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Abstract. Optimal design methods involving the solution of an adjoint system
of equations are an active area of research in computational fluid dynamics, par-
ticularly for aeronautical applications. This paper presents an introduction to the
subject, emphasising the simplicity of the ideas when viewed in the context of linear
algebra. Detailed discussions also include the extension to p.d.e.’s, the construction
of the adjoint p.d.e. and its boundary conditions, and the physical significance of the
adjoint solution. The paper concludes with examples of the use of adjoint methods
for optimising the design of business jets.
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1. Introduction

There is a long history of the use of adjoint equations in optimal con-
trol theory (Lions, 1971). In fluid dynamics, the first use of adjoint
equations for design was by Pironneau (1974), but within the field of
aeronautical computational fluid dynamics, the use of adjoint equations
has been pioneered by Jameson, who used his knowledge of optimal
control theory to develop what he calls optimal design methods. The
term ‘optimal’ refers to the fact that one is trying to find the geometry
which minimises some objective function subject to a set of constraints.
In a sequence of papers by himself (1988; 1995a; 1995b) and with
Reuther and other co-authors (Reuther and Jameson, 1994; Reuther et
al., 1996; Jameson et al., 1998) Jameson developed the adjoint approach
for potential flow, the Euler equations and the Navier-Stokes equations.
The complexity of the applications within these papers also progressed
from 2D airfoil optimisation, to 3D wing design and finally to complete
aircraft configurations (Jameson, 1999; Reuther et al., 1999a; Reuther
et al., 1999b).

A number of other research groups have developed adjoint CFD
codes for design optimisation (Cabuk et al., 1991; Korivi et al., 1991;
Ta’asan et al., 1992; Baysal and Eleshaky, 1992; Huffman et al., 1993;
Lewis and Agarwal, 1995; Anderson and Venkatakrishnan, 1999; Dadone
and Grossman, 1999). An overview of recent developments in adjoint
design methods is provided elsewhere (Newman et al., 1999). Of partic-
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ular interest is the work of Elliott (1997; 1998) and Anderson (Nielsen
and Anderson, 1998; Anderson and Bonhaus, 1999) on unstructured
grids using the ‘discrete’ adjoint approach, and the work of Mohammadi
(1997a; 1997b) in using automatic differentiation software to create the
adjoint code from an original CFD code; both of these approaches will
be discussed further in this paper.

Considering the importance of design to aeronautical engineering,
and indeed to all of engineering, it is perhaps surprising that the devel-
opment of adjoint CFD codes has not been more rapid in the decade
since Jameson’s first papers appeared. In part, this may be due to some
of the limitations of the adjoint approach, which will be discussed later
in this paper. However, it seems likely that part of the reason is its com-
plexity, both in the mathematical formulation of the adjoint p.d.e. and
boundary conditions in the ‘continuous’ approach favoured by Jameson,
and in the creation of the adjoint CFD code in the ‘discrete’ approach.

In this paper we aim to address some of these difficulties. The adjoint
theory is presented firstly in the context of linear algebra, in which it is
most easily understood. This is the basis for the discrete adjoint CFD
approach in which one works with the algebraic equations that come
from the discretisation of the original fluid dynamic equations.

The paper then treats the extension to p.d.e.’s as used in Jameson’s
continuous adjoint approach in which the adjoint p.d.e. is formulated
and then discretised. The emphasis in the present review is on the
construction of the adjoint p.d.e. and its boundary conditions, the
physical significance of the adjoint solution, and the manner in which
geometric perturbations are introduced.

The paper concludes with a discussion of the pros and cons of the
two approaches, the discrete and the continuous, and examples of the
use of adjoint methods to optimise business jet designs.

2. Discrete adjoint approach

2.1. LINEARISED OBJECTIVE FUNCTION

The goal of aerodynamic design optimisation is the minimisation (or
maximisation) of an objective function that is a nonlinear function of
a set of discrete flow variables. For example, the lift may be expressed
as L(U) where U is the set of all flow variables at discrete grid points
arising from an approximate solution of the Euler equations, and L is a
scalar function which approximates the appropriate weighted integral
of pressure over the surface of an aircraft.

In design optimisation, the question of interest is: what is the per-
turbation in L due to a perturbation in the geometry, and hence the
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flow field? If u is the perturbation in the flow field, then the linearised
perturbation in the lift is
oL
T, _
U= —— U.

9= U
Therefore, the goal is to evaluate the quantity g u where u satisfies the
appropriate linearised flow equations.

2.2. DUALITY AND ADJOINT VARIABLES

Suppose one wishes to evaluate the quantity ¢’ v given that v satisfies
the linear system of equations

Au = |,

for some given matrix A and vector f. The dual form is to evaluate v” f
where the adjoint solution v satisfies the linear system of equations

ATy =g.

Note the use of the transposed matrix AT, and the interchange in the
roles of f and g¢.
The equivalence of the two forms is easily proved as follows,

v f = ol Au = (AT0)Tu = gTw.

Given a single f and a single g, nothing would be gained (or lost)
by using the dual form. Exactly the same value for the linear objective
function would be obtained with exactly the same computational effort.
However, suppose now that we want the value of the objective func-
tion for p different values of f, and m different value of g. The choice
would be to do either p different primal calculations or m different dual
calculations. When the dimension of the system is very large, the cost
of the vector dot products is negligible compared to solving the linear
systems of equations, and therefore the dual (or adjoint) approach is
much cheaper when m < p.

2.3. PHYSICAL INTERPRETATION

It is possible to work with adjoint variables and regard them as a purely
mathematical construct, but they do have physical significance.

One way of looking at them is that they give the influence of an
arbitrary source term f on the functional of interest,

Au=f — ol f
source term functional perturbation
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Another is that they are the value of the objective function corre-
sponding to the appropriate Green’s function. To see this, we define
@ to be a vector whose elements are zero apart from the i which is
unity. The corresponding solution u(%) given by

Ay = £0)
is the discrete equivalent of a Green’s function and
ol FO) = o = gTu,

Thus, the ith component of the adjoint variables is equal to the value
of the objective function when the solution is equal to the it* Green’s
function.

2.4. DUALITY FORMULATION FOR ADJOINT DESIGN

Given a set of design variables, &, which control the geometry of the
airfoil, wing or aircraft being designed, and a set of flow variables
at discrete grid points, U, the aim is to minimise a scalar objective
function J(U, ). This minimisation is subject to the constraint that
the discrete flow equations and boundary conditions are all satisfied.
These may be expressed collectively as

N({U,a) = N(U,X(a)) =0,

where X is the vector of grid point coordinates which depends on «.
Using techniques such as the ‘method of springs’ (Rausch et al., 1993) or
variants on transfinite interpolation (Thompson et al., 1985; Reuther et
al., 1996), the grid deforms smoothly as changes in the design variables
modify the surface geometry. Hence, X /0« is usually non-zero at both
interior and surface grid points.
For a single design variable, we can linearise about a base solution
Up to get
dJj 0JdU 90J
da = 90 da 9o’
. . e AU
subject to the constraint that the flow sensitivity o satisfies the

linearised flow equations

oNaU N _
oU da  da
By defining
aU ON
- 4 =2
YT au
Y ON

g :@7 f: aa
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we can convert this into the standard form

dJ T+ oJ
p— u -
da Y da’
subject to
Au = f
The direct sensitivity of the objective function to perturbations in the
design variables is easy to evaluate. The term ¢"u = vTf can be

computed either by the direct approach, solving Au = f, or by the
adjoint approach, solving ATv = g. For a single design variable there
would be no benefit in using the adjoint approach, but for multiple
design variables, each has a different f, but the same g, so the adjoint
approach is computationally much more efficient.

2.5. ALTERNATIVE LAGRANGE VIEWPOINT

In the presentation above, we have used the terminology of duality,
coming from the mathematics of vector spaces, linear algebra and linear
programming. An alternative description arises using the terminology
of Lagrange multipliers associated with constrained minimisation. In
this framework, the adjoint variables are Lagrange multipliers, usually
written as A, and are introduced into an augmented objective function

I(U,a) = J(U,a) — \'N(U, ),

to enforce the satisfaction of the discrete flow equations. Considering
general perturbations dU and da gives

(8] ;ON aJ . ON
dI_(aU aU)dU+(aa aa>da.

If AT is chosen to satisfy the adjoint equation

T T
0J )\Ta_N_O _— <6_N> )\:(g>,

ou " oUu oU oU
then o.J ON
T= (22 2721
d ( o =N >da,

and thus ﬂ is obtained.
da

The final equations are exactly the same as those derived by consid-
ering duality; it is really only the description of the mathematics which
differs. In aeronautical CFD, most people follow Jameson in adopting

paper.tex; 22/02/2000; 11:18; p.5
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the Lagrange multiplier viewpoint for design optimisation because of
its connection to constrained optimisation and optimal control theory.
On the other hand, we prefer the duality viewpoint because it seems
more natural for other uses of adjoint variables, such as error analysis
(Pierce and Giles, 1998; Giles and Pierce, 1999; Venditti and Darmo-
fal, 1999; Pierce and Giles, 2000), which do not involve constrained
optimisation.

2.6. NONLINEAR OPTIMISATION

Returning to the design problem, the aim is to find the set of design
variables @ which minimise the nonlinear objective function J(U, ),
where U is an implicit function of « through the flow equations

N({U,«a) =0.

These nonlinear flow equations and the corresponding linear adjoint
equations are both large systems which are usually solved by an itera-
tive procedure.

There are two principal schools of thought as to the best method for
marching the design variables to a local minimum. In the first approach,
a simple steepest descent algorithm is employed,

dJ
Aa = —¢ 7o
where e controls the step size. The advantage of this method is that
partially-converged flow and adjoint solutions may be used to evaluate
the gradients as long as these gradients are properly smoothed (precon-
ditioned) prior to updating a (Jameson, 1995b). As a result, the cost
per design cycle is relatively low.

In the second approach, approximations to the Hessian matrix of
second derivatives

d%J
daidaj’

are used to speed convergence via a quasi-Newton procedure such as
BFGS (Gill et al., 1981). This method therefore requires more accurate
flow and adjoint solutions, which must generally be converged fully
during each design iteration. As a result, the cost of each design cycle
is significantly increased.

The relative efficiency and robustness of the partially and fully-
converged approaches is still subject to debate. We have been unable
to find any reference which presents a clear quantitative comparison of
the two approaches, but the anecdotal evidence is that the partially-
converged approach yields the lowest total computational time.
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2.7. LIMITATIONS OF THE ADJOINT APPROACH

2.7.1. Constraints

Engineering design applications often have a set of constraints which
must be satisfied, in addition to the discrete flow equations. Some of
these may be geometric, such as airfoil design in which the length of
the chord and the area of the airfoil are fixed. Others may depend on
the flow variables, such as wing design in which one wishes to minimise
the drag but keep the lift fixed.

Geometric constraints are easily incorporated by modifying the search
direction for the design variables to ensure that the geometric con-
straints are satisfied. It is the constraints which depend on the flow
which pose a problem. If the constraint is taken to be ‘hard’ and so
must be satisfied at all stages of the optimisation procedure, then we
need to know both the value of the constraint function, which we shall
label J5(U (), v), and its linear sensitivity to the design variables. The
latter requires a second adjoint calculation; the addition of more flow-
based hard constraints would require even more adjoint calculations.
This type of constraint therefore undermines the computational cost
benefits of the adjoint approach. If the number of hard constraints is
almost as large as the number of design variables, then the benefit is
entirely lost.

To avoid this, the alternative is to use ‘soft’ constraints via the addi-
tion of penalty terms in the objective function, e.g. J(U) + A (Jo(U))>.
The value of X controls the extent to which the optimal solution violates
the constraint Jo(U,«) = 0. The larger the value of A, the smaller
the violation, but it also worsens the conditioning of the optimisation
problem and hence increases the number of steps to reach the optimum.

2.7.2. Least-squares problems

In the direct linear perturbation approach one evaluates each of the
linear flow sensitivities dU/da;, one by one, by solving the linearised
flow equations corresponding to a unit perturbation in a single design
variable. From these one can then calculate the linear sensitivity of the
objective function to each of the design variables, but the total cost is
proportional to the number of the design variables, making the adjoint
approach much cheaper.

However, if the objective function is of a least-squares type,

W)= 3 3 al) ~ P2

then
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d’J N dp dU dp dU
doyda zn: <aU dai> <aU daj> ’

assuming that p,(U)— P, is small. Thus, the direct linear perturba-
tion approach also gives the approximate Hessian matrix, leading to
very rapid convergence for the optimisation iteration. By contrast, the
adjoint approach provides no information on the Hessian, so optimi-
sation methods such as BFGS which build up an approximation to
the Hessian take more steps to converge than the direct linear per-
turbation approach for least-squares applications. It is important to
keep in mind, however, that for large numbers of design variables, the
adjoint approach may still be more efficient, since the cost of each step
is significantly higher when the sensitivities are evaluated directly.

and so

2.7.3. Limitations of gradient-based optimisation

The adjoint approach is only helpful in the context of gradient-based
optimisation and such optimisation has its own limitations. Firstly, it is
only appropriate when the design variables are continuous. For design
variables which can take only integer values (e.g. the number of engines
on an aircraft) stochastic procedures such as simulated annealing and
genetic algorithms are more suitable. Secondly, if the objective function
contains multiple minima, then the gradient approach will generally
converge to the nearest local minimum without searching for lower
minima elsewhere in the design space. If the objective function is known
to have multiple local minima, and possibly discontinuities, then again
a stochastic search method may be more appropriate.

2.8. IMPLEMENTATION ISSUES

In concept, the discrete adjoint approach is relatively straightforward.
The linear algebra derivation is easy to grasp, and there is the attractive
feature that the gradient of the objective function with respect to the
design variables is exactly the same as would be obtained by the direct
linear perturbation method.

Nonetheless, the practical implementation of this approach can be
challenging. The nonlinear flow solver often solves the steady-state
equations, R(U)=0, by a time-marching iterative solution of

dUu
— +R(U) =0.
o T ERWU)
Linearising the steady-state equations gives Lu = f, where
I OR ou OR
=—, u=— =——.
ou’ o’ da
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Following a direct approach, the linear perturbation equations could
also be solved by marching to steady-state the equations

du
—+ Lu=f.
dt + /
Similarly, the adjoint equations L7v = g, can be solved by time-
marching! the equation

The fact that L and L7 have the same eigenvalues means that the
asymptotic convergence of the time-marching iteration in both cases
will be identical, and will be equal to the asymptotic convergence rate
of the nonlinear flow solver.

Let us turn now to the construction of the product L”v. When ap-
proximating the FEuler equations on an unstructured grid, the residual
vector R(U) can be expressed as a sum of contributions from each edge
of the grid, with each edge contributing only to the residuals at the
nodes at either end of the edge. Symbolically, we can write this as

R=> " R.(U).

Linearisation gives

OR,
ou

Lu = ZLeu, L, =
e

where L. is a sparse matrix whose only non-zero elements have row
and column numbers both matching one or other of the two nodes at
either end of the edge. Therefore,

LTy = Z LZU.
e

At the programming level, this product involves exactly the same loop
over all of the edges as for the original nonlinear flow discretisation. In
principle, one could compute the non-zero elements of the matrix L,
and then form the product LIv. However, it is more efficient to cal-
culate the product directly without explicitly constructing the matrix.
A common objection to the discrete approach is the memory overhead

! The true adjoint of the unsteady equation fl—’;-l-Lu:f is —%+LTU=9 but this

is only well-posed when solved backwards in time. Switching from ¢ to —t gives the
forward time-marching equation given above.
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that is incurred if the linearised matrix is pre-computed and stored to
reduce the total number of operations. By forming the product directly,
this memory overhead can be avoided while maintaining an opera-
tion count that is not substantially greater than that of the original
nonlinear solver.

When approximating the Navier-Stokes equations on an unstruc-
tured grid, the residual vector can sometimes be expressed symbolically
as

R=)R.(U,DU),
e

where the vector DU represents the numerical approximation to the
flow solution gradient at the grid nodes at either end of the edge. When
linearised, this becomes

Lu=Au+VDu,

in which the matrices A,V, D can each be expressed as a sum of ex-
tremely sparse elemental matrices as described above for the Euler
equations. The discrete adjoint operator for the Navier-Stokes equa-
tions is then

LTy = ATy + DTV,

indicating that the adjoint gradient subroutine responsible for DT must
be applied after the viscous subroutine responsible for V1. At first this
seems counter-intuitive, but the mathematics is quite clear.

Working out the mathematical expressions for L7 v and determining
the best method for implementing the product is relatively easy for the
inviscid fluxes of the Euler equations. This process is far more arduous
for the viscous fluxes in the Navier-Stokes equations and for charac-
teristic smoothing fluxes for the Euler equations. An alternative is to
use AD (Automatic Differentiation) software such as Odyssée (Gilbert
et al., 1991; Faure, 1996) or ADIFOR and ADJIFOR (Bischof et al.,
1992; Carle et al., 1998) to generate the Fortran code to compute the
product LI'v. In forward mode, AD software takes the original code
which computed R.(U) and then uses the basic rules of linearisation
to construct the code to evaluate Lou. In reverse mode, it produces the
code to calculate L?v; it may seem that this is a much harder task
but in fact it is not. Furthermore, there are theoretical results which
guarantee that the number of floating point operations is no more than
three times that of the original nonlinear code (Griewank, 1989).

A final point concerns the evaluation of the term f, which is the
source term for the direct perturbation equations and is in the objective
function in the adjoint approach. Again, forward mode AD software
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could be used, but a very much simpler alternative is to use the ‘com-
plex variable method’ (Squire and Trapp, 1998) used by Anderson and
co-workers (1999). The essence of the idea is that

I T{R(U,a+ie)} OR

e—0 € N Ooa '

In this equation, R(U, «) has been taken to be a complex analytic func-
tion, and the notation Z{...} denotes the imaginary part of a complex
quantity. The equation itself is an immediate consequence of a Taylor
series expansion. The key is that this can be evaluated numerically
using € = 1072, Unlike the usual finite difference approximation of
a linear sensitivity, there is no subtraction of two quantities which
are almost equal; therefore there is no unacceptable loss of accuracy
due to machine rounding error. Applying this technique to a FOR-
TRAN code requires little more than replacing all REAL*8 declarations
by COMPLEX*16, and defining appropriate complex analytic versions of
certain intrinsic functions.

We have found this complex variable method to be extremely ef-
fective. We have also used it to verify the correctness of our hand-
coded adjoint calculations by checking the identity v’ (LT v) = vT (Lu),
with the product L™ v being computed using the adjoint code, and the

product
T .
Lu = lim {R(U—Heu,a)},
e—0 €

being computed using the complex variable method.

3. Continuous adjoint approach

3.1. DUALITY AND THE ADJOINT P.D.E.

Duality in the case of p.d.e.’s is a natural extension of duality in the lin-
ear algebra formulation. Using the notation (V,U) to denote an integral
inner product over some domain 2,

(V, U)E/VTU de,
Q

suppose that one wants to evaluate the functional (g, u), where u is the
solution of the p.d.e.
Lu = f,

on the domain 2 subject to homogeneous boundary conditions on the
boundary 0.
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Using the adjoint formulation, the identical functional takes the form
(v, f) where v is the solution of the adjoint p.d.e.

L'v =g,

plus appropriate homogeneous adjoint b.c.’s. The adjoint operator L*
is defined by the identity

(V,LU) = (L*V,U),

which must hold for all functions V, U satisfying the respective homo-
geneous boundary conditions. Given the definitions, the proof of the
equivalence of the two forms of the problem is trivial

(U,f) = (v,Lu) = (L*v,u) = (gau)'

3.2. EXAMPLES

To illustrate the construction of the adjoint operator and boundary con-
ditions, let us consider the one-dimensional convection-diffusion equa-
tion
Lu=——-—e—, 0<z<l,
x
subject to the homogeneous boundary conditions «(0) = u(1) = 0.

Using integration by parts, for any twice-differentiable function v
we have

1 2
du d“u
(’U,LU) = /0v v (% — Ew) dl?
—/1u —d—v—e@ dr + vu—evd—u-l-eud—vl
—Jo dr  dz? dz dz ],

—/1u —@—6@ dx + —evd—u 1
— Jo dr  dx? de],

For the integral term to equal the inner product (g,u) in the adjoint
identity, we need to define the adjoint operator to be

dr  Cdz?’

and to eliminate the boundary term the adjoint b.c.’s must be

L'y = —

v(0) = v(1) = 0.

Note the reversal in sign of the first derivative in the adjoint operator;
this implies a reversal in the convection direction.
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Table I. Various operators and their adjoints

operator adjoint
dn_ A
dx dx? dx dx?
V- (kVu) V - (kVv)
ot  0x? ot  0x?
ou  ou L
ot Oz ot Ox

Table I lists a number of other differential operators and their ad-
joints. Note the changes of sign which occur due to the integration by
parts. This produces a reversal of causality in time-varying problems
so that, for example, the adjoint parabolic operator is well-posed only
if one starts with ‘initial data’ at the final time and then integrates
backwards in time towards the initial time of the original problem.

3.3. PHYSICAL INTERPRETATION

The physical significance of adjoint variables can again be understood
by considering Green’s functions and their effect on the inner product
of interest.

The solution of the p.d.e. Lu = f is

u(o) = [ Glao') f(a) o',
Q
where G(z,z') is the Green’s function. Therefore,
[ @) ds = [ [ §7@)6lo) 1(6') do o
QJQ
= [ ") 1) do
Q
where

r N = Tl' $$l X.
v@)—Ag<n%,)d

Thus, the adjoint variables at a particular point correspond to the
functional evaluated using the Green’s function for the same point.
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3.4. BOUNDARY TERMS

So far, we have assumed that the original problem has homogeneous
b.c.’s and the objective function consists only of an inner product
over the whole domain and not a boundary integral. More generally,
boundary integral terms in the primal objective function lead to in-
homogeneous b.c.’s for the adjoint, while inhomogeneous b.c.’s for the
primal problem lead to boundary terms in the adjoint functional (Giles
and Pierce, 1997).
The general form of the adjoint identity is

(V,LU)q + (C*V,BU)sq = (L*"V,U)q + (B*V,CU)sq

for all functions U,V, with the notation (.,.)sn denoting an inner
product over the boundary. B and C' are both boundary operators
(possibly involving normal derivatives) given in the definition of the
original problem. B* and C* are the corresponding adjoint boundary
operators which can be found by integration by parts.

Using this general adjoint identity, it follows immediately that

(v, fa + (C*v, f2)aa = (g9, u)a + (g2, Cu)aq

when

Lu= fin Q, and Bu = fy on 09,
L'v=¢in Q, and B*v = go on 09).

There are some restrictions on what can be imposed as b.c.’s and
objective functions. The analysis is complicated (see (Jameson et al.,
1998) and (Giles and Pierce, 1997) for details) but it reveals that on a
solid surface, the boundary integral term in the objective function must
be a weighted integral of the linear perturbation in the pressure when
using the Euler equations. Similarly, for the Navier-Stokes equations it
must be a weighted integral of the linear perturbation in the normal
and tangential forces on the surface, and either the heat flux or the
surface temperature (depending whether one is specifying the surface
temperature or adiabatic conditions, respectively).

3.5. GEOMETRIC EFFECTS

Perhaps the most complicated part of the continuous approach to de-
sign is the manner in which design variable perturbations produce the
source term f for the linearised p.d.e. and the inhomogeneous term fo
for the linearised b.c.’s.

paper.tex; 22/02/2000; 11:18; p.14



Adjoint approach to design 15

We will outline two approaches, both of which use curvilinear coor-
dinates (£,7) in two dimensions. Writing the Euler equations in their
usual vector form as

OF  0G _
oxr Oy

when transformed to the curvilinear coordinates they become

0 oy oz 0 oy ox
— | F—=—-G— — |- F=+G—=)=0.
a&( on 3n>+3n( o " a&)
In the approach used by Jameson, the curvilinear coordinates cor-
respond to grid lines of a structured grid, with the airfoil surface being

defined as n=0 (Jameson, 1995b). A small perturbation & to a design
parameter produces changes such as

0,

OF dU _
T
on dn  Onda

2

Terms not depending on & all cancel, and terms depending on &* are

neglected. Hence, we get the linearised equations,

0 oy ox 0 oy ox _
%(Q%RJ%QU>+%((A%+B%>Q -

0 0%y 0%z 0 0%y 0z
"o (Fanaa - G8n8a> “ o <_F8§8a +G8§8a> !
where OF oG U
A = %, B = %, u = %

The boundary condition on an inviscid wall is that there is no flow
normal to the surface n = 0. This remains true as « changes but one
needs to consider the linearised perturbation to the unit normal, which
eventually leads to the inhomogeneous boundary term fs.

For complex geometries, it is often not possible to generate struc-
tured grids in which the surface corresponds to 7= const. Instead, one
can generalise the above approach by defining

z(&,n) = {+aX(&n),
y(&n) = n+aY(En),

so that (z,y) = ({,n) when & =0, and X (&,n),Y (£,n) are smooth
functions matching the surface deformation so that the surface remains
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fixed in (£,7n) coordinates as « changes. This leads to the linearised
equation

0 0 0 <F8_Y G8X> 0 < F8Y 8X>_

og A gy P = o \ "oy ~ % ) man \ e T e

This equation can then be approximated using an unstructured grid
in the (£,n) domain, which is the same as the (z,y) domain for the
unperturbed geometry. Boundary conditions are handled in the same
way as in Jameson’s treatment, taking account of the perturbation to
the unit normal as the surface geometry changes.

3.6. OTHER ISSUES

With the continuous adjoint approach, after linearising the original flow
equations and integrating by parts to obtain the adjoint formulation of
the problem, there is then total freedom as to how one discretises the
adjoint p.d.e. Indeed, without making recourse to the discrete approach,
where the adjoint implementation is fixed by the primal discretisation,
there is even some ambiguity as to how one should implement the
inviscid adjoint fluxes for the Fuler equations. In principle, the adjoint
discretisation may be developed without regard for the discretisation of
the nonlinear flow problem. Of course the standard issues or accuracy,
stability and convergence remain critical to the success of the iterative
solution process.

When considering shocked Euler flows, then in the analytic formu-
lation, the shocks need to be treated as discontinuities across which the
Rankine-Hugoniot shock jump relations are enforced (Giles and Pierce,
1998). This treatment leads to the result that the adjoint variables are
continuous across the shock and that an additional adjoint boundary
condition must be imposed along the length of the shock. Imposing
such a b.c. would be complicated, as it would require the automatic
identification of the shock location in the nonlinear flow calculation.
Quasi-1D results have demonstrated that the continuous implementa-
tion naturally leads to satisfaction of the adjoint boundary condition
at the shock (Giles and Pierce, 1998). In practice, researchers using the
continuous adjoint approach do not enforce this b.c., and their results
indicate no difficulties as a consequence.

The observations about the limitations of the discrete adjoint ap-
proach apply equally to the continuous adjoint approach. There is one
additional point that needs to be made regarding the optimisation pro-
cess. The continuous adjoint approach yields a discrete approximation
to the gradient of the analytic objective function with respect to each
of the design variables. This will not be exactly equal to the gradient of
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the discrete approximation to the objective function. Therefore, there
is a slight inconsistency between the discrete objective function and
the computed gradient. As a result, the optimisation process will fail
to converge further once the solution is near a local minimum.

4. Relative advantages of two approaches

In the previous two sections we have gone through, in some detail, the
formulation of the discrete and continuous adjoint approaches currently
in use by different researchers. The difference between the two ap-
proaches is shown schematically in Figure 1. In both cases one ends up
with a set of discrete adjoint equations. In the fully-discrete approach
one starts by discretising the nonlinear p.d.e.; these equations are then
linearised and transposed. In the the continuous adjoint approach, the
discretisation is the final step, after first linearising and forming the ad-
joint problem. One could even follow an intermediate path, linearising
the original equations, discretising them and then taking the transpose.
In principle, if each of the steps is performed correctly, and all of the
solutions are sufficiently smooth (e.g. no shocks) then in the limit of
infinite grid resolution all three approaches should be consistent and
converge to the correct analytic value for the gradient of the objective
function.

However, there are important conceptual differences between the dif-
ferent approaches, and for finite resolution grids there will be differences
in the computed results. Here we attempt to summarise what we see
as being the advantages and disadvantages of the two approaches. This
assessment is based on our joint experience in developing an adjoint
Navier-Stokes code using the discrete approach, and the experience
of the second author in working with Jameson to develop an adjoint
Navier-Stokes code by the continuous approach (Jameson et al., 1998).

The advantages of the fully discrete approach are:

— The exact gradient of the discrete objective function is obtained.

This ensures that the optimisation process can converge fully. It
also provides a convenient check on the correctness of the program-
ming implementation; with the continuous approach one doesn’t
know whether a slight disagreement is a consequence of the inexact
gradient or a possible programming error.

— Creation of the adjoint program is conceptually straightforward.

In the future this should enable the almost automatic creation
of adjoint programs using AD software. This benefit includes the
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equations

Figure 1. Alternative approaches to forming discrete adjoint equations

iterative solution process since the transposed matrix has the same
eigenvalues as the original linear matrix and so the same iterative
solution method is guaranteed to converge.

On the other hand, the advantages of the continuous approach are:

— The physical significance of adjoint variables and the role of adjoint

b.c.’s is much clearer.

Only by constructing the adjoint flow equations can one develop a
good understanding of the nature of adjoint solutions, such as the
continuity at shocks, the logarithmic singularity at a sonic point
in quasi-1D flows but not in 2D or 3D (in general) and the inverse
square-root singularity along the stagnation streamline upstream
of an airfoil in 2D (Giles and Pierce, 1997).

The adjoint program is simpler and requires less memory.

Because one is free to discretise the adjoint p.d.e. in any consistent
way, the adjoint code can be much simpler. However, our experi-
ence has been that even when following a continuous approach, it
is advantageous to consult the discrete formulation so as to choose
an appropriate discretisation for the continuous adjoint equations.
It is also generally the case that continuous adjoint solvers require
less memory than the fully-discrete codes, but this difference is not
substantial if pre-computation and storage of the linearised matrix
is avoided when implementing the discrete method.

It remains an open question as to which approach is better when

there are nonlinear discontinuities such as shocks. For quasi-1D Euler
calculations, for which we have derived the analytic solution of the
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adjoint equations (Giles and Pierce, 1998), both approaches give nu-
merical results which converge to the analytic solution. For the discrete
approach, this follows because the integrated pressure can be proved to
be predicted with second order accuracy (Giles, 1996). The linearised
discretisation should therefore yield perturbations to the integral of
pressure that are at least first-order accurate. The discrete adjoint
formulation, which is constructed using this linearised operator, must
therefore behave correctly to first order at the shock. For the continuous
approach, in the absence of explicit enforcement of the correct adjoint
b.c. at the shock, the correct asymptotic behaviour can be explained
as the effect of numerical smoothing, given that the correct analytic
solution is the only smooth solution at the shock (Giles and Pierce,
1998).

In 2D and 3D there is no proof of second order accuracy for quanti-
ties such as lift and drag, and there is a discontinuity in the gradient of
the adjoint variables at the location of the shock. Therefore it remains
an open question as to whether either approach will give a consistent
approximation to the gradient of the objective function in the limit of
infinite grid resolution. However, practical results for applications with
weak shocks suggest that any inconsistency must be small.

Although we have aimed to be objective in our assessment of the
relative advantages of the two approaches, it should be noted that we
are advocates of the discrete approach. An advocate of the continuous
approach may place a different emphasis on the above observations
and hence reach a different conclusion. Certainly, both methods have
performed well in practice, and it remains to be seen whether either
approach will demonstrate compelling advantages over the other in
terms of design performance. Ultimately, the final choice may always
remain, to some extent, a matter of personal taste.

5. Application

Results from a paper by Elliot and Peraire (Elliott and Peraire, 1996)
show the use of a discrete adjoint implementation for design optimi-
sation on unstructured grids. The main application considered is the
wing optimisation of a business jet for which the surface grid of the
baseline configuration is shown in Figure 2.

Simple algebraic functions are used to define six design perturba-
tion modes for the wing surface; care was taken to ensure compatible
perturbations to grid points on the fuselage. A linearised version of
the method of springs is used to create the grid deformations in the
interior. The implementation is based on the discrete adjoint approach,
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Figure 2. Initial surface grid for aircraft wing design (Elliott and Peraire, 1996)

using BFGS optimisation, and both multigrid and parallel computing
to reduce the execution time.

The objective function is the mean-square deviation from a target
pressure distribution corresponding to a ‘clean wing’ in the absence
of the rear-mounted engine nacelle and pylon. Two design iterations
are taken, decreasing the objective function by 75%. Figures 3 and 4
show the evolution of the wing geometry and pressure distributions,
respectively.

Another example of the adjoint approach to design is provided by
the work of Reuther and co-authors (1999b), who perform a transonic
multipoint wing design for a business jet configuration of the type
shown in Figure 5. Here, the objective is to minimize drag for several
flight conditions simultaneously.
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Figure 8. Evolution of the wing geometry during design (Elliott and Peraire, 1996)
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Figure 4. Evolution of the pressure distribution on the wing (Elliott and Peraire,

1996)
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Figure 5. Business jet configuration (Reuther et al., 1999b)

Table II. Multipoint drag reduction

Mach Cr  Original C;, Design Ch

0.81  0.35 1.00257 0.85413
0.82  0.30 1.00000 0.77915
0.83 0.25 1.08731 0.76836

*Drag coefficients normalized relative to original

drag at central design point (Reuther et al., 1999b).

This work employs a continuous adjoint formulation on a structured
multiblock mesh using parallel multigrid flow and adjoint solvers. The
wing surface is parameterised with 18 Hicks-Henne bump functions
(Hicks and Henne, 1978) at each of five span stations and a total of 30
constraints are imposed on maximum thickness, spar thickness, leading
edge bluntness and trailing edge angle. The results were obtained after
five design iterations using the optimization package NPSOL (Gill et
al., 1986) during which the interior grid points were perturbed using
WARP-MB (Reuther et al., 1999a).

The initial configuration was designed for cruise at M = 0.8 and
Cr, = 0.3 and the three new design points are summarized in Table
II. The original and designed pressure distributions are displayed at a
single span station for each of the three design points in Figure 6. The

paper.tex; 22/02/2000; 11:18; p.22



Adjoint approach to design 23

-Cp -Cp -Cp ,//

_ . Origina _ . Origina _ . Origina
__ Design __ Design __ Design

Design Point 1 Design Point 2 Design Point 3

Figure 6. Multipoint drag minimization at fixed lift. Pressure distributions at the
z=0.475 span station for the three design points described in Table II (Reuther et
al., 1999b).

shock strength has been substantially reduced in all cases, leading to the
drag reductions described in Table IT. While a single point design would
achieve lower drag at the specified cruise conditions, the multipoint
design has the advantage of maintaining better off-design performance
(Reuther et al., 1999b).

6. Conclusions

The development of design environments is currently a major focus of
research in computational engineering. As part of this effort, adjoint
methods offer the ability to efficiently compute linear design sensitivi-
ties when there are a large number of design variables.

In reviewing the fundamental theory, we began with the linear alge-
bra perspective from which these ideas are most easily understood. For
conceptual as well as pragmatic reasons, we believe that the ‘discrete’
numerical implementations which follow this approach have a number
of advantages over those based on the alternate ‘continuous’ approach.
On the other hand, a sound grasp of the adjoint p.d.e. theory is essential
to understanding the physical significance of the adjoint variables and
their behaviour at key points in the flow field, such as at shocks.

It is hoped that this overview of the theory and of a number of
important implementation issues will help others to develop adjoint
techniques as an integral part of engineering design systems. Although
the focus of this paper has been on aeronautical design, the ideas
are equally relevant to any area of engineering design involving large
numbers of continuous design variables.
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