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The performance of unstructured grid codes on workstations and distributed 
memory parallel computers is substantially affected by the efficiency of the 
memory hierarchy. This efficiency essentially depends on the order of computa- 
tion and numbering of the grid. Most grid generators do not take into account the 
effect of the memory hierarchy when producing grids so application programmers 
must renumber grids to improve the performance of their codes. To design a good 
renumbering scheme a detailed runtime analysis of the data movement in an 
application code is needed. Thus, a memory hierarchy simulator has been 
developed to analyse the effect of existing renumbering schemes such as band- 
width reduction, the Greedy method, colouring, random numbering and the 
original numbering produced by the grid generator. The renumbering is applied 
to either vertices, edges, faces or cells and two algorithms are proposed to 
consistently renumber the other entities used in the solver. The simulated and 
actual timings show that bandwidth reduction and Greedy methods give the best 
performance on IBM RS/6000, SGI Indy, SGI Indigo and SGI Power Challenge 
machines for three-dimensional Poissons’s, Maxwell’s and the Euler equations 
solvers. The improvement in performance is over a factor of two for applications 
with large grids and a high ratio of memory-accesses to computation. This factor 
is even higher for memory hierarchies with small caches. 0 1997 Elsevier Science 
Limited. All rights reserved. 

1 INTRODUCTION 

The trend in computing is towards workstations and 
distributed memory parallel machines. These computers 
are designed with memory hierarchies that supply the 
processor with data. The processor is usually faster than 
the speed at which the largest, slowest memory level can 
provide data, so it is essential to utilise the memory 
hierarchy effectively. Significant improvements in the 
rate of computation can often be gained by simple 
changes to the csde or to the order of accessing data. 
Memory hierarchy performance is going to be a limiting 
constraint on the performance of future generation 
processors’ so it is essential to optimise memory usage. 

This paper concentrates on data ordering to optimise 
the speed of unstructured grid codes on hierarchical 

*To whom all correspondence should be addressed at: SCCM, 
CS Department, Gates Building 2B, Stanford University, 
Stanford, CA 94305-9025, USA. 

memory machines. Unstructured grid generators usually 
create numbers for vertices and cells as they produce 
them. For a frontal grid generator2 the vertices are often 
numbered in a spiral fashion whereas a Delaunay 
generator3 or a grid adaption generator4 effectively has 
random numbering. Many grid generators do not 
renumber the vertices and cells before handing the grid 
to the user. Therefore, grid renumbering algorithms that 
improve locality of data to optimise code performance 
on all types of hierarchical memory machines need to be 
used. 

Ineffective use of the memory hierarchy in parallel 
computing can often be observed if super-linear speedup 
occurs. This happens when the serial computation 
spends relatively more time accessing the whole grid 
from memory compared to the distributed parallel 
processors that access smaller grid partitions from 
local memories. This paper shows, by observing 
simulations, that renumbering produces the same rate 
of accessing data from memory for all grid sizes. 
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Therefore, a more informative speedup graph can be 
obtained by renumbering the whole grid in the serial 
case and the individual grid partitions generated for the 
parallel cases. 

This paper concentrates on two renumbering strate- 
gies that improve the locality of data. One is based on a 
bandwidth reduction algorithm developed by Cuthill- 
McKee5 and the other is a variant of the Greedy 
Method.6 To find the optimal renumbering strategy the 
behaviour of the memory hierarchy needs to be 
analysed. A memory hierarchy simulator can supply 
detailed information on a code’s performance for classes 
of machines. Therefore, a memory hierarchy simulator 
has been developed to follow the exact movement of 
data between memory and the processor’s registers, and 
predict execution times. The memory hierarchy of 
workstations is described in Section 2, the simulator in 
Section 3 and the two renumbering strategies are 
discussed in Section 4. These renumbering strategies 
are evaluated in three three-dimensional test cases: a 
Jacobi solver for solving Poisson’s equation; a conjugate 
gradient solver used to solve Maxwell’s equation7 and 
an edge-based algorithm to solve the Euler equations.* 
The first two test cases are simulated for an IBM RS/ 
6000 model 350, and all cases are timed on IBM RS/ 
6000 model 350, SGI Indy, SGI Indigo and SGI Power 
Challenge machines. The results are presented in Section 
5 and show that the performance gain is dependent on 
the size of the memory and the grid. Conclusions are 
drawn in Section 6. 

2 MEMORY HIERARCHY 

In this section we briefly describe the memory hierarchy 
and the principles used by manufacturers to design the 
smaller memory levels in this hierarchy. Hardware 
design optimisations to larger memory levels in the 
hierarchy also exist but these do not significantly affect 
the renumbering strategy so will not be discussed. 

A memory hierarchy comprises several layers of 
memory. The data contained in the first level, the 
primary cache, is a subset of that in the second level, the 
secondary cache, and so on. The last level is the main 
memory which usually holds all the data. Registers are 
within the processor and hold data that is currently 
being worked on by the processing units. The advantage 
of having this structure is that the processor can access 
the caches, small amounts of memory, much faster than 
main memory. For example, the IBM RS/6000 proces- 
sor has a two level memory hierarchy, depicted in Fig. 1. 

The renumbering strategies proposed in Section 4 try 
to exploit two main principles of the memory hierarchy: 

- principle of spatial locality forecasts that data 
surrounding the datum currently required by the 
processor will probably be accessed soon; 

IBM RS/6000 

Memory r 

Fig. 1. IBM RS/6000 Model 350: memory hierarchical 
structure and line access times. The cache holds a subset of 
the data held in main memory and is faster to access than main 

memory. 

- principle of temporal locality forecasts that data that 
has been accessed by the processor will probably be 
accessed again soon. 

The memory system ensures spatial locality by placing a 
datum into a line with other data that are contiguous in 
memory. The line is then the smallest unit of data 
transferred between memory levels. Temporal locality is 
gained by continually replacing least recently used 
(LRU) lines in the cache with lines currently required 
by the processor. However, lines can only be placed in 
specific positions in cache and these positions are 
determined by the cache design: 

direct-mapped cache maps a line into only one 
position in cache; 
fully-associative cache maps a line into any position 
in cache; 
2-way, 3-way or 4way set associative cache maps a 
line into only two, three or four positions in cache, 
respectively. 

The direct-mapped cache has the fastest placement 
strategy but does not have good temporal locality prop- 
erties. The fully-associative cache has optimal temporal 
locality but it is expensive to find the line to replace during 
a memory access. The set associative cache is ‘divided’ into 
sets that hold 2,3 or 4 lines and each line can map into any 
position within a specific set. Most manufactures opt for 
this later strategy as it is both cost effective and has 
reasonable temporal locality. Figure 2 shows the IBM RS/ 
6000 model 350 four-way set associative cache structure.9 
It has 128 sets and therefore can store 512 lines. The line 
size is 64 bytes so eight double precision numbers are 
brought into the cache in one instruction. 
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f------- 128 lines of 64 bytes each (8 KBytes) - 
- - - _................... . . . . . - - 

Cache (32KBytes) - - 
_. - - 

- - - _______I.................. - - 

- - ___ - - 
- ___ __ ........................... - - 
- - - ......... ..- .. ..- .- ........ 

- - 
._ - - - 

Main Memory (64 MBytes) - - - _. ._ . ._. - - 
- - - ... .................... 
- - - ........... ^ ................ 
- ___ - ............................. 

- = lineof data - 

Fig. 2. Four-way set associative cache structure of IBM RS/6000 Model 350. Each line in main memory can map into only four 
locations in the four-way set associative cache. The cache holds the most recently accessed lines of data. 

Computer codes generate virtual addresses for vari- 
ables. A block, page, of virtual addresses is placed into a 
block of physical memory. Thus, a page address mapping 
between the code’s virtual page address and the 
memory’s physical page address is required to fetch 
data from memory to the processor’s registers. These 
page address mappings are stored in main memory in a 
page table. However, to speed up the access of a page 
address mapping a subset called the translation lookaside 
bufir (TLB) is held in the processor unit. The TLB also 
has a set-associ.ativity design and usually replaces 
LRU page address mappings with current mappings. 
Figure 3 depicts the two-way set associative TLB 
design of the IBM RS/6000 model 350. It has 64 sets 

and therefore contains 128 page address mappings. 
Each page is 4096 bytes which is equivalent to 64 lines 
of memory. 

The page address mapping informs the processor 
where a datum’s page is stored in memory. If the page 
address mapping is in the TLB, a TLB hit, and the 
datum’s line is in the cache, a cache hit, then the datum 
will be placed in a register extremely quickly (one cycle 
on the IBM RS/6000). However, if the line is not in the 
cache, a cache miss, or if the page address mapping is 
not in the TLB, a TLB miss, then a significant number 
of cycles are required to place the datum in a register. 
See Fig. 1 for the hit/miss parameter costs on the IBM 
RS/6000 model 350. 

- 64 pages of 4 KBytes each (256 KBytes) - 

- - 
TLB (SlZKBytes) 

- - - 
--- - - - 

s I I I I I 
- - - _. _. __ - - - 
- - - .._.... . . . . . .._ ._. _. - - __ 

- - . . _ . . 
- - . - 

Main Memory (64 MBytes) 
__ __ 

- - - . 
- - ~ - - - 

- - - 

- E page address mapping 

Fig. 3. Two-way set associative TLB structure of IBM RS/6000 Model 350. Each page address mapping in main memory can map 
into only two locations in the two-way set associative TLB. The TLB holds a subset of the page address mappings stored in main 

memory and is faster to access than main memory. 
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A fuller overview of the memory hierarchy is given in 
Patterson and Hennessey’s book. lo The basic properties 
of the five machines used in this paper are given in Table 
1. Note that the IBM RS/6000 model 350,9 SGI Indy 
R46OOi’ have a two-level memory hierarchy, whereas 
the SGI Indigo R4000 and SGI R8000 have three levels 
of memory. The SGI R8000 is part of the shared 
memory SGI Power Challenge machine. 

3 MEMORY HIERARCHY SIMULATOR 

This section describes the general memory hierarchy 
simulator12 used in this paper. It enables straight- 
forward analysis of the data movement within the 
memory hierarchy for individual application codes on 
specific machines. It produces exact numbers for cache 
and TLB hits and misses for each array variable in 
a code. The amount of data reuse can also be 
evaluated from the proportion of hits to misses. Thus, 
the cost of various renumbering algorithms can be 
analysed precisely. Temam and Jalbyi3 developed a 
model to estimate the amount of data that is reused 
in a two level hierarchical memory machine but this 
model focuses on a bandwidth reduction numbering 
and cannot evaluate other renumbering methods or 
analyse more than two levels of memory. An exact 
approach with a general memory hierarchy simulator 
is used here. 

The simulator needs to know the associativity and 
sizes of the cache(s) and TLB of the machine being 
simulated. The simulator obtains the addresses being 
accessed during the execution of an application pro- 
gram. From these addresses, it can determine the 
positions in the cache and TLB that the corresponding 
lines and page address mappings could occupy. It can 
then calculate whether cache and TLB hits and/or 
misses have occurred, update the LRU addresses and 
increment the total number of hit/miss values. The hit/ 
miss values of specific variables within the application 
program can also be incremented. 

To estimate the total amount of time a code takes in 
memory accessing, the simulator also needs the hit/miss 
parameter costs. For the IBM RS/6000 model 350, 
approximate values for hit/miss parameters were deter- 
mined by timing a FORTRAN 77 DO-loop that 
repeatedly accessed 200 components of a REAL*8 
vector with a fixed stride length. Using stride lengths of 
1, 32, 513 and 512 the average number of cycles for a 
cache hit-TLB hit, cache miss-TLB hit, cache hit-TLB 
miss and cache miss-TLB miss were found, respectively. 
This simplistic approach provides approximate values 
for hit/miss load parameters, see Fig. 1. However, when 
the time for other strides is predicted by the simulator 
using these parameter values there are occasional 
errors. Actual timings of the RS/6000 model 350 were 
taken to determine the average number of cycles per 

Accessing 200 elements of a 
REAL’8 vector with various strides 
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Fig. 4. Actual timings from an IBM RS/6000. 

operation for various strides in Fig. 4 and the error 
between the actual and simulator’s predicted timings are 
displayed in Fig. 5. The errors occur because the 
parameter value calculations are based upon consistent 
hits or consistent misses for the cache and/or TLB 
whereas some stride values have a variety of hits and 
misses, and machines are designed with various hardware 
features to optimise different cases. Therefore, cache- 
TLB hit/miss parameter values are not fixed quantities 
and are partly dependent on the lines that have been 
accessed directly preceding the current access, as shown 
in Warren’s results. I4 Nevertheless, fixed values are a 
usual approximation in simulations. The hit/misses 
parameter values determined for the RS/6000 model 350 
using the above approach are used in this paper to predict 
the memory access times. 

Error In Simulation of IBM RS/6000 
for accessing 200 elements of a 

REAL*6 vector with various strides 

-1.0 1 1 I I I 1 I 

0 50 loo 150 200 250 300 

Stride Size 

Fig. 5. Error in simulated timings (actual-simulator’s pre- 
dicted average number of cycles per operation) corresponding 

to Fig. 4 data. 
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To predict the total execution time of a code the computational work involves looping over a set and 
amount of non-memory operations, such as arithmetic accessing data belonging to other sets using the 
operations, needs to be calculated and added to the mappings. In many applications, the members of a set 
simulator’s predicted time for memory accessing. The can be executed in any order without affecting the 
number of cycles taken to perform arithmetic opera- final result. The execution set can therefore be renum- 
tions can vary with machine and a RISC processor bered (or reordered) to improve temporal locality of 
can often overlap an arithmetic operation with a load ‘mapped to’ set members. Furthermore, renumbering 
and/or store memory operation. Thus, a comprehen- the ‘mapped to’ set members in a consistent manner 
sive knowledge cd the machine is required to predict can improve their spatial locality. Together these can 
the total executi.on time. The low level details of give significant improvements over the numbering 
processors is be:yond the scope of this paper. The arising from most unstructured grid generators which 
interested reader is referred to the manufacturer’s do not renumber the set members to optimise cache 
processor guides. performance. 

In summary, the hit/miss parameter values can 
vary depending on the data access patterns of an 
application code. Thus errors will occur when predicting 
memory access times, as shown in Fig. 5. However, the 
number of hits and misses determined by the simulator 
is exact. Hence, the renumbering methods will be 
evaluated based on the info~ation produced by the 
simulator and the actual execution times. Actual 
execution times are recorded using profilers and are 
run in isolation from the simulator. Simulation results 
are only presented for the IBM RS/6000 model 350 
workstation. 

There are a variety of data structures used in 
unstructured sparse matrix calculations.t6 The choice 
of data structure is usually based upon the algorithm, 
the language and memory limitations. Other considera- 
tions such as whether a RISC processor will be used can 
also significantly affect this choice. However, data 
locality optimisation can be applied to all data struc- 
tures and will improve the rate of computation on 
hierarchical memory machines. 

4 RENUMBERING 

This introduction to renumbering first describes the 
difference in coding structured and unstructured grid 
applications. The performance of both these categories 
of codes can be improved by using the memory 
hierarchy effectively and by reducing the amount of 
operations that are required. This paper concentrates 
solely on the memory hierarchy performance. The 
results show that the performance of unstructured grid 
codes can be significantly improved by simply renum- 
bering the input grid data, and without altering the 
program. 

Loop transformations for unstructured grid com- 
putations have been devised by Knijnenburg and 
WijshoE f7 but these rely on taking advantage of 
repetitive patterns throughout the matrix and rewriting 
code. However, specific patterns of the unstructured 
sparse matrix can only be determined at runtime so the 
performance improvement of this approach is grid 
dependent. This paper deals with general unstructured 
sparse matrices and shows that the rate of computation 
can be substantially improved by simply renumbering 
grids. 

4.1 Renumbering strategy 

There is a plethora of papers and books that describe 
ways that codes can be optimised for structured mesh 
computations on hierarchical memory machines. A 
structured grid solver uses an indexing system to 
determine neighbouring grid members with loops over 
index dimensionv of the grid. Loop transformation 
techniques such as loop-interchanging and loop- 
blocking15 are ueeded to improve data locality in 
dense9 and structured sparse matrix applications. 
These transformations can either be hand coded or 
performed by a m-eprocessing compiler. 

To renumber the sets, the mappings between sets are 
used. These mappings provide information about the 
connectivity of a grid and this can be exploited to place 
neighbouring set members close together in memory. 
The following strategy is used: 
- a mapping is chosen to initially renumber one set 

(described in Section 4.2); 
- once one set has been renumbered it is then possible 

to consistently renumber all other connected sets 
based on this first one (described in Section 4.3). 

4.2 Renmbering the first set 

Unstructured grid solvers are coded differently from 
structured grid solvers and use a mapping approach 
to determine n~~ighbours. In an unst~ctured grid 
code there can be several sets (for example vertices, 
edges, faces and cells) and mappings between sets (for 
example, the cell to vertex mapping). Most of the 

There are various algorithms that renumber unstruc- 
tured grids. Duff and Meurant” compared 17 different 
orderings to determine the best ILU precondi~oner for 
the Conjugate Gradients algorithm.tg The main idea 
behind renumbering for improving cache performance is 
to place neighbouring members of a set close together 
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in memory. Thus, two main algorithms have been 
chosen with this aim in mind. One is a band~dth 
reduction method and the other is a variant of the 
Greedy method. Both methods require a mapping 
between the same set, such as a list of connected 
vertex pairs. If a mapping of this form is not explicitly 
available in the grid then an artificial one can be 
constructed from a mapping between different sets. To 
determine an artificial set BI+B mapping based on a set 
A+-+B mapping, loop over set A members and for each 
set A member define a mapping between all pairs of B 
members that it maps to. 

4.2.1 Bandwidth reduction 

Bandwidth reduction is a family of renumbering methods 
that place non-zeros of a sparse matrix close to the main 
diagonal. These methods have been used suc~ssfully in 
several fields such as matrix preconditioning’s and mesh 
partitioning.20321 Das et af.22 also used a bandwidth 
reduction method for renumbering a grid to double the 
computational rate of an Euler solver on an iPSC/860 
processor. 

There are a number of popular bandwidth reduction 
algorithms such as the Reverse Cuthill-McKee 
(RCM)5$23 and Gibbs-Poole-Stockmeyer24 algorithms. 
These methods can be viewed physically as splitting the 
mesh into a number of layers (surfaces in three 
dimensions}. The members within each layer are then 
numbered contiguously in memory. Figure 6(b) shows 
the sparsity pattern of a 4913 vertex matrix using the 
RCM algorithm. This originated from the 17 x 17 x 17 
structured cube mesh in Fig. 6(a). Duff and Meurant’* 
showed that the RCM algorithm produces a good 
numbe~ng for ILU preconditioning and sparse LU 
solvers. All bandwidth reduction results in this paper use 
the RCM algorithm. 

Random numbering within each layer of the band- 
width reduction (RCMLR) algo~thm is also tested to 
see whether the numbering within layers is important for 
cache performance, Fig. 6(c). 

4.2.2 Greedy 

The Greedy method described by Farhat places 
neighbouring members of a set into blocks. The 
members within each block are numbered contigu- 
ously in memory. The Greedy method originated 
from ideas on partitioning grids. We expect that the 
Greedy ordering with small block sizes would not be 
as good as the bandwidth reduced ordering for 
preventing fill-in of sparse LU solvers or producing 
good ILU preconditioners. Some tests revealed that 
the Greedy ordering with small block sizes created 
worse ILU pr~onditioners than the band~dth 
reduced ordering. The reason for choosing this 
method is based on experiences gained in structured 
solver loops. 

As described previously, in structured grid codes the 
members of a set are numbered based on their index 
positions in the mesh. Thus, an array is referenced by 
two (three) indices in two (three) dimensions and the 
loops are generated over index directions. This can 
induce spatial locality of data but if the grid is large then 
temporal locality is lost as the cache cannot retain 
data associated with a point {line) of the grid by the 
time it has completed compu~tions on a line (plane) 
of the grid. To increase temporal locality, and thus 
enhance the performance of the code on hierarchical 
memory machines, loop-blocking15 is frequently used. 
This enables one physical block of the grid to be 
worked on at a time. The members of the set within a 
block are brought into the cache and reused before 
moving onto the next block. This loop-blocking 

Table 1. Properties of the IBM RSj6000, SGI Indy, SGI Indigo and SGI R8000 

Computer IBM R~/4~ SGI Indy SGI Indigo SGI RN00 

Processor 
Frequency 
Peak performance 

Instruction cache 

Data cache 
Cache organisation 
Line size 

Secondary cache 
Cache organisation 
Line size 

Model 350 
41.7MHz 
83.4 Mflops 

32 KBytes 

32 KBytes 
Four-way 
64 Bytes 

N/A 
N/A 
N/A 

TLB organisation Two-way 
# TLB entries 128 
Page size 4 KBytes 

Main memory 64 MBytes 

R4600 
100 MHz 
33 Mflops 

16 Kbytes 

16 Kbytes 
Two-way 
32 Bytes 

N/A 
N/A 
N/A 
Fully 

96 
4 KBytes 

32 Mbytes 

R4000 
100 MHz 
33 Mflops 

8 KBytes 

8 KBytes 
Direct 

16 Bytes 

1 MBytes 
Direct 

128 Bytes 

Fully 
96 

4 KBytes 

64 MBytes 

R8000 
75 MHz 

300 Mflops 

16 KBytes 

16 KBytes 
Direct 

32 Bytes 

4 MBytes 
Four-way 

512 Bytes 

Three-way 
384 
16 KBytes 

512 MBytes 
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Fig. 6. Sparse ma.trix originating from 17 x 17 x 17 cube mesh with (a) lexicographical ordering, (b) Reverse Cuthill- 
McKee ordering, (c) Reverse Cuthill-McKee with random ordering within each layer, and (d) Greedy orderings with a block 

size of 500. 

concept can be ‘applied’ implicitly to the unstructured 
solver’s loops by renumbering the input data into 
blocks. This is the result of applying the Greedy 
method. 

A variant of the Greedy algorithm that uses a 
mapping between the same set is described here. 
Essentially, the algorithm implicitly creates blocks in 
the grid when assigning a new number (number 

permutation) to each member of the set. To start the 
Greedy algorithm, a member on the boundary of the 
grid is chosen (step 1). The neighbouring information, 
specified by the set mapping to itself, is then used to fill 
blocks of a given block size (step 4). Each block 
originates from the interface of a previous block to 
ensure data locality between blocks whenever possible 
(step 6). Once the algorithm runs out of neighbouring 
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Table 2. Timing (in ms) a Jacobi smoother 011 a 65 x 65 x 65 structured cube grid witb various vertiex 
aumberings 

Algorithm IBM RS~6~0 

Generator 261 
Completely random 1633 
Greedy (IO) 296 
Greedy ( 100) 281 
Greedy (1OOO) 284 
Greedy (10 OOO) 314 
RCM 270 
RCMLR 402 

SGI Indigo 

593 
2494 

671 
643 
636 
648 

SGI Indy SGI R8OOO 

530 201 
1664 241 

573 218 
552 214 
579 210 
611 209 
546 202 
893 202 

members, it tries to jump to a previous block-inte~a~ 
location (step 7). This produces a disconnected block 
within the same connected grid component. However, if 
all previous block-interface members have been 
assigned a number permutation then all the members 
within the connected grid component have a number 
pe~utation. In this case, the algorithm jumps to a 
new disconnected grid component (step 8). The 
precise algorithm to find a number permutation from 
old to new numbers for Nn set B members is as 
follows: 

Greedy algorithm 
1. input Ma = block size, and choose a member 6k E B 
2. initialise: counter = 0, number permutation 

Pa( 1: Na) = 0 and list I = 0 
3. initialise list L to be bk’s neighbours with no number 

~~utation 
4. while (L # 0 and mod(counter, Ma) #O and 

counter < IVB) 
bj = first member in list L 
counter = counter + 1 
PB(bj) = counter 
remove bi from L and I 
add bj’s neighbours with no number ~rmutation to 
end of list L 

5. if (counter = Nn) FINISHED 
6. if (mod(counter, Ma) = 0) start a new block with bk E L 
7. if (L = 0 and Z # 0) find a previous block-interface 

location with bk E Z 
8. if (L = 0 and I= 0) find a bk E B with no number 

permutation 
9. add L to interface list I and goto 3. 

The Greedy algorithm is O(Nn). Figure 6(d) shows 
the sparsity pattern of a cube mesh with a block size of 
500 to illustrate the effect of the Greedy method. 

4.3 Consistent renumbering of all sets based on the first 
set 

Once the first set has been renumbered it is important 
to renumber all the other sets consistently based on 
this first set. To describe the concept of consistent 
renumbering of all sets a FORTRAN 77 example sparse 
matrix-vector product in compressed sparse row formatI 

is analysed below: 

SUBROUTINE AX(NROW,IROW,NE,NCOL,A,X,Y) 
C-Sparse matrix-vector product Y = AX in Compressed 
C-Sparse Row format 

INTEGER NROW,lROW(NROW+l),NE 
lNT~GER(NE),iE,l,J 
REAL*8 A(NE),X(NROW),Y(NROW),SUM 
DO IE=l,NROWS 

SUM = O.ODO 
DO l=lROW(lE),IROW(lE+1)-1 

C.. Find column position of lth non-zero value of A 
J=NCOL(I) 

C.. .Perform matrix-vector product 
SUM -SUM +A(I)*X(J) 

ENDDO 
Y(IE) =SUM 

ENDDO 

The double precision vector A represents an N x N 
matrix, where N is the number of vertices in the mesh, 
with the non-zero values a0 of the sparse matrix stored 
row by row; i and j are the global vertex numbers in the 
mesh and aij represents an edge joining these vertices. 
Integer vector NCOL contains the cohmm indices of the 
elements a# stored in A and integer vector I ROW contains 
the pointers to the along of each row in A and NCOL. 
A and N CO L are accessed sequentially in the DO-loop and 
will have spatial locality. Thus on an IBM RS/6000 with a 
line size of 64 bytes there will be one cache miss for every 
eight loads of A when working in double precision and one 
cache miss for every 16 loads of NCOL. However, the 
number of cache misses that occur for vector X will depend 
crucially on the order of the columns and interferences 
between other lines of data.t3 To increase the spatial 
locality of X the vertices should be renumbered. If the 
vertices are renumbered then edges will have to be 
reordered so that the rows will be worked on in ascending 
order. This will also increase the temporal locality of X. 
Thus vertices and edges should be renumbered consistently 
with each other. 

Before consistently renumbering other sets the 
number permutation for set B, calculated using one of 
the methods in Section 4.2, should be applied to: 

- reorder all data associated with set B 
- renumber all mappings that map to set B 
- reorder all mappings that map from set B 
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Table 3. Siiulation of one Jacobi smoother iteration on a 65 x 65 x 65 cube grid with various vertex numberings on an IBM RS/6000 
model 350 

Quantity Generator Random Greedy (100) RCM RCMLR 

LOADS into registers 
# cache hits and TLB hits 
# cache hits and TLB misses 
# cache misses and TLB hits 
# cache misses and TLB misses 

STORES into memory 
# cache hits and TLB hits 
# cache hits and TLB misses 
# cache misses and TLB hits 
# cache misses and TLB misses 

Cycle predictions 
# cycles to load A 
# cycles to load P 
# cycles to load and store Q 
# cycles to load F 
# cycles to load and store DQ 

Total 

Average # cycles per memory operation 

Total # cycles + 7*NVERT 
Total time (ms) 

Actual time 

4 328 173 2 778 080 4 303 262 4 328 173 3 867 043 
0 14926 1 145 0 0 

336 157 633 581 356 104 336 157 797 287 
4 295 1242 038 8114 4 295 4 295 

514921 513 827 514783 514921 514921 
0 1094 138 0 0 

33 791 33 658 33 774 33 792 33 792 
538 671 555 537 537 

697 201 
2 964 858 
4 178 585 

697 201 
1394 360 

9 932 206 

1.907 

11854581 
284 

267 

726 744 699 089 697 201 697 201 
2972 175 2 967 567 2964858 2 964 858 

60 577 078 4584913 4 178 585 9 407 799 
727 534 699 522 697 201 697 201 

1421682 1397 841 1394 360 1394 360 

66425 212 10 348 933 9 932 206 

12.73 1.983 1.903 

68 347 587 12271308 11854581 
1639 294 284 

1633 281 270 

15 161420 

2.906 

17 083 795 
410 

All other sets that are connected to set B can now be 
consistently renumbered. For mappings where set B-C, 
a number permutation from old to new set C numbers 
can be found using the new ordering of set B members in 
the mapping. All set C members will be assigned a new 
number if they a1.l have mappings from set B members. 
The algorithm is as follows: 

Consistent renumbering of set C using B H C mapping 
1. initialise counter=0 and number permutation 

Pc(1 : N-J = 0 
2. loop over set B members bk and for each neighbouring ci 

with no number permutation: 

counter = counter + 1 

PC(S) = counter 

TaMe 4. Things (in ms) a matrix-vector product with 439 542 matrix non-zeros and 27 720 edges with 
various vertex numberings 

Algorithm IBM RS/6000 SGI Indigo SGI Indy SGI R8000 

Generator 126.8 193.4 201.2 64.0 
Completely random 185.6 211.4 280.0 63.9 
Greedy (10) 89.7 172.5 150.5 63.6 
Greedy (100) 89.9 172.4 151.0 63.4 
Gre:edy (1000) 90.7 172.6 152.1 62.9 
RCM 90.5 172.2 151.1 63.1 
RCMLR 96.5 176.3 162.4 63.4 

Table 5. Timings (in ms) a matrix-vector product with 2 706 709 matrix non-zeros and 168 403 edges 
witb various vertex numberings 

Algorithm IBM RS/6000 SGI Indigo SGI Indy SGI R8000 

GeI*erator 1207 2013 5 073 530 
Completely random 2 395 3 302 6 373 537 
Greedy (10) 554 1 166 3315 476 
Greedy (100) 558 1134 3 279 471 
Greedy (1000) 567 1 166 3 278 471 
Greedy (10 000) 567 1 138 3 248 471 
RCM 563 1 186 3 239 470 
RCMLR 627 1 182 3449 474 
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Table 6. Simulation of a matrix-vector product with 439542 matrix non-zeros and 27720 edges on a IBM RS/6000 model 350 

Quantity Generator Random Greedy (100) RCM RCMLR 

LOADS into registers 
# cache hits and TLB hits 
# cache hits and TLB misses 
# cache misses and TLB hits 
# cache misses and TLB misses 

STORES into memory 
# cache hits and TLB hits 
# cache hits and TLB misses 
# cache misses and TLB hits 
# cache misses and TLB misses 

Cycle predictions 
# cycles to load irow 
# cycles to load ncol 
# cycles to load x 
# cycles to load A 
# cycles to store y 

Total 

Average # cycles per memory operation 

Total # cycles + #matrix non-zeros + 10 * #edges 
Total time (ms) 

Actual time 

1140003 922 835 1274 675 1272 050 1250 360 
927 901 491 278 578 

231400 448 237 97 372 100 344 121706 
1736 2 093 1528 1394 121706 

23 905 23 882 24 170 24 224 24 227 
349 372 84 30 27 

3 357 3350 3 399 3 407 3 407 
109 116 67 59 59 

87 974 90 047 81674 81 146 81970 
794916 794011 794 505 791826 793 896 

2 172801 4644731 641349 669 435 914 853 
1118515 1119020 1118714 1117322 1118790 

79 477 80 183 72 560 71 169 71105 

4 253 683 6 727 993 2 708 803 2 730 897 2980614 

2.38 3.77 1.51 1.53 1.67 

4 970 425 7444735 3 425 545 3 447 639 3 697 356 
119.2 178.5 82.1 82.7 88.7 

126.8 185.6 89.9 90.5 96.5 

For mappings where set D maps to set B, a number 
permutation from old to new set D numbers can also be 
determined based on the new set B numbers in the 
mapping. One way of approaching this is to first create the 
inverse mapping of set B to set D generated by a linked 
list. The set D number permutation can then be found by 

applying the above algorithm. This will work provided 
each set D member maps to at least one set B member in 
the DHB mapping. 

Now all sets can be assigned a number permutation 
using the two consistent renumbering algorithms. 
Once the data and mappings have been converted to 

Table 7. Simulation of a matrix-vector product with 2706709 matrix non-zeros and 168403 edges on a IBM RS/6000 model 350 

Quantity Generator Random Greedy (100) RCM RCMLR 

LOADS into registers 
# cache hits and TLB hits 
# cache hits and TLB misses 
# cache misses and TLB hits 
# cache misses and TLB misses 

STORES into memory 
# cache hits and TLB hits 
# cache hits and TLB misses 
# cache misses and TLB hits 
# cache misses and TLB misses 

Cycle predictions 
# cycles to load irow 
# cycles to load ncol 
# cycles to load x 
# cycles to load A 
# cycles to store y 

Total 

Average # cycles per memory operation 

Total # cycles + #matrix non-zeros + 10 * #edges 
Total time (ms) 

Actual time 

6 891273 5 397 666 7 828 500 7 804 827 7 574 402 
17 576 31701 5 191 5 948 6 523 

1016529 1452410 612 577 636 577 866 515 
531555 1575156 10665 9581 9 493 

145 402 142 858 147 068 146 566 146 286 
1949 4487 283 785 1065 

20 457 20 132 20 679 20 607 20 563 
595 926 373 445 489 

533 094 597 934 494 650 499 428 504 544 
4891474 4898215 4 903 092 4 908 678 4 907 866 

31211084 80 877 570 4173516 4403 105 7013 131 
6 893 198 6 895 771 6 904 207 6 906 195 6 907 766 

477 062 541144 434 894 447 760 455 057 

44005 912 93810633 16910360 17165167 19 788 363 

4.00 8.53 1.54 1.56 1.80 

48 396 650 98 201372 21301099 21555 906 24 179 102 
1161 2 355 511 517 580 

1207 2 395 558 564 627 
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Table 8. Thing (ii s) 10 time steps of an edge-based Euler calculation on a grid of 586920 edges and 
84 734 vertices with various vertex numberings 

Algorithm IBM RS/6000 SGI Indigo SGI Indy SGI R8000 
Generator 512 653 821 154 
Completely random 760 1 107 1094 332 
Colouring 577 844 948 224 
Greedy (10) 414 485 682 139 
Greedy (100) 421 483 681 138 
Greedy (1000) 423 485 686 138 
Greedy (10 000) 431 486 684 139 
RCM 418 486 686 138 
RCMLR 482 568 810 140 

the new numberings, the grid is ready to be operated 
on. 

5 RESULTS 

Timings have been carried out for three unstructured 
grid solvers on IBM RS/6000 model 350, SGI Indy, SGI 
Indigo and SGI Power Challenge R8000 machines 
described in Table 1. All real arrays have been stored 
and operated on in double precision for the Jacobi and 
electromagnetic solvers, and in single precision for the 
Euler solver. The following numbering schemes have 
been analysed: 

- original numbering from grid generator; 
- bandwidth reduction using RCM;5)23 
- RCM with random numbering within each level 

(RCMLR); 
- Greedy method (vertex block sizes are given in 

brackets); 
- completely random numbering; 
- vector colouring for the Euler solver. 

The first four renumbering schemes have been applied 
to the first set and all other sets have been consistently 
renumbered based on the new numbering of the first 
set. The purpose of testing bandwidth reduction with 
random numbering within each level is to find out if 
the numbering within a level is important for data 
locality. Completely random numbering of each set is 
chosen to show the effect of a numbering method that 
does not take into account data locality. Colouring 
is used in codes executed on vector processors to 
avoid data dependencies and is also included to show 
the effect on performance when codes are directly ported 
from vector processors to workstations. 

The first solver tested is a Jacobi smoother” to solve 
Poisson’s equation using unstructured grid information 
on a structured cube grid. The smoother loops over 
vertices and accesses neighbouring vertex values via a 
vertices+tvertices mapping to update the variables at 
the vertices. In this example vertices are the only set that 
require renumbering. The times per iteration on 
different sized structured cube meshes are shown in 

Table 2. The Jacobi smoother has the following 
FORTRAN 77 implementation: 

SUBROUTINE JACOl3l(NS,P,A,F,Q,DQ,NITER) 
C-Apply several Jacobi smoothing iterations 

INTEGER NS,P(6,NS),l,lTER,NlTER 
REAL*8 A(NS),F(NS),Q(NS),DQ(NS) 
DO lTER=l, NITER 

C.. .Calculate residual DQ 
DO I=l, NS 

DQ(l)=A(I) * (Q(P(l,I))+Q(P(2,l))+Q(P(3,1)) 
84 +Q(P(4,1)) +Q(P(5,1)) +Q(P(6.1)) 
& -6.O*Q(I)+F(I)) 

ENDDO 
C.. .Update Q 

DO I=l, NS 
Q(l) =Q(l) +O,l * DQ(l) 

ENDDO 
ENDDO 
RETURN 
END 

The subroutine calculates the residual, DQ, and 
updates the NS unknowns, 0, using information 
gathered by the mapping, P(6,:), that maps to the six 
neighbouring vertices in the ‘I-point stencil. F is a forcing 
function and A are weights that impose Dirichlet 
boundary conditions when the vertex is on the boundary. 

Table 3 displays the simulator’s results of IBM RS/ 
6000 model 350 memory accessing for the Jacobi 
smoother with different grid numberings. The simulator 
gives precise information on the type of memory 
accesses required for one iteration. It also predicts the 
total number of cycles per variable, the average 
number of cycles per memory access and the execution 
time. In order to calculate the execution time we use 
the formula: 

estimated execution time = 
#memory accessing cycles + #non-memory cycles 

frequency of clock cycle 

(1) 
The simulator predicts the total number of cycles 
required for memory accessing using the hit/miss 
parameter costs determined in Section 3. An extra 
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Table 9. Time (in s) taken to renumber an unstructured grid consistently for the electro- 
magnetic solver on a IBM RS/fiOOO model 350 

Grid sizes Grid renumbering times (s) 
Cells Faces Edges Vertices Greedy ( 100) RCM 
22 499 46 138 27 720 4083 19.0 19.3 

139 367 283 684 168 403 24 088 122.3 131.4 

seven non-memos cycles per vertex per iteration are 
also required according to the assembly code produced 
by the IBM RSf6000 compiler. The clock cycle 
frequency for the IBM RS/6000 model 350 is 
41.7 MHz. The last two rows in Table 3 give the 
predicted and actual RS/6000 execution times. 

The second code is a three-dimensional electromag- 
netic solver for determining the solution of Maxwell’s 
equations. The reader is referred to Monk et ~1.~ for 
details of the discretisation and implementation of the 
solver. Essentially, the main body of work in the solver 
uses the method of conjugate gradientsI to find the 
solution of a linear system of equations. Therefore, most 
of the expense is in computing a matrix-vector product. 
This has been implemented in compressed sparse row 
format, as in Section 4.3. The discretisation leads to a 
symmetric positive definite matrix of size NE x NE, 
where NE is the number of edges in the grid, and A is 
of length (2 * # edge pairs + # edges). Timings of 
the matrix-vector product are presented here for two 
cone-sphere meshes: 27 720 edges with 439 542 matrix 
non-zeros in Table 4 and 168 403 edges with 2 706 709 
matrix non-zeros in Table 5. The original grids were 
created using a frontal grid generator similar to that 
described in Ref. 2. It should be noted that the relatively 
large times taken by the SGI Indy in the larger grid 
calculation in Table 5 were due to many page faults 
caused by a small main memory. 

Again, the number of cache and TLB hits/misses are 
determined by the simulator for an IBM RS/6000 model 
350, see Tables 6 and 7. An estimate of the execution 
time is calculated using eqn (1). The simulator predicts 
the total number of cycles for memory accessing, and 
from the RS/6000 compiler’s assembly code the number 
of non-memory cycles is 1 in the inner loop and 10 in the 
outer loop. The estimated and actual times for the 
various renumbering strategies are also shown in Tables 
6 and 7. 

The third code is a fluids application for solving 
the Euler equations in three dimensions. The discretisa- 
tion and edge-based implementation is given in Peraire 
et a1.8 The timings shown in Table 8 include reading 
in the grid of 151 158 vertices and 980 891 edges and 
weights from file, and taking 10 time steps. The original 
grid was obtained from Weatherill’s Delaunay grid 
generator.3 

The cost of renum~~ng is now evaluated. The time 
taken on an IBM RS/~OO model 350 to renumber the 

electromagnetic grids for each renumbering technique is 
displayed in Table 9. Vertices were the first set to be 
renumbered using the cellsHvertices mapping. The cells 
were renumbered second also using the cells++vertices 
mapping, the edges third using the cellsHedges mapping 
and finally the faces using the cells-faces mapping. 
These mappings along with vertex coordinates and 
boundary flags were stored in the input file, and the 
edge-pair’s matrix is generated in the electromagnetic 
code. If the edge numbering has good data locality then 
the edge-pair numbers will preserve data locality when 
rearranged into compressed sparse row format. 

6 CONCLUSIONS 

Timings from all the unstructured grid codes show that 
renumbering with a bandwidth reduction or Greedy 
method, combined with consistent renumbering signifi- 
cantly improves the performance of all codes on 
memory hierarchy machines. These renumbering meth- 
ods optimise data locality. As expected, renumbering 
has a greater influence on machines with smaller caches, 
such as the SGI Indy machine in this paper. However, 
all hierarchical memory machines benefit from the small 
initial cost of renumbering the input grid; the larger the 
grid the greater the performance benefit. 

Code timings with grids renumbered by the Greedy 
algorithm appear to be independent of block size. This 
means that there is a flexibility in the choice of block 
size for the Greedy algorithm. This is contrary to the 
structured grid solvers where the block size in loop- 
blocking is important and closely related to the size of 
the cache. 

For the larger grid test eases the nearing within 
each level of the bandwidth reduced matrix affects the 
timings. A random numbering within each level gave 
slower times than numbering produced by the RCM 
algorithm. This indicates that the choice of bandwidth 
reduction method could be important. 

The simulator gives realistic predictions for timings 
and confirms all of the above results. The simulator also 
shows that the average number of cycles per memory 
operation for bandwidth reduced and Greedy grid 
numberings remains constant with grid size, see Tables 
5 and 6. However, the average number of cycles per 
memory operation grows for the original, random 
numbered and coloured grids. The simulator also 
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confirms that the number of cycles to access variables 
that are sequentially loaded is independent of renumber- 
ing while renumbering of indirectly accessed variables 
can significantly affect the number of cycles. This means 
that renumbering of the grid will be more effective on 
codes with a high proportion of indirect addressing 
compared to other operations. 

Many grid generators have an option to renumber the 
grid with a colouring algorithm for vector processing. 
Inevitably, a renumbering strategy for memory hier- 
archy machines will also be built into grid generators. A 
renumbered grid will optimise memory accessing of 
codes run on workstations, distributed memory and 
shared memory machines (all have memory hierarchies). 
We recommend that grid generators incorporate the 
RCM algorithm as it optimises memory hierarchy 
performance, and produces a good ordering for LU 
solvers and ILU preconditioners. 

In the Jacobi timings it is noted that the original 
structured grid with lexicographical ordering gave better 
performance than any other numberings. This is not the 
case though with unstructured grids generated from 
Delauney or frontal methods. With grids originating 
from these methods, renumbering can improve the 
performance by over a factor of two. 
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