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Abstract. The linear analysis of turbomachinery aeroelasticity relies on the assump-
tion of small level of unsteadiness and requires the solution of both the nonlinear
steady and the linear unsteady flow equations. The objective of the analysis is to com-
pute a complex flow solution which represents the amplitude and phase of the unsteady
flow for the frequency of unsteadiness of interest. The solution procedure of the lin-
ear harmonic Euler /Navier-Stokes solver often consists of a preconditioned fixed-point
iteration which in some circumstances may become numerically unstable. The paper
summarizes the use of the Recursive Projection Method and the Generalized Minimum
Residuals algorithm to provide stabilization and presents a realistic application of both
approaches.

1 Introduction

Blade flutter and forced response of turbomachinery rotors [1] are aeroelastic
phenomena which may both lead to dramatic mechanical failures if not properly
accounted for in the design of the engine. Flutter occurs if the working fluid feeds
energy into the vibrating blades, while forced response vibrations are due to an
external source of excitation such as the wakes shed by an upstream blade-row.
The estimate of both the mean energy flux between fluid and structure in the
flutter case and the unsteady forces acting on the blades in the forced response
problem requires knowledge of the unsteady flow field. A number of methods have
been developed to carry out the analysis of turbomachinery aeroelasticity [9],
ranging from uncoupled linearized potential flow solvers [4] to fully-coupled non-
linear three-dimensional unsteady viscous methods [5] and within this range the
uncoupled linear harmonic Euler and Navier-Stokes (NS) methods have proved
to be a successful compromise between accuracy and cost. This approach relies
on the fact that the level of unsteadiness in turbomachinery flows is small and
hence views it as a small perturbation of a space-periodic mean steady flow.
The unsteady flow field can be linearized about the steady one and due to lin-
earity can be decomposed into a sum of harmonic terms, each of which can be
computed independently. The analysis considers a single blade passage rather
than the whole blade-row thanks to the cyclic periodicity of both the steady
and unsteady flows, thus leading to a great reduction of computational costs.
The periodic boundary condition of the linear harmonic equations introduces a
phase-shift between the two periodic boundaries, known as Inter-Blade Phase
Angle (IBPA). The small amplitude of the unsteady aerodynamic forces with
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respect to the mechanical forces often allows one to neglect the aerodynamic
coupling of structural modes and the investigation can be carried out consid-
ering one mode at a time. The complete analysis [2] consists of two phases: a)
calculation of the nonlinear steady flow field about which the linearization is
performed and b) solution of the linear harmonic equations.

The HY DRA suite of parallel codes developed at the Ozford University
Computing Laboratory includes both a nonlinear (hyd) [6] and a linear harmonic
(hydlin) [3] solver of the inviscid and viscous equations and the solution proce-
dure of both codes is a preconditioned fixed-point iteration. Usually the linear
code converges without difficulty, but numerical instabilities have been encoun-
tered in situations in which the steady flow calculation itself failed to converge to
a steady state but instead finished in a low-level limit cycle, often related to some
physical phenomenon such as corner stalls. The main objectives of this paper
are to: 1) investigate the numerical instabilities of hydlin and 2) demonstrate
its stabilization achieved by means of two methods: the Recursive Projection
Method (RPM) and the Generalized Minimal Residuals (GMRES) algorithm.

2 Linear equations

The discrete linear harmonic Euler and NS equations [2] can be viewed as a
complex linear system Axz = b of dimension k equal to the product of the number
of grid nodes and flow variables. The matrix A depends on the sensitivity of the
nonlinear residuals to flow perturbations and the right-hand-side vector b is
due to incoming perturbations through the inflow or outflow boundary in the
forced response case and to the harmonic deformation of the grid in the flutter
problem. The unknown complex vector x represents the amplitude and phase of
the unsteady flow for the frequency of unsteadiness of interest. The linear solver
hydlin can be regarded as the fixed-point iteration:

Tpy1 =T — M Az, + M~ (1)

in which M~! is the preconditioning operator resulting from the Runge-Kutta
time-marching algorithm, the Jacobi preconditioner and the multigrid scheme [3].
It should be noted that A/~ depends on several numerical parameters such as
the number of iterations on each grid level and neither M ~! nor A are built
explicitly, as hydlin only uses the matrix-vector products M4z, Linear sta-
bility analysis of (1) shows that necessary condition for its convergence is that
all the eigenvalues of M ~4 lie in the unit disc centred at (1,0) in the complex
plane. For most aeroelastic problems of practical interest, this condition is ful-
filled and hydlin converges without difficulty. However an exponential growth
of the residual has been encountered for some turbomachinery test-cases caused
by a few complex conjugate eigenvalues lying outside the unit disc (outliers). In
these circumstances the steady flow calculation itself usually failed to converge
to a steady-state but instead finished in a small-amplitude limit cycle, related
to some physical instability such as flow separations or vortex shedding. The
solution procedure of hyd is not time-accurate but it nevertheless reflects some
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physical properties of the flow field due to the pseudo time-marching strategy
associated with the Runge-Kutta algorithm. Small-amplitude limit cycles do not
prevent the steady solver from converging (their effect is sometimes visible in
small oscillations of the residual around a constant low level), but they result
in a small number of complex conjugate outliers causing the exponential growth
of the residual in the linear calculation. Two different solutions to this problem
have been achieved implementing RPM and GMRES in hydlin.

3 RPM

RPM is an iterative algorithm for the solution of linear and nonlinear systems [8]
and is based on the projection of M !4 onto the orthogonal subspaces P and
Q of R* associated respectively with the subset of m,y: outliers and that of the
remaining (k—m,,:) eigenvalues lying in the unit disc. At each RPM iteration the
projection of the linear equations on the low-dimensional subspace P is solved
with Newton’s method and that on the subspace Q with the standard fixed-point
iteration (1). Denoting by Z an orthonormal basis of P, the orthogonal projectors
P and @ on the subspaces P and Q are defined respectively as P =ZZ" and
Q=1 — P. The basis Z is augmented with the current dominant eigenmode each
time the calculation is diverging or converging very slowly. The projections f
and g of (1) on P and Q are defined respectively as

f=P[I—-M Yaz+ M) g=Q[(I — M Az + M ']
and the outline of the RPM loop is:
Pinit = PTinit, Qinit = QTinit
Do until convergence:

i. Pv+1 =Py + (I - fp)_l(f(pvaql/)) _pl/)
1. Qv+1 = g(pllaql/))

Tu =Dx T @« =Dvjinas T Wiina
where p = Pz, ¢ = Qz and f, = P(I — M~'A)P. It is easily verified that
(I-f) t=2z[I-Z2"(I-MA)Z]'z" =zH 2"

where H is a small matrix of size m,t, whose inversion requires minimum com-
putational effort. The stability analysis of this algorithm shows that its spectral
radius is smaller than 1, that is the stabilized RPM iteration is stable. The im-
plementation of RPM in hydlin has required only minor changes to the existing
code, as ¢ is determined using the core-part of the code performing the standard
fixed-point iteration (1) and the remaining computationally cheap operations
are performed at the top routine-level.

4 GMRES

GMRES is an iterative method for the solution of linear systems which belongs to
the family of Krylov subspace methods [7] and is guaranteed to converge even in
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the presence of outliers. The Krylov subspace of dimension m generated by M ~'4
and b is the vectorial space spanned by the powers ((M~'4)/b, j=0,...m—1),
that is

Ko =< b, M~4b, ... . (M~4)™" > .

The GMRES algorithm is based on the progressive reduced Arnoldi factoriza-
tion [7] of M ~: )
M_lAAQm = Qm+1Hm (2)

where H,, is a Hessemberg matrix of size ((m + 1) x m), Q,, is a matrix whose
m columns form an orthonormal basis for K, and Q41 is @y augmented
with a new Krylov vector. The length k of each column of @, is equal to that
of the complex linear flow field. At the m*® GMRES iteration the solution z is
approximated by the linear combination of the available m Krylov vectors which
minimizes the 2-norm of the residual.

The preconditioned GMRES algorithm implemented in hydlin uses its core
part as a black-box to determine the Krylov vectors which are preconditioned
in the existing way (multigrid+Runge-Kutta+Jacobi preconditioner) and the
computationally cheap optimization is carried out at the top routine level. The
restart option [7] is used in order to limit the required memory. Using between 10
and 30 GMRES iterations per restarted cycle makes the computation affordable
even for large problems and a good convergence level is usually achieved within
20 restarted cycles.

5 Results

The considered test-case is a three-dimensional fan rotor whose geometry and
surface grid are shown in fig. 1-a. This grid has only 157441 nodes and is quite
coarse, but all the phenomena discussed in this section have been also observed
with finer computational meshes and for other test-cases. The complete flutter
analysis of this rotor is reported in [2] and shows that the rotor is aeroelas-
tically stable for all considered steady working conditions for IBPA = 180°.
However all linear calculations using the standard fixed-point iteration (1) do
not converge. Figure 1-b provides the residual histories of hydlin for the near-
stall mean steady conditions and for I BPA=180° obtained using the RPM and
the GMRES solvers with different numerical parameters. The solid line refers to
the RPM solver which adds the current dominant eigenmode to the subspace P
only if the calculation diverges. The iterations at which a new partitioning of
M~ is carried out are labelled from 1 to 4. Before the first dominant mode
is added to P this convergence history is that of the standard preconditioned
iteration (1) which therefore does not converge. Conversely the stabilized RPM
iteration converges (branch 4y — Ep) once all the unstable modes have been in-
cluded in P. The subset of the spectrum of M ~'4 with the first 150 dominant
eigenvalues is provided in fig. 2, which reveals the presence of 4 complex conju-
gate outliers (eigenvalues labelled from 1 to 4). The complex conjugate eigenpair
in the unit disc labelled with 5 determines the asymptotic convergence rate of
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RPM (slope of the branch 49— Ep). The dotted line in fig. 1-b refers to the
convergence of RPM obtained adding to P also the eigenpair 5 at the iteration
labelled with 5. The slope of the branch 5— F; is steeper than that of 49— Ejy,
since in the former case the asymptotic convergence rate is determined by the
eigenpair 6, which is closer than 5 to the centre of the unit disc. The residual
of the calculation with restarted GMRES performing 10 iterations per restarted
cycle and one multigrid cycle per GMRES iteration stagnates (dashed line in
fig. 1) and an acceptable convergence rate can be retrieved only by using 30
GMRES iterations per restarted cycle and three multigrid cycle per GMRES
iteration (dashed-dotted line). The analysis of the dominant eigenmodes [2] has
shown that these numerical instabilities are due to small physical unsteadiness
of the nonlinear flow field such as the hub corner stall.
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Fig. 1. (a) Fan geometry and surface mesh and (b) convergence plots of hydlin

6 Conclusions

The implementation of the RPM and GMRES algorithms in the existing linear
solver based on a preconditioned fixed-point iteration has stabilized the code.
This allows one to carry out the aeroelastic analysis even in the presence of small
unsteady phenomena in the mean flow, which are believed not to affect signifi-
cantly the aeroelastic behaviour of the component. The asymptotic convergence
rate of the restarted GMRES algorithm depends on the spectrum of the linear
operator, on the number of GMRES iterations per restarted cycle and the num-
ber of multigrid cycles per GMRES iteration. The extra memory allocation for
storing the Krylov vectors depends only on the number of GMRES iterations per
restarted cycle and not on the number of outliers. The asymptotic convergence
rate of RPM depends on the spectral radius of the projection of the linear op-
erator onto the stable space Q. The required extra memory allocation depends
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Fig. 2. First 150 eigenvalues of M4

on the number of outliers and is comparable with that of the restarted GMRES
with 10 iterations per restarted cycle if the linear operator has not more than 4
complex conjugate pairs of outliers. Therefore the overall CPU-time and extra
memory allocation using either solver is considerably case-dependent.
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