
Uornputmg Systems in Engineering V o l I. No. I , pp. 51~'~2, 19911 095fi-4,~521/th} $3 IXI+ II.00
Printed in Grea t Britain (~ 1990 Pe rgamon Press pie

ADVANCED INTERACTIVE VISUALIZATION FOR CFD

M. GILES and R. HAIMES

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA 02139, U.S.A.

(Received 20 April 1990)

Abstract - -New ideas are presented for the visualization of computational fluid dynamics data. These
include both unsteady two-dimensional and steady three-dimensional data on either structured or un-
structured grids. In addition to presenting some specific algorithm advances, considerable attention is
devoted to innovative interactive probes and the appropriate choice of program architecture and internal
data structure.

I. INTRODUCTION

The subject of this paper is the development of new
ideas for the visualization of computational fluid
dynamics (CFD) data. New approaches are required
because rapid advances in basic algorithm develop-
ment have led to flow codes which produce data that
cannot be viewed using established plotting soft-
ware, such as PLOT3D. I PLOT3D was written to
visualize steady data on multiple structured grids.
However, in the last five years, a major focus of
research effort has been unstructured flow codes
using grids composed of triangular or quadrilateral
cells (in two dimensions), or tetrahedral, prism or
hexahedral cells (in three dimensions). This is
because of their relative ease of generation for com-
plex geometries, and because of the ease of adaptive
grid refinement. Also, much research is being done
on unsteady flows, particularly in two dimensions,
but visualization tools have been slow to emerge to
enable one to visualize and understand the vast
amount of data that are generated.

At the same time, there has been a rapid evolution
in computer hardware. There are now graphics mini-
supercomputers, or super-workstations, which have
a floating point capability which is a significant frac-
tion of a CRAY, combined with impressive graphics
capabilities. The research work in this paper was
performed on a Stardent GS2000 which has, on
average, a sustained capability of 15 Mflops and
150,000 Gouraud-shaped triangles per second. This
hardware speed makes possible interactive graphics
of a kind which was not previously feasible.

There are only a few research groups working on
the development of new CFD graphics software.
NASA Ames is continuing development of PLOT3D
and associated programs. These continue to be based
on multi-block grids, and the research emphasis is on
improving the supercomputer-workstation links and
the extraction of data from the interior of three-
dimensional calculationsfl Weston at NASA
Langley has developed a structured three-dimen-
sional program 3 and an unstructured triangular

program, and is currently working on an unstruc-
tured tetrahedral program. While at the Massa-
chusetts Institute of Technology, Dannenhoffer de-
veloped a two-dimensional graphics package called
GRAFIC, which is able to handle a variety of grid
data structures through a technique described in a
later section. Dannenhoffer is continuing the de-
velopment of G R A F I C at the United Technologies
Research Center, and the latest version also treats
three-dimensional data. 4 L6hner at George
Washington University is developing an unstruc-
tured tetrahedral graphics program, 5 and Strid and
Rizzi at FFA (the Aeronautical Research Institute of
Sweden) have developed a structured three-
dimensional graphics program, ~ and are working
on an unstructured version.

2. DESIGN OF VISUAL2 AND VISUAL3

2.1. Design goals
The first step in developing any software is to

carefully define its objectives and intended function-
ality. The design of VISUAL2 and VISUAL3 was
begun a year before the hardware arrived so there
was adequate time to refine the software design
before coding started. In fact, overall more time was
spent on discussing the data structure, sofl~'are
architecture, programming and user interfaces and
intended functionality, than has been spent on the
programming. The following list gives the design
goals of VISUAL2 and VISUAL3, the two-dimen-
sional and three-dimensional programs, respec-
tively, with some discussion of each item.

• Very interactive--as opposed to high-quality
glossy videos that take days to produce and are
used primarily for presentations, the aim was a
practical tool for everyday use by engineers, in
which they would be able, instantly, to examine
different parameters, probe the flow field and, as
thoroughly as possible, interactively investigate
their numerical results. This objective came in
part from experiences in developing interactive

51

52 M. GILES and R. HAIMES

educational software to aid in the undergraduate
teaching of fluid dynamics. 7 One consequence of
the desire for high interactivity was a decision to
sacrifice portability for performance. At the low-
est levels, the programs use graphics primitives
that are unique to the Stardent hardware,
although in the near future these will be converted
to the emerging PEX standard. Another conse-
quence was a strong effort to develop innovative
"probes" with which the user can interrogate the
flow field.

• Animation--VISUAL2 was designed from the
beginning to handle unsteady data, in which the
flow variables, the grid coordinates and even the
basic grid data structure could be changing. It was
also designed to allow co-processing, in which the
CFD calculation is performed in parallel to the
animated visualization, requiring locking proce-
dures to transfer data from the CFD application to
VISUAL2. VISUAL3 was also designed to allow
animation although at present the computer
floating point performance is not sufficient to
make this practical in many situations.

• Structured and unstructured grids--an important
objective was for the programs to be capable of
handling flow data from all of the types of flow
codes currently in common use in CFD. This in-
cludes multi-block structured grids, and un-
structured grids with a variety of different cell
types. However, this generality should not be at
the expense of performance; instead, if necessary,
it should be at the expense of additional
programming.

• Flexibility and generality--the intent was that a
sophisticated user should be able to modify or
tailor the graphics package to some extent. Also,
the same graphics package should be able to treat
data from a structural analysis program as well as
from a CFD program.

• Simple user programming in te r face- -one
approach to graphics is to supply the user with a
library of graphics functions which they then
assemble into a graphics program. At the other
extreme is the graphics package which does every-
thing but is not very flexible. As explained in the
next section, a middle approach was adopted for
VISUAL2 and VISUAL3.

2.2. Program structure and interface

The next step in the program development was to
decide upon the program structure, or architecture.
This is probably the most critical decision since the
choice places tight constraints on the functionality
and ease-of-use of the final software.

One possibility was to write a library of graphics
routines, consisting of perhaps as many as 50 sub-
routines, which a user could build into a graphics

application package. The AVS (Application Visuali-
zation System) software developed by Stardent is a
very good example of this type of softwarefl AVS
uses a visual "network editor" to allow a user/
programmer to assemble building blocks into a
powerful graphics package. This is excellent as a
rapid prototyping tool for quickly developing
graphics for entirely new applications, and is used by
many people as the final production graphics pro-
gram. However, it has to make sacrifices in perform-
ance and memory usage and currently supports only
a limited set of data structures.

At the opposite extreme, one could write a single
program (like PLOT3D), which handles structured
and unstructured grids and has a preset number of
plotting options. PLOT3D has certainly been very
successful because it is very easy for a novice user to
begin to use it, and this is an attraction of the single
program approach. The weakness is the lack of
flexibility and generality. If a user wants to plot some
variable other than the ones which are pre-
programmed into PLOT3D then he must modify
the internal code of PLOT3D. If the user wants to
use PLOT3D to view structural analysis results, then
extensive modifications need to be made. For this
reason we chose not to adopt this approach.

Lying between these two approaches is GRAFIC,
developed by Dannenhoffer. 4 GRAFIC has a
number of pre-packaged options to do straightfor-
ward things such as line plots and contour plots on
two-dimensional structured grids. In addition, to
give more sophisticated users full flexibility, there is
a mode in which the user program calls a GRAFIC
"control" package, which handles axes, annotation,
hard copy, blowups, etc. and calls user-supplied
routines to draw all plots. This capability allows users
to write custom software for plotting on their
particular types of unstructured grids, using a library
of low-level routines supplied with GRAFIC. This
approach is a little like the graphics library, except
that the control program relieves the programmer of
a lot of mundane tasks. It was felt that this approach
still required too much user programming, but the
"control" program architecture was the major in-
fluence on the choice of structure for VISUAL2 and
VISUAL3.

The program architecture finally chosen is shown
in Fig. 1. VISUAL2 and VISUAL3 are subroutines
which are called by a user's program, and they per-
form all graphics functions, including window
management, grid plots, contour plots, hard copy,
cursor control, "probes", etc. Keeping the user away
from all low-level graphics programming achieves
the goals of ease-of-use, and allows the VISUAL
programs to concentrate on providing interactivity,
animation and overall high performance.

To provide more flexibility than with PLOT3D,
VISUAL does not deal directly with CFD variables.
Instead it only processes generic scalar and vector
data. When it is initialized by the user's program, the

Advanced interactive visualization for CFD 53

_ _C'-° -mm°n-B-l°c--kL _ [User program I

] VISUAL [

i l User-suppfied routines

Fig. 1. Flow diagram showing direct use of VISUAL.

user "binds" a keyboard key to a particular user
function, and notifies VISUAL of the type of the
function. For example, a user program may tell
VISUAL that the key "p" is associated with a scalar
function labeled "pressure." If the user subsequently
presses the key "p," then VISUAL loads in the
values of "pressure" by calling a user-supplied
routine. The user-supplied routine can communicate
with the top-level user program through COMMON
blocks, and it knows how to calculate pressure from
the user's flow data. In this manner, the user can
easily add new functions to be plotted without having
to change the internal program of VISUAL. This
satisfies the goal of flexibility and generality.

Similarly, VISUAL obtains the data structure and
grid coordinates by calling user-supplied routines. If
the initialization of VISUAL states that some or all
of the data structure, grid and flow data are un-
steady, then VISUAL will keep calling (either
synchronously or asynchronously) the user-supplied
routines to obtain the latest data. This is the simple
mechanism by which animation is achieved.

The final comment on the program structure is that
the internal data structures used by VISUAL2 and
VISUAL3 (which are explained in the next section)
may not be the same as the user's chosen data
structure. In the most general case, it is the user's
responsibility to convert the user's data to
VISUAL's internal format. However, a set of CFD
application filter programs, called FLOVIZ, is being
written for users to use for this purpose. For
example, one set of FLOVIZ routines will take
multi-block data in the PLOT3D format, convert it
into the VISUAL internal format, and define the
plotting functions commonly offered by PLOT3D. In
this case, the user's program would simply call the
top-level FLOVIZ routine, as shown in Fig. 2. The
filter programs are easy to write in general, and can
be customized for different applications such as
structural analysis.

2.3. V I S U A L 2 data s t ruc ture

The choice of internal data structure for
VISUAL2 and VISUAL3 was driven by considera-
tions of generality and the maximum possible
performance. In two dimensions, every compu-
tational cell is being plotted in general, and so the
ratio of rendering time (the time needed to do a

I User program 1

1
i i

I
. l l

Fig. 2. Flow diagram showing indirect use of VISUAL
through FLOVIZ.

smooth Gouraud-shaded color fill of a polygon) to
compute time (the time needed to evaluate new
functions, such as pressure) is large. Therefore, the
data structure of VISUAL2 was optimized to obtain
the maximum graphics throughput on the Stardent
GS2000. This requires a decision which is somewhat
machine-dependent. The graphics primitive on the
Stardent, which allows a rendering rate of 150,000
Gouraud-shaded triangles per second, uses a
structure called a "polytriangle." Other manufac-
turers use slightly different primitives, but the
polytriangle is one of the structures which is the basis
of PEX (the Phigs Extension to X windows), which is
likely to emerge as the standard of high performance
graphics.

The polytriangle is a list of N+2 nodes which
defines N connected triangles, with nodes l, 2, 3
defining the first triangle, nodes 2, 3, 4 the second,
and nodes N, N + I , N+2 the Nth. The grid coordi-
nates and function values are defined at the nodes. In
this way the polytriangle, for large N, requires
approximately one node of coordinate and function
data per triangle. This contrasts with using a set of
disjoint triangles in which each triangle requires
three nodes of data. Thus, the use of polytriangles re-
duces memory requirements by factor 3, reduces bus
transfer requirements by factor 3, and also reduces
the triangle processing time because when processing
one triangle the low-level routines can take advan-
tage of results from processing the previous triangle.

The primary part of the VISUAL2 data structure
is a set of polytriangles which collectively define the
entire computational grid. The streamline integrator
(which simply integrates any vector function given to
VISUAL2) requires connectivity information. The
polytriangle structure immediately gives neighbor in-
formation for all the common faces internal to it. For
the N+2 external faces, there is a set of pointers
which point to the corresponding cell in another
polytriangle with the shared face. If there is no
neighboring cell, because it is an edge face, then it
points into a separate structure which is a collection
of all of the edge faces, grouped into specific edges
(e.g. airfoil, inflow boundary, outflow boundary).
The edge structure is important because certain

54 M. GILES and R. HAIMES

functions, such as skin friction, are only defined on
an edge, and there are special plotting capabilities to
display these.

One complication with the use of polytriangles as
the primary data structure is the task of converting
user grids into polytriangles. The conversion of
structured grids is trivial, since consistently cutting
all quadrilateral cells along the same diagonal will
naturally produce polytriangles. The harder task is
taking a general unstructured grid composed of
triangular and quadrilateral cells and decomposing it
into polytriangles. A very efficient algorithm has
been developed for this. A simpler version which
handles only triangular cells is presented in the
algorithm section. This is implemented as a routine
which can be used either by the FLOVIZ filter
routine, or directly by a user's program.

2.4. VISUAL3 data structure

In three dimensions, only a small fraction of the
computational cells are being displayed in some
manner on the screen at one time. Therefore the
ratio of rendering time to compute time is small, and
the choice of data structure is motivated by the desire
to minimize compute time, particularly in some of
the more CPU-intensive functions such as volume
slicing. In the same way that triangles are the lowest
common denominator in two dimensions, tetrahedra
are the lowest common denominator in three dimen-
sions, and in principle all other cell types could be
split into a number of tetrahedra. Since this would
simplify our programming task we considered this
approach but rejected it for the following reason.

The problem is how to split a hexahedron into
tetrahedra. The smallest number of tetrahedra that
the hexahedron can be split into is five, achieved by
dividing each face into two triangles in the correct
manner to form four tetrahedra with three external
faces and one tetrahedron with four internal faces.
The difficulty with this is the possibility of an
inconsistency between neighboring hexahedra. If
the common quadrilateral face shared by two
hexahedra is split across one diagonal on one cell and
the other diagonal on the other cell, and if the
quadrilateral face is twisted (i.e. non-planar), then
there will be an overlap and some gaps in the
volumetric decomposition into tetrahedra because
the common face will be represented differently on
either side. In structured grids, one can ensure a
consistent splitting, and this approach is used by
Strid and Rizzi. 6 In unstructured grids one cannot
solve this problem, except by splitting each
quadrilateral face into four triangles by inserting a
new node at the centroid of the face, and joining this
node to all four corners. If each resulting triangle is
then connected to another node at the centroid of the
entire cell, then 24 tetrahedra are produced. This will
clearly greatly increase the computational cost of all
operations, and the memory requirements.

Instead, our approach was to use a data structure
for VISUAL3 which has four different cell types;
tetrahedra, pyramids, prisms and hexahedra. Almost
all CFD grids in use today are a combination of one
or more of these cell types, and the few that are not
can be easily decomposed into these. This data
structure keeps memory requirements to a minimum
for an unstructured grid, and leads to computation-
ally efficient algorithms tailored for each cell type.
The only drawback of this approach was the extra
programming that had to be done to handle each cell
type.

As in two dimensions, there are also other com-
ponents to the data structure. There are pointers
from each cell to its neighbors, to provide the
connectivity information needed by the streamline
integrator. There is a list of surfaces (e.g. wing,
fuselage, far-field boundary), and for each there is a
list of surface faces, which are treated as a set of dis-
joint triangles because in this case there is no
problem about an inconsistency in splitting quadri-
lateral faces. In the object-oriented computer
science terminology, the surfaces are treated as static
objects in the object database. "Static" means that
the definition of the object (its list of faces) does not
change. The "attributes" of the object (whether it is
being rendered, whether the grid plotting is on or
off) can be changed by the user. A "dynamic" object
is created by the volume slicing, either by moving a
cutting plane through the volume or by defining an
iso-function surface. It is dynamic because as the
location of the plane moves, or the value of the iso-
function surface changes, the list of cells defining the
object will change. To create an image with multiple
slicing planes or iso-function surfaces, there is a
capability to take the dynamic object at some instant
and copy it to a static object in the database.
Additional static objects created in this way can be
deleted later to free memory.

2.5. User interface

Figures 3 and 6 show the screen displays of
VISUAL2 and VISUAL3. All graphics are handled
through the X-window display system.

VISUAL2 has two main windows. The large one
(at top left) is the primary window in which most
plotting is performed. The small one (at bottom
right) is the secondary window which is used for
plotting one-dimensional data, and the "magnifying
glass." There is also a window (at top right) with the
color map, which defines the color associated with a
particular function value. At the bottom left is the
text window which displays the help menus and is
used to accept numeric input data from the user.

VISUAL3 has three main windows. The largest
one (at top left) is the primary window in which all
three-dimensional plotting is performed. The slightly
smaller one (at middle right) is the secondary
window which is used for plotting two-dimensional

Advanced interactive visualization for CFD 55

data, and the smallest one (at bottom right) is used
for one-dimensional data. Again there is also a
window (at top right) for the color map, and a text
window. The last window displays either the
functions of the eight dials on the dialbox, or the
state of the "objects" in the database. The mouse can
be used to edit the database, changing which surfaces
are rendered, which have grids displayed, etc.

Our personal opinion is that pull-down menus
controlled by a mouse clutter up the screen and are
cumbersome to use. Therefore, most user inter-
action with VISUAL is through the keyboard.
Function keys and assorted other special keys
control all plotting options. The option invoked also
depends upon the window in which the cursor is
currently located, as is standard in most X-based
applications. Alphanumeric keys are used to define
which scalar or vector function is to be plotted, as
determined by the key bindings that the user
specifies when initializing VISUAL. This provides a

great deal of functionality without requiring multiple
levels of menus. VISUAL3 also uses the dialbox to
input rotations and value changes.

3. INTERACTIVE PROBES AND CAPABILITIES

3.1. VISUAL2

VISUAL2 has a set of basic plotting options which
generate output in the primary window. These are
supplemented by the ability to interactively pan and
zoom, and change the color maps.

• Contour plot--a Gouraud-shaded contour plot of
the currently "active" scalar variable is generated.
This is dynamic if the grid or the function is un-
steady. It is shown in Figs 3 and 4.

• Grid plot--the computational grid is super-
imposed on the current plot.

Fig. 3. VISUAL2 with surface line plot.

56 M. GILES and R. HAIMES

Fig. 4. VISUAL2 with edge normal probe.

• Contour line p lo t - -contour lines corresponding to
the current scalar function are superimposed on
the current plot.

• Vector plot--vectors corresponding to the current
vector function are superimposed on the current
plot. This is shown in Fig. 5.

At the screen interface level, the novel feature of
VISUAL2 is the large variety of interactive "probes"
which can be used by the viewer to interrogate the
numerical data. The output from these probes is dis-
played in the secondary window. An important point
is that many of these probes were developed as a
direct consequence of suggestions from users who
wanted to study some particular aspect of a flow
field, and felt that the existing tools were not
adequate.

• Point p robe- - the position of the probe in the
primary window is defined by the mouse. The

output in the secondary window is a time history
of the scalar variable being plotted in the primary
window.

• Edge function probe-- th is is similar to the point
probe, but is for plotting edge function data (data
like skin friction or heat transfer which is only
defined on edges). The probe is defined to be at
the edge point closest to the current mouse
location.

• Edge plot-- this plots the current scalar variable
along the edge which is closest to the current
mouse location. It is shown in Fig. 3.

• Edge function plot-- this is similar to the edge
plot, but is for plotting edge function data.

• Line probe- - the position of the line is controlled
by the mouse. The ouput in the secondary
window is the steady or unsteady scalar function

Advanced interactive visualization for CFD 57

Fig. 5. VISUAL2 with velocity vectors.

values along the line. A subsidiary option for un-
steady cases is to calculate and plot a time-
average.

• Ldge normal probe--this is similar to the line
probe, except that the line is normal to an edge.
Like the edge function probe, one end of the line
is defined to be at the edge point closest to the
current mouse location. The line then extends
normally out from the edge into the domain. The
initial length is set by the initial distance of the
mouse from the edge, but it can be changed by the
user. The location of the whole line varies
dynamically as the user moves the mouse,
allowing the user to quickly scan around an entire
surface examining, for example, the boundary
layer in a viscous CFD calculation. This is shown
in Fig. 4.

• Magnifying glass--this is similar to the interactive
pan and zoom, except that the primary window re-
mains unchanged. The output in the secondary
window is the magnified region. For efficiency
reasons, if the data is unsteady this option
"freezes" the action and does not plot dynami-
cally.

3.2. VISUAL3

VISUAL3 has a set of basic plotting options which
generate output in the primary three-dimensional
window. Simple dialbox commands allow the user to
rotate, pan and zoom, and the user can again inter-
actively change the color maps. For convenience in
comparing different solution sets, viewing positions
can be stored away, and/or recalled.

Surface contour plot--a Gouraud-shaded contour
plot of the currently "active" scalar variable is
generated on all selected surfaces. An additional
option is thresholding, in which the contour plot is
only given on those parts of the surface on which a
thresholding function lies within certain bounds.
If the thresholding function is the same as the plot-
ting function this gives the form of thresholding
first developed by Weston. 3 If the thresholding
function is geometric this produces a "cutaway"
view in which part of the surface is removed to
enable one to see another part. Other options are
to make the rendering translucent (allowing
surfaces behind to be partially visible) or to add a
simple lighting model (giving valuable cues about

58 M, GILES and R. HAIMES

Fig. 6. VISUAL3 with cutting plane.

surface curvature and depth). This is shown in
Figs 6-9.

• Surface function contour plot--this is similar to
the surface contour plot, except that the scalar
quantity is a surface function which is only defined
on the surface.

• Surface grid plot--the computational grid is dis-
played on all selected surfaces. This is shown in
Fig. 7.

• Surface vector plot--vectors corresponding to the
current vector function are displayed on all
selected surfaces.

VISUAL3 has a number of probes with output in
either, or both, of the primary three-dimensional
window and the secondary two-dimensional window.

• Cutting plane--this is a flat plane whose orienta-
tion relative to the computational object is inter-
actively set by the user using the dialbox. On the
plane, one can plot the computational grid, or
contours of the current scalar variable, or "tufts"
corresponding to the current vector variable, or
begin streamlines which are the integrals of the
current vector function. The output of these

the secondary window,
VISUAL2 are available

options can be plotted in either, or both, of the
three- and two-dimensional windows. A rendered
cutting plane is shown in Fig. 6, and a cutting
plane with streamlines is shown in Fig. 8.

User-defined cutting plane--this is very similar to
the cutting plane, except that the plane is defined
by z '=cons t , where x' , y ' , z' are user-defined
functions of the physical coordinates x, y, z. This
allows, for example, a user to display contours on
an axisymmetric surface which is useful in turbo-
machinery applications. Using the diaibox, the
user can adjust the value of z' to move the cutting
plane through the field.

Iso-function surface--this is similar to the user-
defined cutting plane, with z' defined to be the
current scalar function value. Since there is no
way to define x' , y ' , this option plots the iso-
function surfaces only in the three-dimensional
window. The iso-surface value can be varied using
the dialbox. This is shown in Fig. 9.

When one of the cutting planes is being plotted in
many of the probes in
to interrogate the two-

Advanced interactive visualization for CFD 59

Fig. 7. VISUAL3 with grid plot.

,~ii! ̧̧ ~

Fig. 9. VISUAL3 with iso-function surface.

Fig. 8. VISUAL3 with streamlines.

d imens iona l flow field, with ou tpu t be ing displayed
in the small ter t iary window.

4. ALGORITHMS

4.1. Two-dimensional polvtriangle strip generator

The object ive of the two-d imens iona l polytr iangle
strip gene ra to r is to take an uns t ruc tu red grid

composed of t r iangular cells, and conver t it in to a
n u m b e r of polytr iangle strips. This is ach ieved in two
stages. The first stage const ructs a table of informa-
t ion abou t all grid faces, and the second stage uses
this to form the strips.

T h e face table to be cons t ruc ted has six entr ies for
each face. The first two entr ies are po in te rs to (or the
indices of) the two nodes tha t define the f ace The
th i rd ent ry is a po in te r to the next face in the list
which conta ins the first node. Similarly, the four th
po in te r is to the next face which conta ins the second
node . The thi rd and four th po in te rs are zero if the
cur ren t face is the last face which involves the corres-
pond ing node . T h e last two entr ies are poin ters to
the cells on e i the r side of the face. If the face is on an
edge then the re will be only one cell and so the
second ent ry will be zero. In addi t ion to the face
tab le the re is a node table with one entry per node
which points to the first face which involves that
node .

W h e n the ini t ial izat ion process begins, the node
and face tables are all zeros. They are filled up pro-
gressively by process ing all of the cells in the domain .
Each cell has po in te rs to the three or four nodes
which define it, and these in turn define th ree or four
faces. For each face the process is as follows.

Let I 1 and 12 be the indices of the two nodes tha t
define the new face. The node table is used to see if
the re is a l ready a face in the face table which involves
node I 1. If the re is not , then this new face is added to
the face table by set t ing the first two ent r ies equal to
l l and I2, and the fifth to the cell index. If there is,
then the o the r node of the face in the table is com-
pared to I2. If these match , then the table face is the

60 M. GILES and R. HAIMES

same as the new face and so the current cell is the
second cell corresponding to that face and the sixth
entry is set appropriately. If they do not match then
the whole process is repeated with the next face in
the table which uses the first node of the new face,
using the appropriate third or fourth pointer to find
this face. This continues until one either finds a
match for the new face, or runs out faces which use
the first node. In the latter case the new face does not
currently exist in the face table and so it is added to
the face table. Also, the third or fourth entry (as
appropriate) of the face that used to be the last in-
volving node I1 is set to point to the new face in the
table which is now the last.

When the face table is complete, all faces with only
one cell are labeled as being edge faces. The con-
struction of polytriangles requires an additional table
for the cells. If a cell has not yet been included in a
polytriangle then the entry is zero. If it has been used
the entry points to the cell's location in the
polytriangle structure. The first part of the strip
generator starts at edge faces and works into the
domain. The edge face points to the neighboring cell;
the cell points to its three nodes and so one obtains
the index of the interior node, the one not in the edge
face; using the node and face tables the node points
to the face which is then the starting point for adding
the next triangle to the strip. This continues until one
reaches another edge face or a triangle which has
already been used, which ends the strip. Once all
edge faces have been used to start strips, there may
still be some cells that have not been used. In this
case additional strips are started from each unused
cell (extending in both directions) until all cells have
been used.

There are some minor complications. As indicated
in Fig. 10, a strip that starts at an edge face can grow
inwards in two ways, depending on the order in
which one takes the two edge nodes. The algorithm
checks both possibilities and takes the one which
gives the longer strip. Similarly, starting at an unused
interior cell, there are three different possible strip
orientations, and one chooses the one giving the
longest strip. The final operation is to use the in-
formation in the node, face and cell tables to con-
struct the connection data between the polytriangles;
the cell in one polytriangle points to its nodes, which
point to the face, which points to the neighboring
cell, which points to its location in the neighboring
polytriangle.

This strip generation algorithm is very efficient.
Each node is involved in only six faces on average, so

chasing through the face table to find and match faces
is extremely rapid. For a grid with N triangles, the
memory requirements are O(N), and the table
generation and the strip generation phases both
require O(N) operations. Only 2 s are required on a
Stardent GS2000 to generate strips for an irregular
triangular grid with 100,000 cells. This is comparable
to the disk I/O time for reading in the data set, so it is
re-calculated every time instead of being stored on
disk.

A very similar procedure is used in three dimen-
sions to take an unstructured collection of cells and
compute the neighboring cells and a list of surface
faces.

4.2. Three-dimensional volume slicing

The task of the three-dimensional volume slicing
algorithm is to extract two-dimensional surface in-
formation from an unstructured three-dimensional
data set. This procedure is used for the planar cutting
plane, user-defined cutting plane, and iso-function
surfaces listed which are three of the probes in
VISUAL3. In all three cases, the description of the
problem can be reduced to the following; given some
function z', and a set of unstructured three-
dimensional cells, how does one firstly determine the
cells that are crossed by the surface z ' = Z , and
secondly, for the crossed cells determine the surface
piece to be plotted.

Taking the second task first, there is an extremely
fast method referred to as the "marching cubes"
algorithm, developed by Lorensen and Cline, 9 and
used by L6hner, Strid, Dannenhoffer and ourselves.
Briefly, the technique for hexahedra is to calculate
an eight-bit index for a cell, where each bit is 0 or 1
depending whether the corresponding corner node
value of z ' - Z is positive or negative. This eight-bit
index then points to an entry in a look-up table that
gives the logical structure of the surface z ' = Z .
Interpolation of geometry and function values along
an edge completes the process.

The harder task is the first task of determining the
cells that are crossed. An exhaustive search of all
cells is possible but extremely time-consuming. Strid
improves the efficiency by performing the exhaustive
search for all boundary cells, and then constructing
the surface from the edges in, by using cell connec-
tivity information to check neighboring cells to see if
they are crossed. 6 Although not vectorizable, this
works well for planar cutting planes. However, it
does not work for user-defined surfaces and iso-

2 1 1 2

Fig. 10. Alternative polytriangle strips.

Advanced interactive visualization for CFD 61

surfaces which do not cross the boundaries of the
computational region.

Our approach, part of which was published in an
earlier paper, "~ begins with an initialization phase
when the function z' is first defined. For each cell, j,
Z) , r n m and z'j the minimum and maximum values
of z' of the corner nodes, are calculated. Two
ordered lists of cells are formed, Lmi n ordered by
Z),mm, Lm~x by z' / The final initialization step is to
evaluate Az', the global maximum value of
Z) - - Z t / , m i n , which is the maximum cell "width." If
there are N total cells then the initialization requires
O(Nlog(N)) operations using a quick-sort al-
gorithm. For N = 100,000, the initialization currently
takes 15 s on the Stardent GS2000, but it is hoped
that this will be reduced in the future by using fully-
optimized assembly-level programming for the
critical sort algorithm.

If the constant Z is being set for the first time, or if
it has changed from its previous value by more than
Az', then an active cell list L~,~¢ is formed by taking
the section of list Lmi n with cells whose Z),mm lie in the
range [Z-Az',Z]. This requires only O(log(N))
operations to find the limits, and in general the active
cell list has O(N z/3) cells. Purging the active list of the
few cells that are not crossed by z' = Z gives the final
list of crossed cells.

If Z has changed by less than Az' then a different
procedure is used. If Z,~w > Zo~d, the old active cell
list is supplemented by the cells in list tmin that have
values of Ztl,min in the range [Zojd, Z.~w]. If
Z,~,~< Zo~d, the old active cell list is supplemented
by the cells in list Lma x that have values of z) in
the range [Z Zoo0]. The active cell list is then
purged of all cells that are not crossed. For small
changes in Z, this procedure is extremely efficient
since it involves the addition and removal of just a
few cells. This enables a rapid animation rate when
interactively varying the value of Z smoothly to
sweep through the entire computational domain.

4.3. Three-dimensional streamlines

The algorithm for integrating a vector function to
produce streamlines is very similar to the techniques
used in GRAFIC and PLOT3D, and differs only
slightly from the method used by Strid and
Eliasson. 6 The algorithm can be broken into two
parts, a top-level part which performs the time-
integration of the vector function, and a low-level
part which is responsible for evaluating the inter-
polated velocity at an arbitrary point in space.

The top-level task is relatively straightforward.
Assuming that somehow one knows the velocity field
~i(. 0 , then the streamline, defined parametrically as a
function of time t by the equation

d x ~
~ i = u(x), (1)

is integrated numerically by a fourth-order Runge-
Kutta method. To obtain accurate streamlines at the

lowest possible cost, an adaptive time-step is used,
with the time-step being halved if the velocity direc-
tion changes too much over one time-step, and
doubled if it changes sufficiently less.

The low-level task is to calculate ~ for an arbitrary
£ on an unstructured grid. The explanation will be
solely for hexahedral cells, but the extension to the
other cell types is quite natural.

For each hexahedral cell there is a trilinear
mapping from a unit cube (0 < ~ < 1 , 0<~2<1 ,
0 < ~3 < 1) in computational space to the hexahedron
in physical space. This can be represented as

8

= Y~(~ , , ~2, ~)~,, (2)
I 1

where the sum is over the eight corner nodes, ~/, is
the coordinate vector of the jth node, and ~ is a tri-
linear function (linear in each of {t,{2,{3) which is
equal to 1 at node j and 0 at all other nodes. Using an
isoparametric representation, the velocity field can
also be expressed as

8

a =)S f,(~,,~2,~,)a,. (3)
/ = 1

Thus the task for the low-level routine has been re-
duced to finding the cell in which the desired £ is
located, and then finding the corresponding value of

and hence ft. The second part of this is accom-
plished by a Newton-Raphson iterative solution of
Eq. (2). The Newton-Raphson update is clipped to
ensure that ~ does not go outside the computational
cell. If~ lies on the computational cell boundary, and
the update still wants to go outside the cell, then this
proves that the desired ~ lies in another cell. Using
the cell connectivity information the search switches
to the neighboring cell and the Newton-Raphson
procedure is restarted. The initial cell used for the
search is taken to be the cell corresponding to the last
point calculated in the top-level Runge-Kutta inte-
gration. Thus the searching procedure will typically
only need to move through one or two cells before
finding the correct cell, and ti;en converges quadrati-
cally to the correct value of ~.

5. C O N C L U S I O N S

This paper has discussed the development of two
graphics programs, VISUAL2 and VISUAL3, for
the visualization of scalar and vector data in two and
three dimensions, respectively. A strong effort was
made to explain the reasons behind the choice of
data structure and program architecture that was
employed, and to present the pros and cons of alter-
native approaches. This is a critical part of the design
of a graphics package and deserves considerable
thought before proceeding to the programming
stage. The best approach is to first formulate a clear
set of design goals for the functionality of the
software. Together with the capabilities and limita-
tions of the hardware, this then gives one a good
basis on which to optimize the program design.

62 M. GILES and R. HAIMES

The original scientific con t r ibu t ions of this pape r
lie in two areas. The first is a var iety of innova-
tive " p r o b e s " for in te r roga t ing the numer ica l data .
A l though mos t of these p robes are not difficult to

imp lemen t , and so do not r ep resen t major break-
th roughs , collectively they prov ide a set of visualiza-
t ion tools which is much more powerful than exist ing
graphics programs. T he second area is in a lgor i thms
for visual izat ion on uns t ruc tu red grids; the genera-
t ion of two-d imens iona l polyt r iangle strips f rom an
uns t ruc tu red set of t r i angula r cells, and the calcula-
t ion of iso-funct ion surfaces and arb i t ra ry cut t ing
planes in th ree d imens ions .

Acknowledgements--Professor Earll Murman, Mr David
Modiano, Mr David Darmofal and Dr John Dannenhoffer
have all contributed greatly to this research through critical
review of the software design at an early stage, many
suggestions for improvements at later stages, and ideas on
new "probes" and interactive capabilities. DARPA and
Stardent inc. largely financed the purchase of the GS2000
superworkstations without which this work would not have
been possible.

REFERENCES

1. P. Buning and J. L. Steger, "'Graphics and flow
visualization in computational fluid dynamics," A | A A
Paper 85-1507, 1985.

2. T. Lasinski, P. Buning, D. Choi, S. Rogers, G.
Bancroft and F. Merritt, "Flow visualization of CFD
using graphics workstations," A I A A Paper 87-1180,
1987.

3. R. F. Weston, "Color graphics techniques for shaded
surface displays of aerodynamic flowfield parameters,"
AIAA Paper 87-1182, 1987.

4. J. F. Dannenhoffer, "GRAFIC--an interactive
graphics package for scientific applications," Technical
Report 89-39, United Technologies Research Center,
East Hartford, CT, 1989.

5. R. L6hner, P. Parick and C. Gumbert, "Some
algorithmic problems of plotting codes on unstructured
grids," A I A A Paper 89-1981, 1989.

6. T. Strid and A. Rizzi, "Development and use of some
flow visualization algorithms," VKI Lecture Series on
Computer Graphics and Flow Visualization in CFD,
1989.

7. E. M. Murman, A. R. LaVin and S. C. Ellis,
"Enhancing fluid mechanics education with work-
station based software," AIAA Paper 88-0001, 1988.

8. C. Upson et al., "The application visualization system:
a computational environment or scientific visualiza-
tion," IEEE Computer Graphics and Applications
(1989).

9. W. E. Lorensen and H. E. Cline, "Marching cubes in a
high resolution 3D surface construction algorithm,"
ACM Computer Graphics 21(4), 163-169 (1987).

10. D. L. Modiano, M. B. Giles and E. M. Murman,
"Visualization of three-dimensional CFD solutions,'"
AIAA Paper 89-0138, 1989.

