
An introdu
tion to the adjoint approa
h to designMi
hael B. GilesOxford UniversityNiles A. Pier
eCalifornia Institute of Te
hnologyAbstra
t. Optimal design methods involving the solution of an adjoint systemof equations are an a
tive area of resear
h in 
omputational 
uid dynami
s, par-ti
ularly for aeronauti
al appli
ations. This paper presents an introdu
tion to thesubje
t, emphasising the simpli
ity of the ideas when viewed in the 
ontext of linearalgebra. Detailed dis
ussions also in
lude the extension to p.d.e.'s, the 
onstru
tionof the adjoint p.d.e. and its boundary 
onditions, and the physi
al signi�
an
e of theadjoint solution. The paper 
on
ludes with examples of the use of adjoint methodsfor optimising the design of business jets.Keywords: 
omputational 
uid dynami
s, adjoint p.d.e., design1. Introdu
tionThere is a long history of the use of adjoint equations in optimal 
on-trol theory (Lions, 1971). In 
uid dynami
s, the �rst use of adjointequations for design was by Pironneau (1974), but within the �eld ofaeronauti
al 
omputational 
uid dynami
s, the use of adjoint equationshas been pioneered by Jameson, who used his knowledge of optimal
ontrol theory to develop what he 
alls optimal design methods. Theterm `optimal' refers to the fa
t that one is trying to �nd the geometrywhi
h minimises some obje
tive fun
tion subje
t to a set of 
onstraints.In a sequen
e of papers by himself (1988; 1995a; 1995b) and withReuther and other 
o-authors (Reuther and Jameson, 1994; Reuther etal., 1996; Jameson et al., 1998) Jameson developed the adjoint approa
hfor potential 
ow, the Euler equations and the Navier-Stokes equations.The 
omplexity of the appli
ations within these papers also progressedfrom 2D airfoil optimisation, to 3D wing design and �nally to 
ompleteair
raft 
on�gurations (Jameson, 1999; Reuther et al., 1999a; Reutheret al., 1999b).A number of other resear
h groups have developed adjoint CFD
odes for design optimisation (Cabuk et al., 1991; Korivi et al., 1991;Ta'asan et al., 1992; Baysal and Eleshaky, 1992; Hu�man et al., 1993;Lewis and Agarwal, 1995; Anderson and Venkatakrishnan, 1999; Dadoneand Grossman, 1999). An overview of re
ent developments in adjointdesign methods is provided elsewhere (Newman et al., 1999). Of parti
-
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2 M.B. Giles & N.A. Pier
eular interest is the work of Elliott (1997; 1998) and Anderson (Nielsenand Anderson, 1998; Anderson and Bonhaus, 1999) on unstru
turedgrids using the `dis
rete' adjoint approa
h, and the work of Mohammadi(1997a; 1997b) in using automati
 di�erentiation software to 
reate theadjoint 
ode from an original CFD 
ode; both of these approa
hes willbe dis
ussed further in this paper.Considering the importan
e of design to aeronauti
al engineering,and indeed to all of engineering, it is perhaps surprising that the devel-opment of adjoint CFD 
odes has not been more rapid in the de
adesin
e Jameson's �rst papers appeared. In part, this may be due to someof the limitations of the adjoint approa
h, whi
h will be dis
ussed laterin this paper. However, it seems likely that part of the reason is its 
om-plexity, both in the mathemati
al formulation of the adjoint p.d.e. andboundary 
onditions in the `
ontinuous' approa
h favoured by Jameson,and in the 
reation of the adjoint CFD 
ode in the `dis
rete' approa
h.In this paper we aim to address some of these diÆ
ulties. The adjointtheory is presented �rstly in the 
ontext of linear algebra, in whi
h it ismost easily understood. This is the basis for the dis
rete adjoint CFDapproa
h in whi
h one works with the algebrai
 equations that 
omefrom the dis
retisation of the original 
uid dynami
 equations.The paper then treats the extension to p.d.e.'s as used in Jameson's
ontinuous adjoint approa
h in whi
h the adjoint p.d.e. is formulatedand then dis
retised. The emphasis in the present review is on the
onstru
tion of the adjoint p.d.e. and its boundary 
onditions, thephysi
al signi�
an
e of the adjoint solution, and the manner in whi
hgeometri
 perturbations are introdu
ed.The paper 
on
ludes with a dis
ussion of the pros and 
ons of thetwo approa
hes, the dis
rete and the 
ontinuous, and examples of theuse of adjoint methods to optimise business jet designs.2. Dis
rete adjoint approa
h2.1. Linearised obje
tive fun
tionThe goal of aerodynami
 design optimisation is the minimisation (ormaximisation) of an obje
tive fun
tion that is a nonlinear fun
tion ofa set of dis
rete 
ow variables. For example, the lift may be expressedas L(U) where U is the set of all 
ow variables at dis
rete grid pointsarising from an approximate solution of the Euler equations, and L is as
alar fun
tion whi
h approximates the appropriate weighted integralof pressure over the surfa
e of an air
raft.In design optimisation, the question of interest is: what is the per-turbation in L due to a perturbation in the geometry, and hen
e the
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Adjoint approa
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ow �eld? If u is the perturbation in the 
ow �eld, then the linearisedperturbation in the lift is gTu � �L�U u:Therefore, the goal is to evaluate the quantity gTu where u satis�es theappropriate linearised 
ow equations.2.2. Duality and adjoint variablesSuppose one wishes to evaluate the quantity gTu given that u satis�esthe linear system of equations Au = f;for some given matrix A and ve
tor f . The dual form is to evaluate vT fwhere the adjoint solution v satis�es the linear system of equationsAT v = g:Note the use of the transposed matrix AT , and the inter
hange in theroles of f and g.The equivalen
e of the two forms is easily proved as follows,vT f = vTAu = (AT v)Tu = gTu:Given a single f and a single g, nothing would be gained (or lost)by using the dual form. Exa
tly the same value for the linear obje
tivefun
tion would be obtained with exa
tly the same 
omputational e�ort.However, suppose now that we want the value of the obje
tive fun
-tion for p di�erent values of f , and m di�erent value of g. The 
hoi
ewould be to do either p di�erent primal 
al
ulations or m di�erent dual
al
ulations. When the dimension of the system is very large, the 
ostof the ve
tor dot produ
ts is negligible 
ompared to solving the linearsystems of equations, and therefore the dual (or adjoint) approa
h ismu
h 
heaper when m�p.2.3. Physi
al interpretationIt is possible to work with adjoint variables and regard them as a purelymathemati
al 
onstru
t, but they do have physi
al signi�
an
e.One way of looking at them is that they give the in
uen
e of anarbitrary sour
e term f on the fun
tional of interest,Au = f �! vT fsour
e term fun
tional perturbation
paper.tex; 22/02/2000; 11:18; p.3



4 M.B. Giles & N.A. Pier
eAnother is that they are the value of the obje
tive fun
tion 
orre-sponding to the appropriate Green's fun
tion. To see this, we de�nef (i) to be a ve
tor whose elements are zero apart from the ith whi
h isunity. The 
orresponding solution u(i) given byAu(i) = f (i)is the dis
rete equivalent of a Green's fun
tion andvT f (i) = vi = gTu(i):Thus, the ith 
omponent of the adjoint variables is equal to the valueof the obje
tive fun
tion when the solution is equal to the ith Green'sfun
tion.2.4. Duality formulation for adjoint designGiven a set of design variables, �, whi
h 
ontrol the geometry of theairfoil, wing or air
raft being designed, and a set of 
ow variablesat dis
rete grid points, U , the aim is to minimise a s
alar obje
tivefun
tion J(U;�). This minimisation is subje
t to the 
onstraint thatthe dis
rete 
ow equations and boundary 
onditions are all satis�ed.These may be expressed 
olle
tively asN(U;�) � N(U;X(�)) = 0;where X is the ve
tor of grid point 
oordinates whi
h depends on �.Using te
hniques su
h as the `method of springs' (Raus
h et al., 1993) orvariants on trans�nite interpolation (Thompson et al., 1985; Reuther etal., 1996), the grid deforms smoothly as 
hanges in the design variablesmodify the surfa
e geometry. Hen
e, �X=�� is usually non-zero at bothinterior and surfa
e grid points.For a single design variable, we 
an linearise about a base solutionU0 to get dJd� = �J�U dUd� + �J�� ;subje
t to the 
onstraint that the 
ow sensitivity dUd� satis�es thelinearised 
ow equations �N�U dUd� + �N�� = 0:By de�ning u = dUd� ; A = �N�U ;gT = �J�U ; f = ��N��
paper.tex; 22/02/2000; 11:18; p.4



Adjoint approa
h to design 5we 
an 
onvert this into the standard formdJd� = gTu+ �J��;subje
t to Au = f:The dire
t sensitivity of the obje
tive fun
tion to perturbations in thedesign variables is easy to evaluate. The term gTu � vT f 
an be
omputed either by the dire
t approa
h, solving Au = f , or by theadjoint approa
h, solving AT v = g. For a single design variable therewould be no bene�t in using the adjoint approa
h, but for multipledesign variables, ea
h has a di�erent f , but the same g, so the adjointapproa
h is 
omputationally mu
h more eÆ
ient.2.5. Alternative Lagrange viewpointIn the presentation above, we have used the terminology of duality,
oming from the mathemati
s of ve
tor spa
es, linear algebra and linearprogramming. An alternative des
ription arises using the terminologyof Lagrange multipliers asso
iated with 
onstrained minimisation. Inthis framework, the adjoint variables are Lagrange multipliers, usuallywritten as �, and are introdu
ed into an augmented obje
tive fun
tionI(U;�) = J(U;�)� �TN(U;�);to enfor
e the satisfa
tion of the dis
rete 
ow equations. Consideringgeneral perturbations dU and d� givesdI = � �J�U � �T �N�U � dU +��J�� � �T �N�� � d�:If �T is 
hosen to satisfy the adjoint equation�J�U � �T �N�U = 0 =) ��N�U �T� = � �J�U�T ;then dI = ��J�� � �T �N�� � d�;and thus dId� is obtained.The �nal equations are exa
tly the same as those derived by 
onsid-ering duality; it is really only the des
ription of the mathemati
s whi
hdi�ers. In aeronauti
al CFD, most people follow Jameson in adopting
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6 M.B. Giles & N.A. Pier
ethe Lagrange multiplier viewpoint for design optimisation be
ause ofits 
onne
tion to 
onstrained optimisation and optimal 
ontrol theory.On the other hand, we prefer the duality viewpoint be
ause it seemsmore natural for other uses of adjoint variables, su
h as error analysis(Pier
e and Giles, 1998; Giles and Pier
e, 1999; Venditti and Darmo-fal, 1999; Pier
e and Giles, 2000), whi
h do not involve 
onstrainedoptimisation.2.6. Nonlinear optimisationReturning to the design problem, the aim is to �nd the set of designvariables � whi
h minimise the nonlinear obje
tive fun
tion J(U;�),where U is an impli
it fun
tion of � through the 
ow equationsN(U;�) = 0:These nonlinear 
ow equations and the 
orresponding linear adjointequations are both large systems whi
h are usually solved by an itera-tive pro
edure.There are two prin
ipal s
hools of thought as to the best method formar
hing the design variables to a lo
al minimum. In the �rst approa
h,a simple steepest des
ent algorithm is employed,�� = ��dJd�;where � 
ontrols the step size. The advantage of this method is thatpartially-
onverged 
ow and adjoint solutions may be used to evaluatethe gradients as long as these gradients are properly smoothed (pre
on-ditioned) prior to updating � (Jameson, 1995b). As a result, the 
ostper design 
y
le is relatively low.In the se
ond approa
h, approximations to the Hessian matrix ofse
ond derivatives d2Jd�id�j ;are used to speed 
onvergen
e via a quasi-Newton pro
edure su
h asBFGS (Gill et al., 1981). This method therefore requires more a

urate
ow and adjoint solutions, whi
h must generally be 
onverged fullyduring ea
h design iteration. As a result, the 
ost of ea
h design 
y
leis signi�
antly in
reased.The relative eÆ
ien
y and robustness of the partially and fully-
onverged approa
hes is still subje
t to debate. We have been unableto �nd any referen
e whi
h presents a 
lear quantitative 
omparison ofthe two approa
hes, but the ane
dotal eviden
e is that the partially-
onverged approa
h yields the lowest total 
omputational time.
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Adjoint approa
h to design 72.7. Limitations of the adjoint approa
h2.7.1. ConstraintsEngineering design appli
ations often have a set of 
onstraints whi
hmust be satis�ed, in addition to the dis
rete 
ow equations. Some ofthese may be geometri
, su
h as airfoil design in whi
h the length ofthe 
hord and the area of the airfoil are �xed. Others may depend onthe 
ow variables, su
h as wing design in whi
h one wishes to minimisethe drag but keep the lift �xed.Geometri
 
onstraints are easily in
orporated by modifying the sear
hdire
tion for the design variables to ensure that the geometri
 
on-straints are satis�ed. It is the 
onstraints whi
h depend on the 
owwhi
h pose a problem. If the 
onstraint is taken to be `hard' and somust be satis�ed at all stages of the optimisation pro
edure, then weneed to know both the value of the 
onstraint fun
tion, whi
h we shalllabel J2(U(�); �), and its linear sensitivity to the design variables. Thelatter requires a se
ond adjoint 
al
ulation; the addition of more 
ow-based hard 
onstraints would require even more adjoint 
al
ulations.This type of 
onstraint therefore undermines the 
omputational 
ostbene�ts of the adjoint approa
h. If the number of hard 
onstraints isalmost as large as the number of design variables, then the bene�t isentirely lost.To avoid this, the alternative is to use `soft' 
onstraints via the addi-tion of penalty terms in the obje
tive fun
tion, e.g. J(U) + � (J2(U))2.The value of � 
ontrols the extent to whi
h the optimal solution violatesthe 
onstraint J2(U;�) = 0. The larger the value of �, the smallerthe violation, but it also worsens the 
onditioning of the optimisationproblem and hen
e in
reases the number of steps to rea
h the optimum.2.7.2. Least-squares problemsIn the dire
t linear perturbation approa
h one evaluates ea
h of thelinear 
ow sensitivities dU=d�i, one by one, by solving the linearised
ow equations 
orresponding to a unit perturbation in a single designvariable. From these one 
an then 
al
ulate the linear sensitivity of theobje
tive fun
tion to ea
h of the design variables, but the total 
ost isproportional to the number of the design variables, making the adjointapproa
h mu
h 
heaper.However, if the obje
tive fun
tion is of a least-squares type,J(U) = 12Xn (pn(U)� Pn)2 ;then dJd�i =Xn �p�U dUd�i (pn(U)� Pn) ;
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8 M.B. Giles & N.A. Pier
eand so d2Jd�id�j �Xn � �p�U dUd�i�� �p�U dUd�j� ;assuming that pn(U)�Pn is small. Thus, the dire
t linear perturba-tion approa
h also gives the approximate Hessian matrix, leading tovery rapid 
onvergen
e for the optimisation iteration. By 
ontrast, theadjoint approa
h provides no information on the Hessian, so optimi-sation methods su
h as BFGS whi
h build up an approximation tothe Hessian take more steps to 
onverge than the dire
t linear per-turbation approa
h for least-squares appli
ations. It is important tokeep in mind, however, that for large numbers of design variables, theadjoint approa
h may still be more eÆ
ient, sin
e the 
ost of ea
h stepis signi�
antly higher when the sensitivities are evaluated dire
tly.2.7.3. Limitations of gradient-based optimisationThe adjoint approa
h is only helpful in the 
ontext of gradient-basedoptimisation and su
h optimisation has its own limitations. Firstly, it isonly appropriate when the design variables are 
ontinuous. For designvariables whi
h 
an take only integer values (e.g. the number of engineson an air
raft) sto
hasti
 pro
edures su
h as simulated annealing andgeneti
 algorithms are more suitable. Se
ondly, if the obje
tive fun
tion
ontains multiple minima, then the gradient approa
h will generally
onverge to the nearest lo
al minimum without sear
hing for lowerminima elsewhere in the design spa
e. If the obje
tive fun
tion is knownto have multiple lo
al minima, and possibly dis
ontinuities, then againa sto
hasti
 sear
h method may be more appropriate.2.8. Implementation issuesIn 
on
ept, the dis
rete adjoint approa
h is relatively straightforward.The linear algebra derivation is easy to grasp, and there is the attra
tivefeature that the gradient of the obje
tive fun
tion with respe
t to thedesign variables is exa
tly the same as would be obtained by the dire
tlinear perturbation method.Nonetheless, the pra
ti
al implementation of this approa
h 
an be
hallenging. The nonlinear 
ow solver often solves the steady-stateequations, R(U)=0; by a time-mar
hing iterative solution ofdUdt +R(U) = 0:Linearising the steady-state equations gives Lu = f; whereL � �R�U ; u � �U�� ; f � ��R�� :
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Adjoint approa
h to design 9Following a dire
t approa
h, the linear perturbation equations 
ouldalso be solved by mar
hing to steady-state the equationsdudt + Lu = f:Similarly, the adjoint equations LT v = g, 
an be solved by time-mar
hing1 the equation dvdt + LT v = g:The fa
t that L and LT have the same eigenvalues means that theasymptoti
 
onvergen
e of the time-mar
hing iteration in both 
aseswill be identi
al, and will be equal to the asymptoti
 
onvergen
e rateof the nonlinear 
ow solver.Let us turn now to the 
onstru
tion of the produ
t LT v. When ap-proximating the Euler equations on an unstru
tured grid, the residualve
tor R(U) 
an be expressed as a sum of 
ontributions from ea
h edgeof the grid, with ea
h edge 
ontributing only to the residuals at thenodes at either end of the edge. Symboli
ally, we 
an write this asR �Xe Re(U):Linearisation gives Lu =Xe Leu; Le � �Re�Uwhere Le is a sparse matrix whose only non-zero elements have rowand 
olumn numbers both mat
hing one or other of the two nodes ateither end of the edge. Therefore,LT v =Xe LTe v:At the programming level, this produ
t involves exa
tly the same loopover all of the edges as for the original nonlinear 
ow dis
retisation. Inprin
iple, one 
ould 
ompute the non-zero elements of the matrix Leand then form the produ
t LTe v. However, it is more eÆ
ient to 
al-
ulate the produ
t dire
tly without expli
itly 
onstru
ting the matrix.A 
ommon obje
tion to the dis
rete approa
h is the memory overhead1 The true adjoint of the unsteady equation dudt+Lu=f is � dvdt+LT v=g but thisis only well-posed when solved ba
kwards in time. Swit
hing from t to �t gives theforward time-mar
hing equation given above.
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10 M.B. Giles & N.A. Pier
ethat is in
urred if the linearised matrix is pre-
omputed and stored toredu
e the total number of operations. By forming the produ
t dire
tly,this memory overhead 
an be avoided while maintaining an opera-tion 
ount that is not substantially greater than that of the originalnonlinear solver.When approximating the Navier-Stokes equations on an unstru
-tured grid, the residual ve
tor 
an sometimes be expressed symboli
allyas R �Xe Re(U;DU);where the ve
tor DU represents the numeri
al approximation to the
ow solution gradient at the grid nodes at either end of the edge. Whenlinearised, this be
omes Lu � Au+ V D u;in whi
h the matri
es A; V;D 
an ea
h be expressed as a sum of ex-tremely sparse elemental matri
es as des
ribed above for the Eulerequations. The dis
rete adjoint operator for the Navier-Stokes equa-tions is then LT v � AT v +DTV T v;indi
ating that the adjoint gradient subroutine responsible for DT mustbe applied after the vis
ous subroutine responsible for V T . At �rst thisseems 
ounter-intuitive, but the mathemati
s is quite 
lear.Working out the mathemati
al expressions for LTe v and determiningthe best method for implementing the produ
t is relatively easy for theinvis
id 
uxes of the Euler equations. This pro
ess is far more arduousfor the vis
ous 
uxes in the Navier-Stokes equations and for 
hara
-teristi
 smoothing 
uxes for the Euler equations. An alternative is touse AD (Automati
 Di�erentiation) software su
h as Odyss�ee (Gilbertet al., 1991; Faure, 1996) or ADIFOR and ADJIFOR (Bis
hof et al.,1992; Carle et al., 1998) to generate the Fortran 
ode to 
ompute theprodu
t LTe v. In forward mode, AD software takes the original 
odewhi
h 
omputed Re(U) and then uses the basi
 rules of linearisationto 
onstru
t the 
ode to evaluate Leu. In reverse mode, it produ
es the
ode to 
al
ulate LTe v; it may seem that this is a mu
h harder taskbut in fa
t it is not. Furthermore, there are theoreti
al results whi
hguarantee that the number of 
oating point operations is no more thanthree times that of the original nonlinear 
ode (Griewank, 1989).A �nal point 
on
erns the evaluation of the term f , whi
h is thesour
e term for the dire
t perturbation equations and is in the obje
tivefun
tion in the adjoint approa
h. Again, forward mode AD software
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ould be used, but a very mu
h simpler alternative is to use the `
om-plex variable method' (Squire and Trapp, 1998) used by Anderson and
o-workers (1999). The essen
e of the idea is thatlim�!0 I fR(U;�+i�)g� = �R�� :In this equation, R(U;�) has been taken to be a 
omplex analyti
 fun
-tion, and the notation If: : :g denotes the imaginary part of a 
omplexquantity. The equation itself is an immediate 
onsequen
e of a Taylorseries expansion. The key is that this 
an be evaluated numeri
allyusing � = 10�20. Unlike the usual �nite di�eren
e approximation ofa linear sensitivity, there is no subtra
tion of two quantities whi
hare almost equal; therefore there is no una

eptable loss of a

ura
ydue to ma
hine rounding error. Applying this te
hnique to a FOR-TRAN 
ode requires little more than repla
ing all REAL*8 de
larationsby COMPLEX*16, and de�ning appropriate 
omplex analyti
 versions of
ertain intrinsi
 fun
tions.We have found this 
omplex variable method to be extremely ef-fe
tive. We have also used it to verify the 
orre
tness of our hand-
oded adjoint 
al
ulations by 
he
king the identity uT (LT v) = vT (Lu),with the produ
t LTv being 
omputed using the adjoint 
ode, and theprodu
t Lu = lim�!0 I fR(U+i�u; �)g� ;being 
omputed using the 
omplex variable method.3. Continuous adjoint approa
h3.1. Duality and the adjoint p.d.e.Duality in the 
ase of p.d.e.'s is a natural extension of duality in the lin-ear algebra formulation. Using the notation (V;U) to denote an integralinner produ
t over some domain 
,(V;U) � Z
 V TU dx;suppose that one wants to evaluate the fun
tional (g; u), where u is thesolution of the p.d.e. Lu = f;on the domain 
 subje
t to homogeneous boundary 
onditions on theboundary �
.
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12 M.B. Giles & N.A. Pier
eUsing the adjoint formulation, the identi
al fun
tional takes the form(v; f) where v is the solution of the adjoint p.d.e.L�v = g;plus appropriate homogeneous adjoint b.
.'s. The adjoint operator L�is de�ned by the identity(V;LU) = (L�V;U);whi
h must hold for all fun
tions V;U satisfying the respe
tive homo-geneous boundary 
onditions. Given the de�nitions, the proof of theequivalen
e of the two forms of the problem is trivial(v; f) = (v; Lu) = (L�v; u) = (g; u):3.2. ExamplesTo illustrate the 
onstru
tion of the adjoint operator and boundary 
on-ditions, let us 
onsider the one-dimensional 
onve
tion-di�usion equa-tion Lu � dudx � �d2udx2 ; 0 < x < 1;subje
t to the homogeneous boundary 
onditions u(0) = u(1) = 0.Using integration by parts, for any twi
e-di�erentiable fun
tion vwe have(v; Lu) = Z 10 v�dudx � �d2udx2� dx= Z 10 u��dvdx � �d2vdx2� dx+ �vu� �vdudx + �udvdx�10= Z 10 u��dvdx � �d2vdx2� dx+ ���vdudx�10 :For the integral term to equal the inner produ
t (g; u) in the adjointidentity, we need to de�ne the adjoint operator to beL�v = �dvdx � �d2vdx2 ;and to eliminate the boundary term the adjoint b.
.'s must bev(0) = v(1) = 0:Note the reversal in sign of the �rst derivative in the adjoint operator;this implies a reversal in the 
onve
tion dire
tion.
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Adjoint approa
h to design 13Table I. Various operators and their adjointsoperator adjointdudx � �d2udx2 � dvdx � � d2vdx2r � (kru) r � (krv)�u�t � �2u�x2 ��v�t � �2v�x2�u�t + �u�x ��v�t � �v�x
Table I lists a number of other di�erential operators and their ad-joints. Note the 
hanges of sign whi
h o

ur due to the integration byparts. This produ
es a reversal of 
ausality in time-varying problemsso that, for example, the adjoint paraboli
 operator is well-posed onlyif one starts with `initial data' at the �nal time and then integratesba
kwards in time towards the initial time of the original problem.3.3. Physi
al interpretationThe physi
al signi�
an
e of adjoint variables 
an again be understoodby 
onsidering Green's fun
tions and their e�e
t on the inner produ
tof interest.The solution of the p.d.e. Lu = f isu(x) = Z
G(x; x0) f(x0) dx0;where G(x; x0) is the Green's fun
tion. Therefore,Z
 gT (x)u(x) dx = Z
Z
 gT (x)G(x; x0) f(x0) dx dx0= Z
 vT (x0) f(x0) dx0;where vT (x0) = Z
 gT (x)G(x; x0) dx:Thus, the adjoint variables at a parti
ular point 
orrespond to thefun
tional evaluated using the Green's fun
tion for the same point.
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14 M.B. Giles & N.A. Pier
e3.4. Boundary termsSo far, we have assumed that the original problem has homogeneousb.
.'s and the obje
tive fun
tion 
onsists only of an inner produ
tover the whole domain and not a boundary integral. More generally,boundary integral terms in the primal obje
tive fun
tion lead to in-homogeneous b.
.'s for the adjoint, while inhomogeneous b.
.'s for theprimal problem lead to boundary terms in the adjoint fun
tional (Gilesand Pier
e, 1997).The general form of the adjoint identity is(V;LU)
 + (C�V;BU)�
 = (L�V;U)
 + (B�V;CU)�
for all fun
tions U; V , with the notation (:; :)�
 denoting an innerprodu
t over the boundary. B and C are both boundary operators(possibly involving normal derivatives) given in the de�nition of theoriginal problem. B� and C� are the 
orresponding adjoint boundaryoperators whi
h 
an be found by integration by parts.Using this general adjoint identity, it follows immediately that(v; f)
 + (C�v; f2)�
 = (g; u)
 + (g2; Cu)�
when Lu = f in 
; and Bu = f2 on �
;L�v = g in 
; and B�v = g2 on �
:There are some restri
tions on what 
an be imposed as b.
.'s andobje
tive fun
tions. The analysis is 
ompli
ated (see (Jameson et al.,1998) and (Giles and Pier
e, 1997) for details) but it reveals that on asolid surfa
e, the boundary integral term in the obje
tive fun
tion mustbe a weighted integral of the linear perturbation in the pressure whenusing the Euler equations. Similarly, for the Navier-Stokes equations itmust be a weighted integral of the linear perturbation in the normaland tangential for
es on the surfa
e, and either the heat 
ux or thesurfa
e temperature (depending whether one is spe
ifying the surfa
etemperature or adiabati
 
onditions, respe
tively).3.5. Geometri
 effe
tsPerhaps the most 
ompli
ated part of the 
ontinuous approa
h to de-sign is the manner in whi
h design variable perturbations produ
e thesour
e term f for the linearised p.d.e. and the inhomogeneous term f2for the linearised b.
.'s.
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Adjoint approa
h to design 15We will outline two approa
hes, both of whi
h use 
urvilinear 
oor-dinates (�; �) in two dimensions. Writing the Euler equations in theirusual ve
tor form as �F�x + �G�y = 0;when transformed to the 
urvilinear 
oordinates they be
ome��� �F �y�� �G�x���+ ��� ��F �y�� +G�x��� = 0:In the approa
h used by Jameson, the 
urvilinear 
oordinates 
or-respond to grid lines of a stru
tured grid, with the airfoil surfa
e beingde�ned as �=0 (Jameson, 1995b). A small perturbation ~� to a designparameter produ
es 
hanges su
h asF �! F + �F�U dUd� ~��x�� �! �x�� + �2x���� ~�:Terms not depending on ~� all 
an
el, and terms depending on ~�2 arenegle
ted. Hen
e, we get the linearised equations,��� ��A�y�� �B�x��� u�+ ��� ���A�y�� +B�x���u� =� ��� �F �2y���� �G �2x������ ��� ��F �2y���� +G �2x����� ;where A = �F�U ; B = �G�U ; u = dUd� :The boundary 
ondition on an invis
id wall is that there is no 
ownormal to the surfa
e � = 0. This remains true as � 
hanges but oneneeds to 
onsider the linearised perturbation to the unit normal, whi
heventually leads to the inhomogeneous boundary term f2.For 
omplex geometries, it is often not possible to generate stru
-tured grids in whi
h the surfa
e 
orresponds to �= 
onst. Instead, one
an generalise the above approa
h by de�ningx(�; �) = � + ~�X(�; �);y(�; �) = � + ~�Y (�; �);so that (x; y) � (�; �) when ~� = 0, and X(�; �); Y (�; �) are smoothfun
tions mat
hing the surfa
e deformation so that the surfa
e remains
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16 M.B. Giles & N.A. Pier
e�xed in (�; �) 
oordinates as � 
hanges. This leads to the linearisedequation��� (Au)+ ��� (Bu) = � ��� �F �Y�� �G�X�� �� ��� ��F �Y�� +G�X�� � :This equation 
an then be approximated using an unstru
tured gridin the (�; �) domain, whi
h is the same as the (x; y) domain for theunperturbed geometry. Boundary 
onditions are handled in the sameway as in Jameson's treatment, taking a

ount of the perturbation tothe unit normal as the surfa
e geometry 
hanges.3.6. Other issuesWith the 
ontinuous adjoint approa
h, after linearising the original 
owequations and integrating by parts to obtain the adjoint formulation ofthe problem, there is then total freedom as to how one dis
retises theadjoint p.d.e. Indeed, without making re
ourse to the dis
rete approa
h,where the adjoint implementation is �xed by the primal dis
retisation,there is even some ambiguity as to how one should implement theinvis
id adjoint 
uxes for the Euler equations. In prin
iple, the adjointdis
retisation may be developed without regard for the dis
retisation ofthe nonlinear 
ow problem. Of 
ourse the standard issues or a

ura
y,stability and 
onvergen
e remain 
riti
al to the su

ess of the iterativesolution pro
ess.When 
onsidering sho
ked Euler 
ows, then in the analyti
 formu-lation, the sho
ks need to be treated as dis
ontinuities a
ross whi
h theRankine-Hugoniot sho
k jump relations are enfor
ed (Giles and Pier
e,1998). This treatment leads to the result that the adjoint variables are
ontinuous a
ross the sho
k and that an additional adjoint boundary
ondition must be imposed along the length of the sho
k. Imposingsu
h a b.
. would be 
ompli
ated, as it would require the automati
identi�
ation of the sho
k lo
ation in the nonlinear 
ow 
al
ulation.Quasi-1D results have demonstrated that the 
ontinuous implementa-tion naturally leads to satisfa
tion of the adjoint boundary 
onditionat the sho
k (Giles and Pier
e, 1998). In pra
ti
e, resear
hers using the
ontinuous adjoint approa
h do not enfor
e this b.
., and their resultsindi
ate no diÆ
ulties as a 
onsequen
e.The observations about the limitations of the dis
rete adjoint ap-proa
h apply equally to the 
ontinuous adjoint approa
h. There is oneadditional point that needs to be made regarding the optimisation pro-
ess. The 
ontinuous adjoint approa
h yields a dis
rete approximationto the gradient of the analyti
 obje
tive fun
tion with respe
t to ea
hof the design variables. This will not be exa
tly equal to the gradient of
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Adjoint approa
h to design 17the dis
rete approximation to the obje
tive fun
tion. Therefore, thereis a slight in
onsisten
y between the dis
rete obje
tive fun
tion andthe 
omputed gradient. As a result, the optimisation pro
ess will failto 
onverge further on
e the solution is near a lo
al minimum.4. Relative advantages of two approa
hesIn the previous two se
tions we have gone through, in some detail, theformulation of the dis
rete and 
ontinuous adjoint approa
hes 
urrentlyin use by di�erent resear
hers. The di�eren
e between the two ap-proa
hes is shown s
hemati
ally in Figure 1. In both 
ases one ends upwith a set of dis
rete adjoint equations. In the fully-dis
rete approa
hone starts by dis
retising the nonlinear p.d.e.; these equations are thenlinearised and transposed. In the the 
ontinuous adjoint approa
h, thedis
retisation is the �nal step, after �rst linearising and forming the ad-joint problem. One 
ould even follow an intermediate path, linearisingthe original equations, dis
retising them and then taking the transpose.In prin
iple, if ea
h of the steps is performed 
orre
tly, and all of thesolutions are suÆ
iently smooth (e.g. no sho
ks) then in the limit ofin�nite grid resolution all three approa
hes should be 
onsistent and
onverge to the 
orre
t analyti
 value for the gradient of the obje
tivefun
tion.However, there are important 
on
eptual di�eren
es between the dif-ferent approa
hes, and for �nite resolution grids there will be di�eren
esin the 
omputed results. Here we attempt to summarise what we seeas being the advantages and disadvantages of the two approa
hes. Thisassessment is based on our joint experien
e in developing an adjointNavier-Stokes 
ode using the dis
rete approa
h, and the experien
eof the se
ond author in working with Jameson to develop an adjointNavier-Stokes 
ode by the 
ontinuous approa
h (Jameson et al., 1998).The advantages of the fully dis
rete approa
h are:� The exa
t gradient of the dis
rete obje
tive fun
tion is obtained.This ensures that the optimisation pro
ess 
an 
onverge fully. Italso provides a 
onvenient 
he
k on the 
orre
tness of the program-ming implementation; with the 
ontinuous approa
h one doesn'tknow whether a slight disagreement is a 
onsequen
e of the inexa
tgradient or a possible programming error.� Creation of the adjoint program is 
on
eptually straightforward.In the future this should enable the almost automati
 
reationof adjoint programs using AD software. This bene�t in
ludes the
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dis
reteequations

nonlinear linear adjoint

Figure 1. Alternative approa
hes to forming dis
rete adjoint equationsiterative solution pro
ess sin
e the transposed matrix has the sameeigenvalues as the original linear matrix and so the same iterativesolution method is guaranteed to 
onverge.On the other hand, the advantages of the 
ontinuous approa
h are:� The physi
al signi�
an
e of adjoint variables and the role of adjointb.
.'s is mu
h 
learer.Only by 
onstru
ting the adjoint 
ow equations 
an one develop agood understanding of the nature of adjoint solutions, su
h as the
ontinuity at sho
ks, the logarithmi
 singularity at a soni
 pointin quasi-1D 
ows but not in 2D or 3D (in general) and the inversesquare-root singularity along the stagnation streamline upstreamof an airfoil in 2D (Giles and Pier
e, 1997).� The adjoint program is simpler and requires less memory.Be
ause one is free to dis
retise the adjoint p.d.e. in any 
onsistentway, the adjoint 
ode 
an be mu
h simpler. However, our experi-en
e has been that even when following a 
ontinuous approa
h, itis advantageous to 
onsult the dis
rete formulation so as to 
hoosean appropriate dis
retisation for the 
ontinuous adjoint equations.It is also generally the 
ase that 
ontinuous adjoint solvers requireless memory than the fully-dis
rete 
odes, but this di�eren
e is notsubstantial if pre-
omputation and storage of the linearised matrixis avoided when implementing the dis
rete method.It remains an open question as to whi
h approa
h is better whenthere are nonlinear dis
ontinuities su
h as sho
ks. For quasi-1D Euler
al
ulations, for whi
h we have derived the analyti
 solution of the
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Adjoint approa
h to design 19adjoint equations (Giles and Pier
e, 1998), both approa
hes give nu-meri
al results whi
h 
onverge to the analyti
 solution. For the dis
reteapproa
h, this follows be
ause the integrated pressure 
an be proved tobe predi
ted with se
ond order a

ura
y (Giles, 1996). The lineariseddis
retisation should therefore yield perturbations to the integral ofpressure that are at least �rst-order a

urate. The dis
rete adjointformulation, whi
h is 
onstru
ted using this linearised operator, musttherefore behave 
orre
tly to �rst order at the sho
k. For the 
ontinuousapproa
h, in the absen
e of expli
it enfor
ement of the 
orre
t adjointb.
. at the sho
k, the 
orre
t asymptoti
 behaviour 
an be explainedas the e�e
t of numeri
al smoothing, given that the 
orre
t analyti
solution is the only smooth solution at the sho
k (Giles and Pier
e,1998).In 2D and 3D there is no proof of se
ond order a

ura
y for quanti-ties su
h as lift and drag, and there is a dis
ontinuity in the gradient ofthe adjoint variables at the lo
ation of the sho
k. Therefore it remainsan open question as to whether either approa
h will give a 
onsistentapproximation to the gradient of the obje
tive fun
tion in the limit ofin�nite grid resolution. However, pra
ti
al results for appli
ations withweak sho
ks suggest that any in
onsisten
y must be small.Although we have aimed to be obje
tive in our assessment of therelative advantages of the two approa
hes, it should be noted that weare advo
ates of the dis
rete approa
h. An advo
ate of the 
ontinuousapproa
h may pla
e a di�erent emphasis on the above observationsand hen
e rea
h a di�erent 
on
lusion. Certainly, both methods haveperformed well in pra
ti
e, and it remains to be seen whether eitherapproa
h will demonstrate 
ompelling advantages over the other interms of design performan
e. Ultimately, the �nal 
hoi
e may alwaysremain, to some extent, a matter of personal taste.5. Appli
ationResults from a paper by Elliot and Peraire (Elliott and Peraire, 1996)show the use of a dis
rete adjoint implementation for design optimi-sation on unstru
tured grids. The main appli
ation 
onsidered is thewing optimisation of a business jet for whi
h the surfa
e grid of thebaseline 
on�guration is shown in Figure 2.Simple algebrai
 fun
tions are used to de�ne six design perturba-tion modes for the wing surfa
e; 
are was taken to ensure 
ompatibleperturbations to grid points on the fuselage. A linearised version ofthe method of springs is used to 
reate the grid deformations in theinterior. The implementation is based on the dis
rete adjoint approa
h,
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Figure 2. Initial surfa
e grid for air
raft wing design (Elliott and Peraire, 1996)using BFGS optimisation, and both multigrid and parallel 
omputingto redu
e the exe
ution time.The obje
tive fun
tion is the mean-square deviation from a targetpressure distribution 
orresponding to a `
lean wing' in the absen
eof the rear-mounted engine na
elle and pylon. Two design iterationsare taken, de
reasing the obje
tive fun
tion by 75%. Figures 3 and 4show the evolution of the wing geometry and pressure distributions,respe
tively.Another example of the adjoint approa
h to design is provided bythe work of Reuther and 
o-authors (1999b), who perform a transoni
multipoint wing design for a business jet 
on�guration of the typeshown in Figure 5. Here, the obje
tive is to minimize drag for several
ight 
onditions simultaneously.
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Figure 3. Evolution of the wing geometry during design (Elliott and Peraire, 1996)

Figure 4. Evolution of the pressure distribution on the wing (Elliott and Peraire,1996)
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Figure 5. Business jet 
on�guration (Reuther et al., 1999b)Table II. Multipoint drag redu
tionMa
h CL Original C�D Design C�D0.81 0.35 1.00257 0.854130.82 0.30 1.00000 0.779150.83 0.25 1.08731 0.76836�Drag 
oeÆ
ients normalized relative to originaldrag at 
entral design point (Reuther et al., 1999b).This work employs a 
ontinuous adjoint formulation on a stru
turedmultiblo
k mesh using parallel multigrid 
ow and adjoint solvers. Thewing surfa
e is parameterised with 18 Hi
ks-Henne bump fun
tions(Hi
ks and Henne, 1978) at ea
h of �ve span stations and a total of 30
onstraints are imposed on maximum thi
kness, spar thi
kness, leadingedge bluntness and trailing edge angle. The results were obtained after�ve design iterations using the optimization pa
kage NPSOL (Gill etal., 1986) during whi
h the interior grid points were perturbed usingWARP-MB (Reuther et al., 1999a).The initial 
on�guration was designed for 
ruise at M = 0:8 andCL = 0:3 and the three new design points are summarized in TableII. The original and designed pressure distributions are displayed at asingle span station for ea
h of the three design points in Figure 6. The
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Original
DesignDesign Point 1

- Cp

Original
DesignDesign Point 2

- Cp

Original
DesignDesign Point 3Figure 6. Multipoint drag minimization at �xed lift. Pressure distributions at thez=0.475 span station for the three design points des
ribed in Table II (Reuther etal., 1999b).sho
k strength has been substantially redu
ed in all 
ases, leading to thedrag redu
tions des
ribed in Table II. While a single point design woulda
hieve lower drag at the spe
i�ed 
ruise 
onditions, the multipointdesign has the advantage of maintaining better o�-design performan
e(Reuther et al., 1999b). 6. Con
lusionsThe development of design environments is 
urrently a major fo
us ofresear
h in 
omputational engineering. As part of this e�ort, adjointmethods o�er the ability to eÆ
iently 
ompute linear design sensitivi-ties when there are a large number of design variables.In reviewing the fundamental theory, we began with the linear alge-bra perspe
tive from whi
h these ideas are most easily understood. For
on
eptual as well as pragmati
 reasons, we believe that the `dis
rete'numeri
al implementations whi
h follow this approa
h have a numberof advantages over those based on the alternate `
ontinuous' approa
h.On the other hand, a sound grasp of the adjoint p.d.e. theory is essentialto understanding the physi
al signi�
an
e of the adjoint variables andtheir behaviour at key points in the 
ow �eld, su
h as at sho
ks.It is hoped that this overview of the theory and of a number ofimportant implementation issues will help others to develop adjointte
hniques as an integral part of engineering design systems. Althoughthe fo
us of this paper has been on aeronauti
al design, the ideasare equally relevant to any area of engineering design involving largenumbers of 
ontinuous design variables.
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