results are presented in Section
5 and show that the performance gain is dependent on
the size of the memory and the grid. Conclusions are
drawn in Section 6.

2 MEMORY HIERARCHY

In this section we briefly describe the memory hierarchy
and the principles used by manufacturers to design the
smaller memory levels in this hierarchy. Hardware
design optimisations to larger memory levels in the
hierarchy also exist but these do not significantly affect
the renumbering strategy so will not be discussed.

A memory hierarchy comprises several layers of
memory. The data contained in the first level, the
primary cache, is a subset of that in the second level, the
secondary cache, and so on. The last level is the main
memory which usually holds all the data. Registers are
within the processor and hold data that is currently
being worked on by the processing units. The advantage
of having this structure is that the processor can access
the caches, small amounts of memory, much faster than
main memory. For example, the IBM RS/6000 proces-
sor has a two level memory hierarchy, depicted in Fig. 1.

The renumbering strategies proposed in Section 4 try
to exploit two main principles of the memory hierarchy:

- principle of spatial locality forecasts that data
surrounding the datum currently required by the
processor will probably be accessed soon;

IBM RS/6000

Memory r

Fig. 1. IBM RS/6000 Model 350: memory hierarchical
structure and line access times. The cache holds a subset of
the data held in main memory and is faster to access than main

memory.

- principle of temporal locality forecasts that data that
has been accessed by the processor will probably be
accessed again soon.

The memory system ensures spatial locality by placing a
datum into a line with other data that are contiguous in
memory. The line is then the smallest unit of data
transferred between memory levels. Temporal locality is
gained by continually replacing least recently used
(LRU) lines in the cache with lines currently required
by the processor. However, lines can only be placed in
specific positions in cache and these positions are
determined by the cache design:

direct-mapped cache maps a line into only one
position in cache;
fully-associative cache maps a line into any position
in cache;
2-way, 3-way or 4way set associative cache maps a
line into only two, three or four positions in cache,
respectively.

The direct-mapped cache has the fastest placement
strategy but does not have good temporal locality prop-
erties. The fully-associative cache has optimal temporal
locality but it is expensive to find the line to replace during
a memory access. The set associative cache is ‘divided’ into
sets that hold 2,3 or 4 lines and each line can map into any
position within a specific set. Most manufactures opt for
this later strategy as it is both cost effective and has
reasonable temporal locality. Figure 2 shows the IBM RS/
6000 model 350 four-way set associative cache structure.9
It has 128 sets and therefore can store 512 lines. The line
size is 64 bytes so eight double precision numbers are
brought into the cache in one instruction.

Improving code performance on hierarchical memory machines 191

f------- 128 lines of 64 bytes each (8 KBytes) -
- - - _................... - -

Cache (32KBytes) - -
_. - -

- - - _______I.................. - -

- - ___ - -
- ___ __ - -
- - --- .-

- -
._ - - -

Main Memory (64 MBytes) - - - _. ._ . ._. - -
- - -
- - - ^
- ___ -

- = lineof data -

Fig. 2. Four-way set associative cache structure of IBM RS/6000 Model 350. Each line in main memory can map into only four
locations in the four-way set associative cache. The cache holds the most recently accessed lines of data.

Computer codes generate virtual addresses for vari-
ables. A block, page, of virtual addresses is placed into a
block of physical memory. Thus, a page address mapping
between the code’s virtual page address and the
memory’s physical page address is required to fetch
data from memory to the processor’s registers. These
page address mappings are stored in main memory in a
page table. However, to speed up the access of a page
address mapping a subset called the translation lookaside
bufir (TLB) is held in the processor unit. The TLB also
has a set-associ.ativity design and usually replaces
LRU page address mappings with current mappings.
Figure 3 depicts the two-way set associative TLB
design of the IBM RS/6000 model 350. It has 64 sets

and therefore contains 128 page address mappings.
Each page is 4096 bytes which is equivalent to 64 lines
of memory.

The page address mapping informs the processor
where a datum’s page is stored in memory. If the page
address mapping is in the TLB, a TLB hit, and the
datum’s line is in the cache, a cache hit, then the datum
will be placed in a register extremely quickly (one cycle
on the IBM RS/6000). However, if the line is not in the
cache, a cache miss, or if the page address mapping is
not in the TLB, a TLB miss, then a significant number
of cycles are required to place the datum in a register.
See Fig. 1 for the hit/miss parameter costs on the IBM
RS/6000 model 350.

- 64 pages of 4 KBytes each (256 KBytes) -

- -
TLB (SlZKBytes)

- - -
--- - - -

s I I I I I
- - - _. _. __ - - -
- - - .._...._ ._. _. - - __

- - . . _ . .
- - . -

Main Memory (64 MBytes)
__ __

- - - .
- - ~ - - -

- - -

- E page address mapping

Fig. 3. Two-way set associative TLB structure of IBM RS/6000 Model 350. Each page address mapping in main memory can map
into only two locations in the two-way set associative TLB. The TLB holds a subset of the page address mappings stored in main

memory and is faster to access than main memory.

192 D. A. Burgess, M. B. Giles

A fuller overview of the memory hierarchy is given in
Patterson and Hennessey’s book. lo The basic properties
of the five machines used in this paper are given in Table
1. Note that the IBM RS/6000 model 350,9 SGI Indy
R46OOi’ have a two-level memory hierarchy, whereas
the SGI Indigo R4000 and SGI R8000 have three levels
of memory. The SGI R8000 is part of the shared
memory SGI Power Challenge machine.

3 MEMORY HIERARCHY SIMULATOR

This section describes the general memory hierarchy
simulator12 used in this paper. It enables straight-
forward analysis of the data movement within the
memory hierarchy for individual application codes on
specific machines. It produces exact numbers for cache
and TLB hits and misses for each array variable in
a code. The amount of data reuse can also be
evaluated from the proportion of hits to misses. Thus,
the cost of various renumbering algorithms can be
analysed precisely. Temam and Jalbyi3 developed a
model to estimate the amount of data that is reused
in a two level hierarchical memory machine but this
model focuses on a bandwidth reduction numbering
and cannot evaluate other renumbering methods or
analyse more than two levels of memory. An exact
approach with a general memory hierarchy simulator
is used here.

The simulator needs to know the associativity and
sizes of the cache(s) and TLB of the machine being
simulated. The simulator obtains the addresses being
accessed during the execution of an application pro-
gram. From these addresses, it can determine the
positions in the cache and TLB that the corresponding
lines and page address mappings could occupy. It can
then calculate whether cache and TLB hits and/or
misses have occurred, update the LRU addresses and
increment the total number of hit/miss values. The hit/
miss values of specific variables within the application
program can also be incremented.

To estimate the total amount of time a code takes in
memory accessing, the simulator also needs the hit/miss
parameter costs. For the IBM RS/6000 model 350,
approximate values for hit/miss parameters were deter-
mined by timing a FORTRAN 77 DO-loop that
repeatedly accessed 200 components of a REAL*8
vector with a fixed stride length. Using stride lengths of
1, 32, 513 and 512 the average number of cycles for a
cache hit-TLB hit, cache miss-TLB hit, cache hit-TLB
miss and cache miss-TLB miss were found, respectively.
This simplistic approach provides approximate values
for hit/miss load parameters, see Fig. 1. However, when
the time for other strides is predicted by the simulator
using these parameter values there are occasional
errors. Actual timings of the RS/6000 model 350 were
taken to determine the average number of cycles per

Accessing 200 elements of a
REAL’8 vector with various strides

-
I 1

-
0 i ,--Y-

I I I I I 1

0 50 100 150 200 250 2m

Stride Size

Fig. 4. Actual timings from an IBM RS/6000.

operation for various strides in Fig. 4 and the error
between the actual and simulator’s predicted timings are
displayed in Fig. 5. The errors occur because the
parameter value calculations are based upon consistent
hits or consistent misses for the cache and/or TLB
whereas some stride values have a variety of hits and
misses, and machines are designed with various hardware
features to optimise different cases. Therefore, cache-
TLB hit/miss parameter values are not fixed quantities
and are partly dependent on the lines that have been
accessed directly preceding the current access, as shown
in Warren’s results. I4 Nevertheless, fixed values are a
usual approximation in simulations. The hit/misses
parameter values determined for the RS/6000 model 350
using the above approach are used in this paper to predict
the memory access times.

Error In Simulation of IBM RS/6000
for accessing 200 elements of a

REAL*6 vector with various strides

-1.0 1 1 I I I 1 I

0 50 loo 150 200 250 300

Stride Size

Fig. 5. Error in simulated timings (actual-simulator’s pre-
dicted average number of cycles per operation) corresponding

to Fig. 4 data.

Improving code performance on hierarchical memory machines 193

To predict the total execution time of a code the computational work involves looping over a set and
amount of non-memory operations, such as arithmetic accessing data belonging to other sets using the
operations, needs to be calculated and added to the mappings. In many applications, the members of a set
simulator’s predicted time for memory accessing. The can be executed in any order without affecting the
number of cycles taken to perform arithmetic opera- final result. The execution set can therefore be renum-
tions can vary with machine and a RISC processor bered (or reordered) to improve temporal locality of
can often overlap an arithmetic operation with a load ‘mapped to’ set members. Furthermore, renumbering
and/or store memory operation. Thus, a comprehen- the ‘mapped to’ set members in a consistent manner
sive knowledge cd the machine is required to predict can improve their spatial locality. Together these can
the total executi.on time. The low level details of give significant improvements over the numbering
processors is be:yond the scope of this paper. The arising from most unstructured grid generators which
interested reader is referred to the manufacturer’s do not renumber the set members to optimise cache
processor guides. performance.

In summary, the hit/miss parameter values can
vary depending on the data access patterns of an
application code. Thus errors will occur when predicting
memory access times, as shown in Fig. 5. However, the
number of hits and misses determined by the simulator
is exact. Hence, the renumbering methods will be
evaluated based on the info~ation produced by the
simulator and the actual execution times. Actual
execution times are recorded using profilers and are
run in isolation from the simulator. Simulation results
are only presented for the IBM RS/6000 model 350
workstation.

There are a variety of data structures used in
unstructured sparse matrix calculations.t6 The choice
of data structure is usually based upon the algorithm,
the language and memory limitations. Other considera-
tions such as whether a RISC processor will be used can
also significantly affect this choice. However, data
locality optimisation can be applied to all data struc-
tures and will improve the rate of computation on
hierarchical memory machines.

4 RENUMBERING

This introduction to renumbering first describes the
difference in coding structured and unstructured grid
applications. The performance of both these categories
of codes can be improved by using the memory
hierarchy effectively and by reducing the amount of
operations that are required. This paper concentrates
solely on the memory hierarchy performance. The
results show that the performance of unstructured grid
codes can be significantly improved by simply renum-
bering the input grid data, and without altering the
program.

Loop transformations for unstructured grid com-
putations have been devised by Knijnenburg and
WijshoE f7 but these rely on taking advantage of
repetitive patterns throughout the matrix and rewriting
code. However, specific patterns of the unstructured
sparse matrix can only be determined at runtime so the
performance improvement of this approach is grid
dependent. This paper deals with general unstructured
sparse matrices and shows that the rate of computation
can be substantially improved by simply renumbering
grids.

4.1 Renumbering strategy

There is a plethora of papers and books that describe
ways that codes can be optimised for structured mesh
computations on hierarchical memory machines. A
structured grid solver uses an indexing system to
determine neighbouring grid members with loops over
index dimensionv of the grid. Loop transformation
techniques such as loop-interchanging and loop-
blocking15 are ueeded to improve data locality in
dense9 and structured sparse matrix applications.
These transformations can either be hand coded or
performed by a m-eprocessing compiler.

To renumber the sets, the mappings between sets are
used. These mappings provide information about the
connectivity of a grid and this can be exploited to place
neighbouring set members close together in memory.
The following strategy is used:
- a mapping is chosen to initially renumber one set

(described in Section 4.2);
- once one set has been renumbered it is then possible

to consistently renumber all other connected sets
based on this first one (described in Section 4.3).

4.2 Renmbering the first set

Unstructured grid solvers are coded differently from
structured grid solvers and use a mapping approach
to determine n~~ighbours. In an unst~ctured grid
code there can be several sets (for example vertices,
edges, faces and cells) and mappings between sets (for
example, the cell to vertex mapping). Most of the

There are various algorithms that renumber unstruc-
tured grids. Duff and Meurant” compared 17 different
orderings to determine the best ILU precondi~oner for
the Conjugate Gradients algorithm.tg The main idea
behind renumbering for improving cache performance is
to place neighbouring members of a set close together

194 D. A. Burgess, M. B. Giles

in memory. Thus, two main algorithms have been
chosen with this aim in mind. One is a band~dth
reduction method and the other is a variant of the
Greedy method. Both methods require a mapping
between the same set, such as a list of connected
vertex pairs. If a mapping of this form is not explicitly
available in the grid then an artificial one can be
constructed from a mapping between different sets. To
determine an artificial set BI+B mapping based on a set
A+-+B mapping, loop over set A members and for each
set A member define a mapping between all pairs of B
members that it maps to.

4.2.1 Bandwidth reduction

Bandwidth reduction is a family of renumbering methods
that place non-zeros of a sparse matrix close to the main
diagonal. These methods have been used suc~ssfully in
several fields such as matrix preconditioning’s and mesh
partitioning.20321 Das et af.22 also used a bandwidth
reduction method for renumbering a grid to double the
computational rate of an Euler solver on an iPSC/860
processor.

There are a number of popular bandwidth reduction
algorithms such as the Reverse Cuthill-McKee
(RCM)5$23 and Gibbs-Poole-Stockmeyer24 algorithms.
These methods can be viewed physically as splitting the
mesh into a number of layers (surfaces in three
dimensions}. The members within each layer are then
numbered contiguously in memory. Figure 6(b) shows
the sparsity pattern of a 4913 vertex matrix using the
RCM algorithm. This originated from the 17 x 17 x 17
structured cube mesh in Fig. 6(a). Duff and Meurant’*
showed that the RCM algorithm produces a good
numbe~ng for ILU preconditioning and sparse LU
solvers. All bandwidth reduction results in this paper use
the RCM algorithm.

Random numbering within each layer of the band-
width reduction (RCMLR) algo~thm is also tested to
see whether the numbering within layers is important for
cache performance, Fig. 6(c).

4.2.2 Greedy

The Greedy method described by Farhat places
neighbouring members of a set into blocks. The
members within each block are numbered contigu-
ously in memory. The Greedy method originated
from ideas on partitioning grids. We expect that the
Greedy ordering with small block sizes would not be
as good as the bandwidth reduced ordering for
preventing fill-in of sparse LU solvers or producing
good ILU preconditioners. Some tests revealed that
the Greedy ordering with small block sizes created
worse ILU pr~onditioners than the band~dth
reduced ordering. The reason for choosing this
method is based on experiences gained in structured
solver loops.

As described previously, in structured grid codes the
members of a set are numbered based on their index
positions in the mesh. Thus, an array is referenced by
two (three) indices in two (three) dimensions and the
loops are generated over index directions. This can
induce spatial locality of data but if the grid is large then
temporal locality is lost as the cache cannot retain
data associated with a point {line) of the grid by the
time it has completed compu~tions on a line (plane)
of the grid. To increase temporal locality, and thus
enhance the performance of the code on hierarchical
memory machines, loop-blocking15 is frequently used.
This enables one physical block of the grid to be
worked on at a time. The members of the set within a
block are brought into the cache and reused before
moving onto the next block. This loop-blocking

Table 1. Properties of the IBM RSj6000, SGI Indy, SGI Indigo and SGI R8000

Computer IBM R~/4~ SGI Indy SGI Indigo SGI RN00

Processor
Frequency
Peak performance

Instruction cache

Data cache
Cache organisation
Line size

Secondary cache
Cache organisation
Line size

Model 350
41.7MHz
83.4 Mflops

32 KBytes

32 KBytes
Four-way
64 Bytes

N/A
N/A
N/A

TLB organisation Two-way
TLB entries 128
Page size 4 KBytes

Main memory 64 MBytes

R4600
100 MHz
33 Mflops

16 Kbytes

16 Kbytes
Two-way
32 Bytes

N/A
N/A
N/A
Fully

96
4 KBytes

32 Mbytes

R4000
100 MHz
33 Mflops

8 KBytes

8 KBytes
Direct

16 Bytes

1 MBytes
Direct

128 Bytes

Fully
96

4 KBytes

64 MBytes

R8000
75 MHz

300 Mflops

16 KBytes

16 KBytes
Direct

32 Bytes

4 MBytes
Four-way

512 Bytes

Three-way
384
16 KBytes

512 MBytes

Improving code performance on hierarchical memory machines

(4

195

Fig. 6. Sparse ma.trix originating from 17 x 17 x 17 cube mesh with (a) lexicographical ordering, (b) Reverse Cuthill-
McKee ordering, (c) Reverse Cuthill-McKee with random ordering within each layer, and (d) Greedy orderings with a block

size of 500.

concept can be ‘applied’ implicitly to the unstructured
solver’s loops by renumbering the input data into
blocks. This is the result of applying the Greedy
method.

A variant of the Greedy algorithm that uses a
mapping between the same set is described here.
Essentially, the algorithm implicitly creates blocks in
the grid when assigning a new number (number

permutation) to each member of the set. To start the
Greedy algorithm, a member on the boundary of the
grid is chosen (step 1). The neighbouring information,
specified by the set mapping to itself, is then used to fill
blocks of a given block size (step 4). Each block
originates from the interface of a previous block to
ensure data locality between blocks whenever possible
(step 6). Once the algorithm runs out of neighbouring

196 D. A. Burgess, M. B. Giles

Table 2. Timing (in ms) a Jacobi smoother 011 a 65 x 65 x 65 structured cube grid witb various vertiex
aumberings

Algorithm IBM RS~6~0

Generator 261
Completely random 1633
Greedy (IO) 296
Greedy (100) 281
Greedy (1OOO) 284
Greedy (10 OOO) 314
RCM 270
RCMLR 402

SGI Indigo

593
2494

671
643
636
648

SGI Indy SGI R8OOO

530 201
1664 241

573 218
552 214
579 210
611 209
546 202
893 202

members, it tries to jump to a previous block-inte~a~
location (step 7). This produces a disconnected block
within the same connected grid component. However, if
all previous block-interface members have been
assigned a number permutation then all the members
within the connected grid component have a number
pe~utation. In this case, the algorithm jumps to a
new disconnected grid component (step 8). The
precise algorithm to find a number permutation from
old to new numbers for Nn set B members is as
follows:

Greedy algorithm
1. input Ma = block size, and choose a member 6k E B
2. initialise: counter = 0, number permutation

Pa(1: Na) = 0 and list I = 0
3. initialise list L to be bk’s neighbours with no number

~~utation
4. while (L # 0 and mod(counter, Ma) #O and

counter < IVB)
bj = first member in list L
counter = counter + 1
PB(bj) = counter
remove bi from L and I
add bj’s neighbours with no number ~rmutation to
end of list L

5. if (counter = Nn) FINISHED
6. if (mod(counter, Ma) = 0) start a new block with bk E L
7. if (L = 0 and Z # 0) find a previous block-interface

location with bk E Z
8. if (L = 0 and I= 0) find a bk E B with no number

permutation
9. add L to interface list I and goto 3.

The Greedy algorithm is O(Nn). Figure 6(d) shows
the sparsity pattern of a cube mesh with a block size of
500 to illustrate the effect of the Greedy method.

4.3 Consistent renumbering of all sets based on the first
set

Once the first set has been renumbered it is important
to renumber all the other sets consistently based on
this first set. To describe the concept of consistent
renumbering of all sets a FORTRAN 77 example sparse
matrix-vector product in compressed sparse row formatI

is analysed below:

SUBROUTINE AX(NROW,IROW,NE,NCOL,A,X,Y)
C-Sparse matrix-vector product Y = AX in Compressed
C-Sparse Row format

INTEGER NROW,lROW(NROW+l),NE
lNT~GER(NE),iE,l,J
REAL*8 A(NE),X(NROW),Y(NROW),SUM
DO IE=l,NROWS

SUM = O.ODO
DO l=lROW(lE),IROW(lE+1)-1

C.. Find column position of lth non-zero value of A
J=NCOL(I)

C.. .Perform matrix-vector product
SUM -SUM +A(I)*X(J)

ENDDO
Y(IE) =SUM

ENDDO

The double precision vector A represents an N x N
matrix, where N is the number of vertices in the mesh,
with the non-zero values a0 of the sparse matrix stored
row by row; i and j are the global vertex numbers in the
mesh and aij represents an edge joining these vertices.
Integer vector NCOL contains the cohmm indices of the
elements a# stored in A and integer vector I ROW contains
the pointers to the along of each row in A and NCOL.
A and N CO L are accessed sequentially in the DO-loop and
will have spatial locality. Thus on an IBM RS/6000 with a
line size of 64 bytes there will be one cache miss for every
eight loads of A when working in double precision and one
cache miss for every 16 loads of NCOL. However, the
number of cache misses that occur for vector X will depend
crucially on the order of the columns and interferences
between other lines of data.t3 To increase the spatial
locality of X the vertices should be renumbered. If the
vertices are renumbered then edges will have to be
reordered so that the rows will be worked on in ascending
order. This will also increase the temporal locality of X.
Thus vertices and edges should be renumbered consistently
with each other.

Before consistently renumbering other sets the
number permutation for set B, calculated using one of
the methods in Section 4.2, should be applied to:

- reorder all data associated with set B
- renumber all mappings that map to set B
- reorder all mappings that map from set B

Improving code performance on hierarchical memory machines 197

Table 3. Siiulation of one Jacobi smoother iteration on a 65 x 65 x 65 cube grid with various vertex numberings on an IBM RS/6000
model 350

Quantity Generator Random Greedy (100) RCM RCMLR

LOADS into registers
cache hits and TLB hits
cache hits and TLB misses
cache misses and TLB hits
cache misses and TLB misses

STORES into memory
cache hits and TLB hits
cache hits and TLB misses
cache misses and TLB hits
cache misses and TLB misses

Cycle predictions
cycles to load A
cycles to load P
cycles to load and store Q
cycles to load F
cycles to load and store DQ

Total

Average # cycles per memory operation

Total # cycles + 7*NVERT
Total time (ms)

Actual time

4 328 173 2 778 080 4 303 262 4 328 173 3 867 043
0 14926 1 145 0 0

336 157 633 581 356 104 336 157 797 287
4 295 1242 038 8114 4 295 4 295

514921 513 827 514783 514921 514921
0 1094 138 0 0

33 791 33 658 33 774 33 792 33 792
538 671 555 537 537

697 201
2 964 858
4 178 585

697 201
1394 360

9 932 206

1.907

11854581
284

267

726 744 699 089 697 201 697 201
2972 175 2 967 567 2964858 2 964 858

60 577 078 4584913 4 178 585 9 407 799
727 534 699 522 697 201 697 201

1421682 1397 841 1394 360 1394 360

66425 212 10 348 933 9 932 206

12.73 1.983 1.903

68 347 587 12271308 11854581
1639 294 284

1633 281 270

15 161420

2.906

17 083 795
410

All other sets that are connected to set B can now be
consistently renumbered. For mappings where set B-C,
a number permutation from old to new set C numbers
can be found using the new ordering of set B members in
the mapping. All set C members will be assigned a new
number if they a1.l have mappings from set B members.
The algorithm is as follows:

Consistent renumbering of set C using B H C mapping
1. initialise counter=0 and number permutation

Pc(1 : N-J = 0
2. loop over set B members bk and for each neighbouring ci

with no number permutation:

counter = counter + 1

PC(S) = counter

TaMe 4. Things (in ms) a matrix-vector product with 439 542 matrix non-zeros and 27 720 edges with
various vertex numberings

Algorithm IBM RS/6000 SGI Indigo SGI Indy SGI R8000

Generator 126.8 193.4 201.2 64.0
Completely random 185.6 211.4 280.0 63.9
Greedy (10) 89.7 172.5 150.5 63.6
Greedy (100) 89.9 172.4 151.0 63.4
Gre:edy (1000) 90.7 172.6 152.1 62.9
RCM 90.5 172.2 151.1 63.1
RCMLR 96.5 176.3 162.4 63.4

Table 5. Timings (in ms) a matrix-vector product with 2 706 709 matrix non-zeros and 168 403 edges
witb various vertex numberings

Algorithm IBM RS/6000 SGI Indigo SGI Indy SGI R8000

GeI*erator 1207 2013 5 073 530
Completely random 2 395 3 302 6 373 537
Greedy (10) 554 1 166 3315 476
Greedy (100) 558 1134 3 279 471
Greedy (1000) 567 1 166 3 278 471
Greedy (10 000) 567 1 138 3 248 471
RCM 563 1 186 3 239 470
RCMLR 627 1 182 3449 474

198 D. A. Burgess, M. B. Giles

Table 6. Simulation of a matrix-vector product with 439542 matrix non-zeros and 27720 edges on a IBM RS/6000 model 350

Quantity Generator Random Greedy (100) RCM RCMLR

LOADS into registers
cache hits and TLB hits
cache hits and TLB misses
cache misses and TLB hits
cache misses and TLB misses

STORES into memory
cache hits and TLB hits
cache hits and TLB misses
cache misses and TLB hits
cache misses and TLB misses

Cycle predictions
cycles to load irow
cycles to load ncol
cycles to load x
cycles to load A
cycles to store y

Total

Average # cycles per memory operation

Total # cycles + #matrix non-zeros + 10 * #edges
Total time (ms)

Actual time

1140003 922 835 1274 675 1272 050 1250 360
927 901 491 278 578

231400 448 237 97 372 100 344 121706
1736 2 093 1528 1394 121706

23 905 23 882 24 170 24 224 24 227
349 372 84 30 27

3 357 3350 3 399 3 407 3 407
109 116 67 59 59

87 974 90 047 81674 81 146 81970
794916 794011 794 505 791826 793 896

2 172801 4644731 641349 669 435 914 853
1118515 1119020 1118714 1117322 1118790

79 477 80 183 72 560 71 169 71105

4 253 683 6 727 993 2 708 803 2 730 897 2980614

2.38 3.77 1.51 1.53 1.67

4 970 425 7444735 3 425 545 3 447 639 3 697 356
119.2 178.5 82.1 82.7 88.7

126.8 185.6 89.9 90.5 96.5

For mappings where set D maps to set B, a number
permutation from old to new set D numbers can also be
determined based on the new set B numbers in the
mapping. One way of approaching this is to first create the
inverse mapping of set B to set D generated by a linked
list. The set D number permutation can then be found by

applying the above algorithm. This will work provided
each set D member maps to at least one set B member in
the DHB mapping.

Now all sets can be assigned a number permutation
using the two consistent renumbering algorithms.
Once the data and mappings have been converted to

Table 7. Simulation of a matrix-vector product with 2706709 matrix non-zeros and 168403 edges on a IBM RS/6000 model 350

Quantity Generator Random Greedy (100) RCM RCMLR

LOADS into registers
cache hits and TLB hits
cache hits and TLB misses
cache misses and TLB hits
cache misses and TLB misses

STORES into memory
cache hits and TLB hits
cache hits and TLB misses
cache misses and TLB hits
cache misses and TLB misses

Cycle predictions
cycles to load irow
cycles to load ncol
cycles to load x
cycles to load A
cycles to store y

Total

Average # cycles per memory operation

Total # cycles + #matrix non-zeros + 10 * #edges
Total time (ms)

Actual time

6 891273 5 397 666 7 828 500 7 804 827 7 574 402
17 576 31701 5 191 5 948 6 523

1016529 1452410 612 577 636 577 866 515
531555 1575156 10665 9581 9 493

145 402 142 858 147 068 146 566 146 286
1949 4487 283 785 1065

20 457 20 132 20 679 20 607 20 563
595 926 373 445 489

533 094 597 934 494 650 499 428 504 544
4891474 4898215 4 903 092 4 908 678 4 907 866

31211084 80 877 570 4173516 4403 105 7013 131
6 893 198 6 895 771 6 904 207 6 906 195 6 907 766

477 062 541144 434 894 447 760 455 057

44005 912 93810633 16910360 17165167 19 788 363

4.00 8.53 1.54 1.56 1.80

48 396 650 98 201372 21301099 21555 906 24 179 102
1161 2 355 511 517 580

1207 2 395 558 564 627

Improving code performance on hierarchical memory machines 199

Table 8. Thing (ii s) 10 time steps of an edge-based Euler calculation on a grid of 586920 edges and
84 734 vertices with various vertex numberings

Algorithm IBM RS/6000 SGI Indigo SGI Indy SGI R8000
Generator 512 653 821 154
Completely random 760 1 107 1094 332
Colouring 577 844 948 224
Greedy (10) 414 485 682 139
Greedy (100) 421 483 681 138
Greedy (1000) 423 485 686 138
Greedy (10 000) 431 486 684 139
RCM 418 486 686 138
RCMLR 482 568 810 140

the new numberings, the grid is ready to be operated
on.

5 RESULTS

Timings have been carried out for three unstructured
grid solvers on IBM RS/6000 model 350, SGI Indy, SGI
Indigo and SGI Power Challenge R8000 machines
described in Table 1. All real arrays have been stored
and operated on in double precision for the Jacobi and
electromagnetic solvers, and in single precision for the
Euler solver. The following numbering schemes have
been analysed:

- original numbering from grid generator;
- bandwidth reduction using RCM;5)23
- RCM with random numbering within each level

(RCMLR);
- Greedy method (vertex block sizes are given in

brackets);
- completely random numbering;
- vector colouring for the Euler solver.

The first four renumbering schemes have been applied
to the first set and all other sets have been consistently
renumbered based on the new numbering of the first
set. The purpose of testing bandwidth reduction with
random numbering within each level is to find out if
the numbering within a level is important for data
locality. Completely random numbering of each set is
chosen to show the effect of a numbering method that
does not take into account data locality. Colouring
is used in codes executed on vector processors to
avoid data dependencies and is also included to show
the effect on performance when codes are directly ported
from vector processors to workstations.

The first solver tested is a Jacobi smoother” to solve
Poisson’s equation using unstructured grid information
on a structured cube grid. The smoother loops over
vertices and accesses neighbouring vertex values via a
vertices+tvertices mapping to update the variables at
the vertices. In this example vertices are the only set that
require renumbering. The times per iteration on
different sized structured cube meshes are shown in

Table 2. The Jacobi smoother has the following
FORTRAN 77 implementation:

SUBROUTINE JACOl3l(NS,P,A,F,Q,DQ,NITER)
C-Apply several Jacobi smoothing iterations

INTEGER NS,P(6,NS),l,lTER,NlTER
REAL*8 A(NS),F(NS),Q(NS),DQ(NS)
DO lTER=l, NITER

C.. .Calculate residual DQ
DO I=l, NS

DQ(l)=A(I) * (Q(P(l,I))+Q(P(2,l))+Q(P(3,1))
84 +Q(P(4,1)) +Q(P(5,1)) +Q(P(6.1))
& -6.O*Q(I)+F(I))

ENDDO
C.. .Update Q

DO I=l, NS
Q(l) =Q(l) +O,l * DQ(l)

ENDDO
ENDDO
RETURN
END

The subroutine calculates the residual, DQ, and
updates the NS unknowns, 0, using information
gathered by the mapping, P(6,:), that maps to the six
neighbouring vertices in the ‘I-point stencil. F is a forcing
function and A are weights that impose Dirichlet
boundary conditions when the vertex is on the boundary.

Table 3 displays the simulator’s results of IBM RS/
6000 model 350 memory accessing for the Jacobi
smoother with different grid numberings. The simulator
gives precise information on the type of memory
accesses required for one iteration. It also predicts the
total number of cycles per variable, the average
number of cycles per memory access and the execution
time. In order to calculate the execution time we use
the formula:

estimated execution time =
#memory accessing cycles + #non-memory cycles

frequency of clock cycle

(1)
The simulator predicts the total number of cycles
required for memory accessing using the hit/miss
parameter costs determined in Section 3. An extra

200 D. A. Burgess, M. B. Giles

Table 9. Time (in s) taken to renumber an unstructured grid consistently for the electro-
magnetic solver on a IBM RS/fiOOO model 350

Grid sizes Grid renumbering times (s)
Cells Faces Edges Vertices Greedy (100) RCM
22 499 46 138 27 720 4083 19.0 19.3

139 367 283 684 168 403 24 088 122.3 131.4

seven non-memos cycles per vertex per iteration are
also required according to the assembly code produced
by the IBM RSf6000 compiler. The clock cycle
frequency for the IBM RS/6000 model 350 is
41.7 MHz. The last two rows in Table 3 give the
predicted and actual RS/6000 execution times.

The second code is a three-dimensional electromag-
netic solver for determining the solution of Maxwell’s
equations. The reader is referred to Monk et ~1.~ for
details of the discretisation and implementation of the
solver. Essentially, the main body of work in the solver
uses the method of conjugate gradientsI to find the
solution of a linear system of equations. Therefore, most
of the expense is in computing a matrix-vector product.
This has been implemented in compressed sparse row
format, as in Section 4.3. The discretisation leads to a
symmetric positive definite matrix of size NE x NE,
where NE is the number of edges in the grid, and A is
of length (2 * # edge pairs + # edges). Timings of
the matrix-vector product are presented here for two
cone-sphere meshes: 27 720 edges with 439 542 matrix
non-zeros in Table 4 and 168 403 edges with 2 706 709
matrix non-zeros in Table 5. The original grids were
created using a frontal grid generator similar to that
described in Ref. 2. It should be noted that the relatively
large times taken by the SGI Indy in the larger grid
calculation in Table 5 were due to many page faults
caused by a small main memory.

Again, the number of cache and TLB hits/misses are
determined by the simulator for an IBM RS/6000 model
350, see Tables 6 and 7. An estimate of the execution
time is calculated using eqn (1). The simulator predicts
the total number of cycles for memory accessing, and
from the RS/6000 compiler’s assembly code the number
of non-memory cycles is 1 in the inner loop and 10 in the
outer loop. The estimated and actual times for the
various renumbering strategies are also shown in Tables
6 and 7.

The third code is a fluids application for solving
the Euler equations in three dimensions. The discretisa-
tion and edge-based implementation is given in Peraire
et a1.8 The timings shown in Table 8 include reading
in the grid of 151 158 vertices and 980 891 edges and
weights from file, and taking 10 time steps. The original
grid was obtained from Weatherill’s Delaunay grid
generator.3

The cost of renum~~ng is now evaluated. The time
taken on an IBM RS/~OO model 350 to renumber the

electromagnetic grids for each renumbering technique is
displayed in Table 9. Vertices were the first set to be
renumbered using the cellsHvertices mapping. The cells
were renumbered second also using the cells++vertices
mapping, the edges third using the cellsHedges mapping
and finally the faces using the cells-faces mapping.
These mappings along with vertex coordinates and
boundary flags were stored in the input file, and the
edge-pair’s matrix is generated in the electromagnetic
code. If the edge numbering has good data locality then
the edge-pair numbers will preserve data locality when
rearranged into compressed sparse row format.

6 CONCLUSIONS

Timings from all the unstructured grid codes show that
renumbering with a bandwidth reduction or Greedy
method, combined with consistent renumbering signifi-
cantly improves the performance of all codes on
memory hierarchy machines. These renumbering meth-
ods optimise data locality. As expected, renumbering
has a greater influence on machines with smaller caches,
such as the SGI Indy machine in this paper. However,
all hierarchical memory machines benefit from the small
initial cost of renumbering the input grid; the larger the
grid the greater the performance benefit.

Code timings with grids renumbered by the Greedy
algorithm appear to be independent of block size. This
means that there is a flexibility in the choice of block
size for the Greedy algorithm. This is contrary to the
structured grid solvers where the block size in loop-
blocking is important and closely related to the size of
the cache.

For the larger grid test eases the nearing within
each level of the bandwidth reduced matrix affects the
timings. A random numbering within each level gave
slower times than numbering produced by the RCM
algorithm. This indicates that the choice of bandwidth
reduction method could be important.

The simulator gives realistic predictions for timings
and confirms all of the above results. The simulator also
shows that the average number of cycles per memory
operation for bandwidth reduced and Greedy grid
numberings remains constant with grid size, see Tables
5 and 6. However, the average number of cycles per
memory operation grows for the original, random
numbered and coloured grids. The simulator also

Improving code performance on hierarchical memory machines 201

confirms that the number of cycles to access variables
that are sequentially loaded is independent of renumber-
ing while renumbering of indirectly accessed variables
can significantly affect the number of cycles. This means
that renumbering of the grid will be more effective on
codes with a high proportion of indirect addressing
compared to other operations.

Many grid generators have an option to renumber the
grid with a colouring algorithm for vector processing.
Inevitably, a renumbering strategy for memory hier-
archy machines will also be built into grid generators. A
renumbered grid will optimise memory accessing of
codes run on workstations, distributed memory and
shared memory machines (all have memory hierarchies).
We recommend that grid generators incorporate the
RCM algorithm as it optimises memory hierarchy
performance, and produces a good ordering for LU
solvers and ILU preconditioners.

In the Jacobi timings it is noted that the original
structured grid with lexicographical ordering gave better
performance than any other numberings. This is not the
case though with unstructured grids generated from
Delauney or frontal methods. With grids originating
from these methods, renumbering can improve the
performance by over a factor of two.

ACKNOWLEDGEMENTS

This work was performed within Oxford Parallel with
financial support from Rolls-Royce plc, DTI and
EPSRC. The authors would like to thank: Ron Bell
(IBM Corp.) for his helpful suggestions on the
simulator; Nigel ‘Weatherill (Swansea University) for
providing grids for the Euler computation; Paul Wesson
and Kevin Parr’ott (Oxford University) for their
electromagnetic code; Rolls-Royce plc and Jamie
Peraire for their Euler code; and Paul Crumpton
(Oxford University) and Mike Rudgyard (CERFACS)
for their stimulating discussions.

REFERENCES

1. Basket& F. & Hennessy, J. L., Microprocessors: from
desktops to supercomputers. Science, 1993, 261, 864-71.

2. Mfiller, J. D., Roe, P. L. & Deconinck, H., A frontal
approach for node generation in Delaunay triangulation.
AGARD Report 878, pp. 9.1-9.7, May 1992.

3. Weatherill, N. I?. & Hassan, O., Efficient three-dimen-
sional grid generation using the Delaunay triangulation.
Computational Fluid Dynamics ‘92, eds Ch. Hirch, J.
PCriaux & W. Kordulla, vol. 2, pp. 961-968. Elsevier,
Oxford, 1992.

4. L8hner, R., Finite element methods in CFD: grid
generation, adaptivity and parallelisation. AGARD
Report 787, pp. 8.1-8.58, May 1992.

5.

6.

7.

8.

9.

10.

11.

12

13

14

15

Cuthill, E. & McKee, J., Reducing the bandwidth of sparse
symmetric matrices. In Proc. ACM Nat. Conf., pp. 157-
172, 1969.
Farhat, C., A simple and efficient automatic FEM domain
decomposer. Comput. Struct., 1988, 28, 579-602.
Monk, P. B., Parrott, A. K. & Wesson, P. J., A parallel
electromagnetic scattering code. COMPEL, 1994, 13,
Supplement A:237-242.
Peraire, J., Peirb, J. & Morgan, K., A 3d finite element
multigrid solver for Euler equations. AZAA Paper 92-0449,
1992.
Bell, R., IBM RISC system/6000 NIC tuning guide for
fortran and C. Technical Report GG24-361 l-01, IBM
International Technical Support Center, Poughkeepsie,
New York 12602, July 1991.
Patterson, D. A. & Hennessy, J. L., Computer Architec-
ture: A Qualitative Approach, Morgan Kaufmann, 1990.
Simha, S., R4400 Microprocessor Product Information.
MIPS Technologies Inc, 2011 North Shoreline Blvd,
Mountain View, CA 94039, September 1993.
Bell, R., IT Consultant (NIC), IBM UK Ltd, February
1994. Personnal Communication.
Teman, 0. & Jalby, W., Characterizing the behavior of
sparse algorithms on caches. In Supercomputing ‘92,
Minneapolis, December 1992.
Warren, H. S., Predicting execution time on the IBM RISC
System/6000. Technical Report GG24-3711, IBM Inter-
national Technical Support Center, Poughkeepsie, NY
12602, July 1991.
Bacon, D. F., Graham, S. L. & Sharp, 0. J., Compiler
transformations for high-performance computing. Tech-
nical Report UCB/CSD-93-891, Computer Science
Division, University of California, Berkley, CA 94720,
1993.

16. Saad, Y., SPARSKIT: a Basic Tool Kit for Sparse Matrix
Computations. Computer Science Department, University
of Minnesota, Minneapolis, MN 55455, version 2 edition,
June 1994.

17. Knijnenburg, P. M. W. & Wijshoff, H. A. G., On
improving data locality in sparse matrix computations.
Technical Report 94-15, Department of Computer Science,
Leiden University, 1994.

18. Duff, I. S. & Meurant, G. A., The effect of ordering on
preconditioned conjugate gradients. BIT, 1989,29,635-57.

19. Golub, G. H. & Van Loan, C. F., Matrix Computations,
2nd edn, John Hopkins, Baltimore, MD, 1989.

20. Malone, J. G., Automated mesh decomposition and
concurrent finite element analysis for hypercube multi-
processor computers. Computer Meth. Appl. Mech. Engng.,
1988, 70, 27-58.

21. Simon, H. D., Partitioning of unstructured problems for
parallel processing. Comput. Systems Engng., 1991, 2, 135-
48.

22. Das, R., Mavriplis, D. J., Saltz, J., Gupta, S. &
Ponnusamy, R., The design and implementation of a
parallel unstructured Euler solver using software primi-
tives. ICASE Report 92-12, March 1992.

23. George, A., Computer implementation of the finite
element method. Technical Report STAN-CS-71-208,
Computer Science Department. Stanford University,
California, 197 1.

24. Gibbs, N. E., Poole Jr, W. G. & Stockmeyer, P. K.,
An algorithm for reducing the bandwidth and profile of
a sparse matrix. SIAM J. Numer. Anal., 1976, 13, 236-
50.

