
An introdution to the adjoint approah to designMihael B. GilesOxford UniversityNiles A. PiereCalifornia Institute of TehnologyAbstrat. Optimal design methods involving the solution of an adjoint systemof equations are an ative area of researh in omputational uid dynamis, par-tiularly for aeronautial appliations. This paper presents an introdution to thesubjet, emphasising the simpliity of the ideas when viewed in the ontext of linearalgebra. Detailed disussions also inlude the extension to p.d.e.'s, the onstrutionof the adjoint p.d.e. and its boundary onditions, and the physial signi�ane of theadjoint solution. The paper onludes with examples of the use of adjoint methodsfor optimising the design of business jets.Keywords: omputational uid dynamis, adjoint p.d.e., design1. IntrodutionThere is a long history of the use of adjoint equations in optimal on-trol theory (Lions, 1971). In uid dynamis, the �rst use of adjointequations for design was by Pironneau (1974), but within the �eld ofaeronautial omputational uid dynamis, the use of adjoint equationshas been pioneered by Jameson, who used his knowledge of optimalontrol theory to develop what he alls optimal design methods. Theterm `optimal' refers to the fat that one is trying to �nd the geometrywhih minimises some objetive funtion subjet to a set of onstraints.In a sequene of papers by himself (1988; 1995a; 1995b) and withReuther and other o-authors (Reuther and Jameson, 1994; Reuther etal., 1996; Jameson et al., 1998) Jameson developed the adjoint approahfor potential ow, the Euler equations and the Navier-Stokes equations.The omplexity of the appliations within these papers also progressedfrom 2D airfoil optimisation, to 3D wing design and �nally to ompleteairraft on�gurations (Jameson, 1999; Reuther et al., 1999a; Reutheret al., 1999b).A number of other researh groups have developed adjoint CFDodes for design optimisation (Cabuk et al., 1991; Korivi et al., 1991;Ta'asan et al., 1992; Baysal and Eleshaky, 1992; Hu�man et al., 1993;Lewis and Agarwal, 1995; Anderson and Venkatakrishnan, 1999; Dadoneand Grossman, 1999). An overview of reent developments in adjointdesign methods is provided elsewhere (Newman et al., 1999). Of parti- 2000 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 M.B. Giles & N.A. Piereular interest is the work of Elliott (1997; 1998) and Anderson (Nielsenand Anderson, 1998; Anderson and Bonhaus, 1999) on unstruturedgrids using the `disrete' adjoint approah, and the work of Mohammadi(1997a; 1997b) in using automati di�erentiation software to reate theadjoint ode from an original CFD ode; both of these approahes willbe disussed further in this paper.Considering the importane of design to aeronautial engineering,and indeed to all of engineering, it is perhaps surprising that the devel-opment of adjoint CFD odes has not been more rapid in the deadesine Jameson's �rst papers appeared. In part, this may be due to someof the limitations of the adjoint approah, whih will be disussed laterin this paper. However, it seems likely that part of the reason is its om-plexity, both in the mathematial formulation of the adjoint p.d.e. andboundary onditions in the `ontinuous' approah favoured by Jameson,and in the reation of the adjoint CFD ode in the `disrete' approah.In this paper we aim to address some of these diÆulties. The adjointtheory is presented �rstly in the ontext of linear algebra, in whih it ismost easily understood. This is the basis for the disrete adjoint CFDapproah in whih one works with the algebrai equations that omefrom the disretisation of the original uid dynami equations.The paper then treats the extension to p.d.e.'s as used in Jameson'sontinuous adjoint approah in whih the adjoint p.d.e. is formulatedand then disretised. The emphasis in the present review is on theonstrution of the adjoint p.d.e. and its boundary onditions, thephysial signi�ane of the adjoint solution, and the manner in whihgeometri perturbations are introdued.The paper onludes with a disussion of the pros and ons of thetwo approahes, the disrete and the ontinuous, and examples of theuse of adjoint methods to optimise business jet designs.2. Disrete adjoint approah2.1. Linearised objetive funtionThe goal of aerodynami design optimisation is the minimisation (ormaximisation) of an objetive funtion that is a nonlinear funtion ofa set of disrete ow variables. For example, the lift may be expressedas L(U) where U is the set of all ow variables at disrete grid pointsarising from an approximate solution of the Euler equations, and L is asalar funtion whih approximates the appropriate weighted integralof pressure over the surfae of an airraft.In design optimisation, the question of interest is: what is the per-turbation in L due to a perturbation in the geometry, and hene the
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Adjoint approah to design 3ow �eld? If u is the perturbation in the ow �eld, then the linearisedperturbation in the lift is gTu � �L�U u:Therefore, the goal is to evaluate the quantity gTu where u satis�es theappropriate linearised ow equations.2.2. Duality and adjoint variablesSuppose one wishes to evaluate the quantity gTu given that u satis�esthe linear system of equations Au = f;for some given matrix A and vetor f . The dual form is to evaluate vT fwhere the adjoint solution v satis�es the linear system of equationsAT v = g:Note the use of the transposed matrix AT , and the interhange in theroles of f and g.The equivalene of the two forms is easily proved as follows,vT f = vTAu = (AT v)Tu = gTu:Given a single f and a single g, nothing would be gained (or lost)by using the dual form. Exatly the same value for the linear objetivefuntion would be obtained with exatly the same omputational e�ort.However, suppose now that we want the value of the objetive fun-tion for p di�erent values of f , and m di�erent value of g. The hoiewould be to do either p di�erent primal alulations or m di�erent dualalulations. When the dimension of the system is very large, the ostof the vetor dot produts is negligible ompared to solving the linearsystems of equations, and therefore the dual (or adjoint) approah ismuh heaper when m�p.2.3. Physial interpretationIt is possible to work with adjoint variables and regard them as a purelymathematial onstrut, but they do have physial signi�ane.One way of looking at them is that they give the inuene of anarbitrary soure term f on the funtional of interest,Au = f �! vT fsoure term funtional perturbation
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4 M.B. Giles & N.A. PiereAnother is that they are the value of the objetive funtion orre-sponding to the appropriate Green's funtion. To see this, we de�nef (i) to be a vetor whose elements are zero apart from the ith whih isunity. The orresponding solution u(i) given byAu(i) = f (i)is the disrete equivalent of a Green's funtion andvT f (i) = vi = gTu(i):Thus, the ith omponent of the adjoint variables is equal to the valueof the objetive funtion when the solution is equal to the ith Green'sfuntion.2.4. Duality formulation for adjoint designGiven a set of design variables, �, whih ontrol the geometry of theairfoil, wing or airraft being designed, and a set of ow variablesat disrete grid points, U , the aim is to minimise a salar objetivefuntion J(U;�). This minimisation is subjet to the onstraint thatthe disrete ow equations and boundary onditions are all satis�ed.These may be expressed olletively asN(U;�) � N(U;X(�)) = 0;where X is the vetor of grid point oordinates whih depends on �.Using tehniques suh as the `method of springs' (Raush et al., 1993) orvariants on trans�nite interpolation (Thompson et al., 1985; Reuther etal., 1996), the grid deforms smoothly as hanges in the design variablesmodify the surfae geometry. Hene, �X=�� is usually non-zero at bothinterior and surfae grid points.For a single design variable, we an linearise about a base solutionU0 to get dJd� = �J�U dUd� + �J�� ;subjet to the onstraint that the ow sensitivity dUd� satis�es thelinearised ow equations �N�U dUd� + �N�� = 0:By de�ning u = dUd� ; A = �N�U ;gT = �J�U ; f = ��N��
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Adjoint approah to design 5we an onvert this into the standard formdJd� = gTu+ �J��;subjet to Au = f:The diret sensitivity of the objetive funtion to perturbations in thedesign variables is easy to evaluate. The term gTu � vT f an beomputed either by the diret approah, solving Au = f , or by theadjoint approah, solving AT v = g. For a single design variable therewould be no bene�t in using the adjoint approah, but for multipledesign variables, eah has a di�erent f , but the same g, so the adjointapproah is omputationally muh more eÆient.2.5. Alternative Lagrange viewpointIn the presentation above, we have used the terminology of duality,oming from the mathematis of vetor spaes, linear algebra and linearprogramming. An alternative desription arises using the terminologyof Lagrange multipliers assoiated with onstrained minimisation. Inthis framework, the adjoint variables are Lagrange multipliers, usuallywritten as �, and are introdued into an augmented objetive funtionI(U;�) = J(U;�)� �TN(U;�);to enfore the satisfation of the disrete ow equations. Consideringgeneral perturbations dU and d� givesdI = � �J�U � �T �N�U � dU +��J�� � �T �N�� � d�:If �T is hosen to satisfy the adjoint equation�J�U � �T �N�U = 0 =) ��N�U �T� = � �J�U�T ;then dI = ��J�� � �T �N�� � d�;and thus dId� is obtained.The �nal equations are exatly the same as those derived by onsid-ering duality; it is really only the desription of the mathematis whihdi�ers. In aeronautial CFD, most people follow Jameson in adopting
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6 M.B. Giles & N.A. Pierethe Lagrange multiplier viewpoint for design optimisation beause ofits onnetion to onstrained optimisation and optimal ontrol theory.On the other hand, we prefer the duality viewpoint beause it seemsmore natural for other uses of adjoint variables, suh as error analysis(Piere and Giles, 1998; Giles and Piere, 1999; Venditti and Darmo-fal, 1999; Piere and Giles, 2000), whih do not involve onstrainedoptimisation.2.6. Nonlinear optimisationReturning to the design problem, the aim is to �nd the set of designvariables � whih minimise the nonlinear objetive funtion J(U;�),where U is an impliit funtion of � through the ow equationsN(U;�) = 0:These nonlinear ow equations and the orresponding linear adjointequations are both large systems whih are usually solved by an itera-tive proedure.There are two prinipal shools of thought as to the best method formarhing the design variables to a loal minimum. In the �rst approah,a simple steepest desent algorithm is employed,�� = ��dJd�;where � ontrols the step size. The advantage of this method is thatpartially-onverged ow and adjoint solutions may be used to evaluatethe gradients as long as these gradients are properly smoothed (preon-ditioned) prior to updating � (Jameson, 1995b). As a result, the ostper design yle is relatively low.In the seond approah, approximations to the Hessian matrix ofseond derivatives d2Jd�id�j ;are used to speed onvergene via a quasi-Newton proedure suh asBFGS (Gill et al., 1981). This method therefore requires more aurateow and adjoint solutions, whih must generally be onverged fullyduring eah design iteration. As a result, the ost of eah design yleis signi�antly inreased.The relative eÆieny and robustness of the partially and fully-onverged approahes is still subjet to debate. We have been unableto �nd any referene whih presents a lear quantitative omparison ofthe two approahes, but the anedotal evidene is that the partially-onverged approah yields the lowest total omputational time.
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Adjoint approah to design 72.7. Limitations of the adjoint approah2.7.1. ConstraintsEngineering design appliations often have a set of onstraints whihmust be satis�ed, in addition to the disrete ow equations. Some ofthese may be geometri, suh as airfoil design in whih the length ofthe hord and the area of the airfoil are �xed. Others may depend onthe ow variables, suh as wing design in whih one wishes to minimisethe drag but keep the lift �xed.Geometri onstraints are easily inorporated by modifying the searhdiretion for the design variables to ensure that the geometri on-straints are satis�ed. It is the onstraints whih depend on the owwhih pose a problem. If the onstraint is taken to be `hard' and somust be satis�ed at all stages of the optimisation proedure, then weneed to know both the value of the onstraint funtion, whih we shalllabel J2(U(�); �), and its linear sensitivity to the design variables. Thelatter requires a seond adjoint alulation; the addition of more ow-based hard onstraints would require even more adjoint alulations.This type of onstraint therefore undermines the omputational ostbene�ts of the adjoint approah. If the number of hard onstraints isalmost as large as the number of design variables, then the bene�t isentirely lost.To avoid this, the alternative is to use `soft' onstraints via the addi-tion of penalty terms in the objetive funtion, e.g. J(U) + � (J2(U))2.The value of � ontrols the extent to whih the optimal solution violatesthe onstraint J2(U;�) = 0. The larger the value of �, the smallerthe violation, but it also worsens the onditioning of the optimisationproblem and hene inreases the number of steps to reah the optimum.2.7.2. Least-squares problemsIn the diret linear perturbation approah one evaluates eah of thelinear ow sensitivities dU=d�i, one by one, by solving the linearisedow equations orresponding to a unit perturbation in a single designvariable. From these one an then alulate the linear sensitivity of theobjetive funtion to eah of the design variables, but the total ost isproportional to the number of the design variables, making the adjointapproah muh heaper.However, if the objetive funtion is of a least-squares type,J(U) = 12Xn (pn(U)� Pn)2 ;then dJd�i =Xn �p�U dUd�i (pn(U)� Pn) ;
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8 M.B. Giles & N.A. Piereand so d2Jd�id�j �Xn � �p�U dUd�i�� �p�U dUd�j� ;assuming that pn(U)�Pn is small. Thus, the diret linear perturba-tion approah also gives the approximate Hessian matrix, leading tovery rapid onvergene for the optimisation iteration. By ontrast, theadjoint approah provides no information on the Hessian, so optimi-sation methods suh as BFGS whih build up an approximation tothe Hessian take more steps to onverge than the diret linear per-turbation approah for least-squares appliations. It is important tokeep in mind, however, that for large numbers of design variables, theadjoint approah may still be more eÆient, sine the ost of eah stepis signi�antly higher when the sensitivities are evaluated diretly.2.7.3. Limitations of gradient-based optimisationThe adjoint approah is only helpful in the ontext of gradient-basedoptimisation and suh optimisation has its own limitations. Firstly, it isonly appropriate when the design variables are ontinuous. For designvariables whih an take only integer values (e.g. the number of engineson an airraft) stohasti proedures suh as simulated annealing andgeneti algorithms are more suitable. Seondly, if the objetive funtionontains multiple minima, then the gradient approah will generallyonverge to the nearest loal minimum without searhing for lowerminima elsewhere in the design spae. If the objetive funtion is knownto have multiple loal minima, and possibly disontinuities, then againa stohasti searh method may be more appropriate.2.8. Implementation issuesIn onept, the disrete adjoint approah is relatively straightforward.The linear algebra derivation is easy to grasp, and there is the attrativefeature that the gradient of the objetive funtion with respet to thedesign variables is exatly the same as would be obtained by the diretlinear perturbation method.Nonetheless, the pratial implementation of this approah an behallenging. The nonlinear ow solver often solves the steady-stateequations, R(U)=0; by a time-marhing iterative solution ofdUdt +R(U) = 0:Linearising the steady-state equations gives Lu = f; whereL � �R�U ; u � �U�� ; f � ��R�� :
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Adjoint approah to design 9Following a diret approah, the linear perturbation equations ouldalso be solved by marhing to steady-state the equationsdudt + Lu = f:Similarly, the adjoint equations LT v = g, an be solved by time-marhing1 the equation dvdt + LT v = g:The fat that L and LT have the same eigenvalues means that theasymptoti onvergene of the time-marhing iteration in both aseswill be idential, and will be equal to the asymptoti onvergene rateof the nonlinear ow solver.Let us turn now to the onstrution of the produt LT v. When ap-proximating the Euler equations on an unstrutured grid, the residualvetor R(U) an be expressed as a sum of ontributions from eah edgeof the grid, with eah edge ontributing only to the residuals at thenodes at either end of the edge. Symbolially, we an write this asR �Xe Re(U):Linearisation gives Lu =Xe Leu; Le � �Re�Uwhere Le is a sparse matrix whose only non-zero elements have rowand olumn numbers both mathing one or other of the two nodes ateither end of the edge. Therefore,LT v =Xe LTe v:At the programming level, this produt involves exatly the same loopover all of the edges as for the original nonlinear ow disretisation. Inpriniple, one ould ompute the non-zero elements of the matrix Leand then form the produt LTe v. However, it is more eÆient to al-ulate the produt diretly without expliitly onstruting the matrix.A ommon objetion to the disrete approah is the memory overhead1 The true adjoint of the unsteady equation dudt+Lu=f is � dvdt+LT v=g but thisis only well-posed when solved bakwards in time. Swithing from t to �t gives theforward time-marhing equation given above.
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10 M.B. Giles & N.A. Pierethat is inurred if the linearised matrix is pre-omputed and stored toredue the total number of operations. By forming the produt diretly,this memory overhead an be avoided while maintaining an opera-tion ount that is not substantially greater than that of the originalnonlinear solver.When approximating the Navier-Stokes equations on an unstru-tured grid, the residual vetor an sometimes be expressed symboliallyas R �Xe Re(U;DU);where the vetor DU represents the numerial approximation to theow solution gradient at the grid nodes at either end of the edge. Whenlinearised, this beomes Lu � Au+ V D u;in whih the matries A; V;D an eah be expressed as a sum of ex-tremely sparse elemental matries as desribed above for the Eulerequations. The disrete adjoint operator for the Navier-Stokes equa-tions is then LT v � AT v +DTV T v;indiating that the adjoint gradient subroutine responsible for DT mustbe applied after the visous subroutine responsible for V T . At �rst thisseems ounter-intuitive, but the mathematis is quite lear.Working out the mathematial expressions for LTe v and determiningthe best method for implementing the produt is relatively easy for theinvisid uxes of the Euler equations. This proess is far more arduousfor the visous uxes in the Navier-Stokes equations and for hara-teristi smoothing uxes for the Euler equations. An alternative is touse AD (Automati Di�erentiation) software suh as Odyss�ee (Gilbertet al., 1991; Faure, 1996) or ADIFOR and ADJIFOR (Bishof et al.,1992; Carle et al., 1998) to generate the Fortran ode to ompute theprodut LTe v. In forward mode, AD software takes the original odewhih omputed Re(U) and then uses the basi rules of linearisationto onstrut the ode to evaluate Leu. In reverse mode, it produes theode to alulate LTe v; it may seem that this is a muh harder taskbut in fat it is not. Furthermore, there are theoretial results whihguarantee that the number of oating point operations is no more thanthree times that of the original nonlinear ode (Griewank, 1989).A �nal point onerns the evaluation of the term f , whih is thesoure term for the diret perturbation equations and is in the objetivefuntion in the adjoint approah. Again, forward mode AD software
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Adjoint approah to design 11ould be used, but a very muh simpler alternative is to use the `om-plex variable method' (Squire and Trapp, 1998) used by Anderson ando-workers (1999). The essene of the idea is thatlim�!0 I fR(U;�+i�)g� = �R�� :In this equation, R(U;�) has been taken to be a omplex analyti fun-tion, and the notation If: : :g denotes the imaginary part of a omplexquantity. The equation itself is an immediate onsequene of a Taylorseries expansion. The key is that this an be evaluated numeriallyusing � = 10�20. Unlike the usual �nite di�erene approximation ofa linear sensitivity, there is no subtration of two quantities whihare almost equal; therefore there is no unaeptable loss of auraydue to mahine rounding error. Applying this tehnique to a FOR-TRAN ode requires little more than replaing all REAL*8 delarationsby COMPLEX*16, and de�ning appropriate omplex analyti versions ofertain intrinsi funtions.We have found this omplex variable method to be extremely ef-fetive. We have also used it to verify the orretness of our hand-oded adjoint alulations by heking the identity uT (LT v) = vT (Lu),with the produt LTv being omputed using the adjoint ode, and theprodut Lu = lim�!0 I fR(U+i�u; �)g� ;being omputed using the omplex variable method.3. Continuous adjoint approah3.1. Duality and the adjoint p.d.e.Duality in the ase of p.d.e.'s is a natural extension of duality in the lin-ear algebra formulation. Using the notation (V;U) to denote an integralinner produt over some domain 
,(V;U) � Z
 V TU dx;suppose that one wants to evaluate the funtional (g; u), where u is thesolution of the p.d.e. Lu = f;on the domain 
 subjet to homogeneous boundary onditions on theboundary �
.
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12 M.B. Giles & N.A. PiereUsing the adjoint formulation, the idential funtional takes the form(v; f) where v is the solution of the adjoint p.d.e.L�v = g;plus appropriate homogeneous adjoint b..'s. The adjoint operator L�is de�ned by the identity(V;LU) = (L�V;U);whih must hold for all funtions V;U satisfying the respetive homo-geneous boundary onditions. Given the de�nitions, the proof of theequivalene of the two forms of the problem is trivial(v; f) = (v; Lu) = (L�v; u) = (g; u):3.2. ExamplesTo illustrate the onstrution of the adjoint operator and boundary on-ditions, let us onsider the one-dimensional onvetion-di�usion equa-tion Lu � dudx � �d2udx2 ; 0 < x < 1;subjet to the homogeneous boundary onditions u(0) = u(1) = 0.Using integration by parts, for any twie-di�erentiable funtion vwe have(v; Lu) = Z 10 v�dudx � �d2udx2� dx= Z 10 u��dvdx � �d2vdx2� dx+ �vu� �vdudx + �udvdx�10= Z 10 u��dvdx � �d2vdx2� dx+ ���vdudx�10 :For the integral term to equal the inner produt (g; u) in the adjointidentity, we need to de�ne the adjoint operator to beL�v = �dvdx � �d2vdx2 ;and to eliminate the boundary term the adjoint b..'s must bev(0) = v(1) = 0:Note the reversal in sign of the �rst derivative in the adjoint operator;this implies a reversal in the onvetion diretion.
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Adjoint approah to design 13Table I. Various operators and their adjointsoperator adjointdudx � �d2udx2 � dvdx � � d2vdx2r � (kru) r � (krv)�u�t � �2u�x2 ��v�t � �2v�x2�u�t + �u�x ��v�t � �v�x
Table I lists a number of other di�erential operators and their ad-joints. Note the hanges of sign whih our due to the integration byparts. This produes a reversal of ausality in time-varying problemsso that, for example, the adjoint paraboli operator is well-posed onlyif one starts with `initial data' at the �nal time and then integratesbakwards in time towards the initial time of the original problem.3.3. Physial interpretationThe physial signi�ane of adjoint variables an again be understoodby onsidering Green's funtions and their e�et on the inner produtof interest.The solution of the p.d.e. Lu = f isu(x) = Z
G(x; x0) f(x0) dx0;where G(x; x0) is the Green's funtion. Therefore,Z
 gT (x)u(x) dx = Z
Z
 gT (x)G(x; x0) f(x0) dx dx0= Z
 vT (x0) f(x0) dx0;where vT (x0) = Z
 gT (x)G(x; x0) dx:Thus, the adjoint variables at a partiular point orrespond to thefuntional evaluated using the Green's funtion for the same point.
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14 M.B. Giles & N.A. Piere3.4. Boundary termsSo far, we have assumed that the original problem has homogeneousb..'s and the objetive funtion onsists only of an inner produtover the whole domain and not a boundary integral. More generally,boundary integral terms in the primal objetive funtion lead to in-homogeneous b..'s for the adjoint, while inhomogeneous b..'s for theprimal problem lead to boundary terms in the adjoint funtional (Gilesand Piere, 1997).The general form of the adjoint identity is(V;LU)
 + (C�V;BU)�
 = (L�V;U)
 + (B�V;CU)�
for all funtions U; V , with the notation (:; :)�
 denoting an innerprodut over the boundary. B and C are both boundary operators(possibly involving normal derivatives) given in the de�nition of theoriginal problem. B� and C� are the orresponding adjoint boundaryoperators whih an be found by integration by parts.Using this general adjoint identity, it follows immediately that(v; f)
 + (C�v; f2)�
 = (g; u)
 + (g2; Cu)�
when Lu = f in 
; and Bu = f2 on �
;L�v = g in 
; and B�v = g2 on �
:There are some restritions on what an be imposed as b..'s andobjetive funtions. The analysis is ompliated (see (Jameson et al.,1998) and (Giles and Piere, 1997) for details) but it reveals that on asolid surfae, the boundary integral term in the objetive funtion mustbe a weighted integral of the linear perturbation in the pressure whenusing the Euler equations. Similarly, for the Navier-Stokes equations itmust be a weighted integral of the linear perturbation in the normaland tangential fores on the surfae, and either the heat ux or thesurfae temperature (depending whether one is speifying the surfaetemperature or adiabati onditions, respetively).3.5. Geometri effetsPerhaps the most ompliated part of the ontinuous approah to de-sign is the manner in whih design variable perturbations produe thesoure term f for the linearised p.d.e. and the inhomogeneous term f2for the linearised b..'s.
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Adjoint approah to design 15We will outline two approahes, both of whih use urvilinear oor-dinates (�; �) in two dimensions. Writing the Euler equations in theirusual vetor form as �F�x + �G�y = 0;when transformed to the urvilinear oordinates they beome��� �F �y�� �G�x���+ ��� ��F �y�� +G�x��� = 0:In the approah used by Jameson, the urvilinear oordinates or-respond to grid lines of a strutured grid, with the airfoil surfae beingde�ned as �=0 (Jameson, 1995b). A small perturbation ~� to a designparameter produes hanges suh asF �! F + �F�U dUd� ~��x�� �! �x�� + �2x���� ~�:Terms not depending on ~� all anel, and terms depending on ~�2 arenegleted. Hene, we get the linearised equations,��� ��A�y�� �B�x��� u�+ ��� ���A�y�� +B�x���u� =� ��� �F �2y���� �G �2x������ ��� ��F �2y���� +G �2x����� ;where A = �F�U ; B = �G�U ; u = dUd� :The boundary ondition on an invisid wall is that there is no ownormal to the surfae � = 0. This remains true as � hanges but oneneeds to onsider the linearised perturbation to the unit normal, whiheventually leads to the inhomogeneous boundary term f2.For omplex geometries, it is often not possible to generate stru-tured grids in whih the surfae orresponds to �= onst. Instead, onean generalise the above approah by de�ningx(�; �) = � + ~�X(�; �);y(�; �) = � + ~�Y (�; �);so that (x; y) � (�; �) when ~� = 0, and X(�; �); Y (�; �) are smoothfuntions mathing the surfae deformation so that the surfae remains
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16 M.B. Giles & N.A. Piere�xed in (�; �) oordinates as � hanges. This leads to the linearisedequation��� (Au)+ ��� (Bu) = � ��� �F �Y�� �G�X�� �� ��� ��F �Y�� +G�X�� � :This equation an then be approximated using an unstrutured gridin the (�; �) domain, whih is the same as the (x; y) domain for theunperturbed geometry. Boundary onditions are handled in the sameway as in Jameson's treatment, taking aount of the perturbation tothe unit normal as the surfae geometry hanges.3.6. Other issuesWith the ontinuous adjoint approah, after linearising the original owequations and integrating by parts to obtain the adjoint formulation ofthe problem, there is then total freedom as to how one disretises theadjoint p.d.e. Indeed, without making reourse to the disrete approah,where the adjoint implementation is �xed by the primal disretisation,there is even some ambiguity as to how one should implement theinvisid adjoint uxes for the Euler equations. In priniple, the adjointdisretisation may be developed without regard for the disretisation ofthe nonlinear ow problem. Of ourse the standard issues or auray,stability and onvergene remain ritial to the suess of the iterativesolution proess.When onsidering shoked Euler ows, then in the analyti formu-lation, the shoks need to be treated as disontinuities aross whih theRankine-Hugoniot shok jump relations are enfored (Giles and Piere,1998). This treatment leads to the result that the adjoint variables areontinuous aross the shok and that an additional adjoint boundaryondition must be imposed along the length of the shok. Imposingsuh a b.. would be ompliated, as it would require the automatiidenti�ation of the shok loation in the nonlinear ow alulation.Quasi-1D results have demonstrated that the ontinuous implementa-tion naturally leads to satisfation of the adjoint boundary onditionat the shok (Giles and Piere, 1998). In pratie, researhers using theontinuous adjoint approah do not enfore this b.., and their resultsindiate no diÆulties as a onsequene.The observations about the limitations of the disrete adjoint ap-proah apply equally to the ontinuous adjoint approah. There is oneadditional point that needs to be made regarding the optimisation pro-ess. The ontinuous adjoint approah yields a disrete approximationto the gradient of the analyti objetive funtion with respet to eahof the design variables. This will not be exatly equal to the gradient of
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Adjoint approah to design 17the disrete approximation to the objetive funtion. Therefore, thereis a slight inonsisteny between the disrete objetive funtion andthe omputed gradient. As a result, the optimisation proess will failto onverge further one the solution is near a loal minimum.4. Relative advantages of two approahesIn the previous two setions we have gone through, in some detail, theformulation of the disrete and ontinuous adjoint approahes urrentlyin use by di�erent researhers. The di�erene between the two ap-proahes is shown shematially in Figure 1. In both ases one ends upwith a set of disrete adjoint equations. In the fully-disrete approahone starts by disretising the nonlinear p.d.e.; these equations are thenlinearised and transposed. In the the ontinuous adjoint approah, thedisretisation is the �nal step, after �rst linearising and forming the ad-joint problem. One ould even follow an intermediate path, linearisingthe original equations, disretising them and then taking the transpose.In priniple, if eah of the steps is performed orretly, and all of thesolutions are suÆiently smooth (e.g. no shoks) then in the limit ofin�nite grid resolution all three approahes should be onsistent andonverge to the orret analyti value for the gradient of the objetivefuntion.However, there are important oneptual di�erenes between the dif-ferent approahes, and for �nite resolution grids there will be di�erenesin the omputed results. Here we attempt to summarise what we seeas being the advantages and disadvantages of the two approahes. Thisassessment is based on our joint experiene in developing an adjointNavier-Stokes ode using the disrete approah, and the experieneof the seond author in working with Jameson to develop an adjointNavier-Stokes ode by the ontinuous approah (Jameson et al., 1998).The advantages of the fully disrete approah are:� The exat gradient of the disrete objetive funtion is obtained.This ensures that the optimisation proess an onverge fully. Italso provides a onvenient hek on the orretness of the program-ming implementation; with the ontinuous approah one doesn'tknow whether a slight disagreement is a onsequene of the inexatgradient or a possible programming error.� Creation of the adjoint program is oneptually straightforward.In the future this should enable the almost automati reationof adjoint programs using AD software. This bene�t inludes the
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nonlinear linear adjoint

Figure 1. Alternative approahes to forming disrete adjoint equationsiterative solution proess sine the transposed matrix has the sameeigenvalues as the original linear matrix and so the same iterativesolution method is guaranteed to onverge.On the other hand, the advantages of the ontinuous approah are:� The physial signi�ane of adjoint variables and the role of adjointb..'s is muh learer.Only by onstruting the adjoint ow equations an one develop agood understanding of the nature of adjoint solutions, suh as theontinuity at shoks, the logarithmi singularity at a soni pointin quasi-1D ows but not in 2D or 3D (in general) and the inversesquare-root singularity along the stagnation streamline upstreamof an airfoil in 2D (Giles and Piere, 1997).� The adjoint program is simpler and requires less memory.Beause one is free to disretise the adjoint p.d.e. in any onsistentway, the adjoint ode an be muh simpler. However, our experi-ene has been that even when following a ontinuous approah, itis advantageous to onsult the disrete formulation so as to hoosean appropriate disretisation for the ontinuous adjoint equations.It is also generally the ase that ontinuous adjoint solvers requireless memory than the fully-disrete odes, but this di�erene is notsubstantial if pre-omputation and storage of the linearised matrixis avoided when implementing the disrete method.It remains an open question as to whih approah is better whenthere are nonlinear disontinuities suh as shoks. For quasi-1D Euleralulations, for whih we have derived the analyti solution of the
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Adjoint approah to design 19adjoint equations (Giles and Piere, 1998), both approahes give nu-merial results whih onverge to the analyti solution. For the disreteapproah, this follows beause the integrated pressure an be proved tobe predited with seond order auray (Giles, 1996). The lineariseddisretisation should therefore yield perturbations to the integral ofpressure that are at least �rst-order aurate. The disrete adjointformulation, whih is onstruted using this linearised operator, musttherefore behave orretly to �rst order at the shok. For the ontinuousapproah, in the absene of expliit enforement of the orret adjointb.. at the shok, the orret asymptoti behaviour an be explainedas the e�et of numerial smoothing, given that the orret analytisolution is the only smooth solution at the shok (Giles and Piere,1998).In 2D and 3D there is no proof of seond order auray for quanti-ties suh as lift and drag, and there is a disontinuity in the gradient ofthe adjoint variables at the loation of the shok. Therefore it remainsan open question as to whether either approah will give a onsistentapproximation to the gradient of the objetive funtion in the limit ofin�nite grid resolution. However, pratial results for appliations withweak shoks suggest that any inonsisteny must be small.Although we have aimed to be objetive in our assessment of therelative advantages of the two approahes, it should be noted that weare advoates of the disrete approah. An advoate of the ontinuousapproah may plae a di�erent emphasis on the above observationsand hene reah a di�erent onlusion. Certainly, both methods haveperformed well in pratie, and it remains to be seen whether eitherapproah will demonstrate ompelling advantages over the other interms of design performane. Ultimately, the �nal hoie may alwaysremain, to some extent, a matter of personal taste.5. AppliationResults from a paper by Elliot and Peraire (Elliott and Peraire, 1996)show the use of a disrete adjoint implementation for design optimi-sation on unstrutured grids. The main appliation onsidered is thewing optimisation of a business jet for whih the surfae grid of thebaseline on�guration is shown in Figure 2.Simple algebrai funtions are used to de�ne six design perturba-tion modes for the wing surfae; are was taken to ensure ompatibleperturbations to grid points on the fuselage. A linearised version ofthe method of springs is used to reate the grid deformations in theinterior. The implementation is based on the disrete adjoint approah,
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Figure 2. Initial surfae grid for airraft wing design (Elliott and Peraire, 1996)using BFGS optimisation, and both multigrid and parallel omputingto redue the exeution time.The objetive funtion is the mean-square deviation from a targetpressure distribution orresponding to a `lean wing' in the abseneof the rear-mounted engine naelle and pylon. Two design iterationsare taken, dereasing the objetive funtion by 75%. Figures 3 and 4show the evolution of the wing geometry and pressure distributions,respetively.Another example of the adjoint approah to design is provided bythe work of Reuther and o-authors (1999b), who perform a transonimultipoint wing design for a business jet on�guration of the typeshown in Figure 5. Here, the objetive is to minimize drag for severalight onditions simultaneously.
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Figure 3. Evolution of the wing geometry during design (Elliott and Peraire, 1996)

Figure 4. Evolution of the pressure distribution on the wing (Elliott and Peraire,1996)
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22 M.B. Giles & N.A. Piere

Figure 5. Business jet on�guration (Reuther et al., 1999b)Table II. Multipoint drag redutionMah CL Original C�D Design C�D0.81 0.35 1.00257 0.854130.82 0.30 1.00000 0.779150.83 0.25 1.08731 0.76836�Drag oeÆients normalized relative to originaldrag at entral design point (Reuther et al., 1999b).This work employs a ontinuous adjoint formulation on a struturedmultiblok mesh using parallel multigrid ow and adjoint solvers. Thewing surfae is parameterised with 18 Hiks-Henne bump funtions(Hiks and Henne, 1978) at eah of �ve span stations and a total of 30onstraints are imposed on maximum thikness, spar thikness, leadingedge bluntness and trailing edge angle. The results were obtained after�ve design iterations using the optimization pakage NPSOL (Gill etal., 1986) during whih the interior grid points were perturbed usingWARP-MB (Reuther et al., 1999a).The initial on�guration was designed for ruise at M = 0:8 andCL = 0:3 and the three new design points are summarized in TableII. The original and designed pressure distributions are displayed at asingle span station for eah of the three design points in Figure 6. The
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- Cp
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Original
DesignDesign Point 3Figure 6. Multipoint drag minimization at �xed lift. Pressure distributions at thez=0.475 span station for the three design points desribed in Table II (Reuther etal., 1999b).shok strength has been substantially redued in all ases, leading to thedrag redutions desribed in Table II. While a single point design wouldahieve lower drag at the spei�ed ruise onditions, the multipointdesign has the advantage of maintaining better o�-design performane(Reuther et al., 1999b). 6. ConlusionsThe development of design environments is urrently a major fous ofresearh in omputational engineering. As part of this e�ort, adjointmethods o�er the ability to eÆiently ompute linear design sensitivi-ties when there are a large number of design variables.In reviewing the fundamental theory, we began with the linear alge-bra perspetive from whih these ideas are most easily understood. Foroneptual as well as pragmati reasons, we believe that the `disrete'numerial implementations whih follow this approah have a numberof advantages over those based on the alternate `ontinuous' approah.On the other hand, a sound grasp of the adjoint p.d.e. theory is essentialto understanding the physial signi�ane of the adjoint variables andtheir behaviour at key points in the ow �eld, suh as at shoks.It is hoped that this overview of the theory and of a number ofimportant implementation issues will help others to develop adjointtehniques as an integral part of engineering design systems. Althoughthe fous of this paper has been on aeronautial design, the ideasare equally relevant to any area of engineering design involving largenumbers of ontinuous design variables.
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