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t. The linear analysis of turboma
hinery aeroelasti
ity relies on the assump-tion of small level of unsteadiness and requires the solution of both the nonlinearsteady and the linear unsteady 
ow equations. The obje
tive of the analysis is to 
om-pute a 
omplex 
ow solution whi
h represents the amplitude and phase of the unsteady
ow for the frequen
y of unsteadiness of interest. The solution pro
edure of the lin-ear harmoni
 Euler/Navier-Stokes solver often 
onsists of a pre
onditioned �xed-pointiteration whi
h in some 
ir
umstan
es may be
ome numeri
ally unstable. The papersummarizes the use of the Re
ursive Proje
tion Method and the Generalized MinimumResiduals algorithm to provide stabilization and presents a realisti
 appli
ation of bothapproa
hes.1 Introdu
tionBlade 
utter and for
ed response of turboma
hinery rotors [1℄ are aeroelasti
phenomena whi
h may both lead to dramati
 me
hani
al failures if not properlya

ounted for in the design of the engine. Flutter o

urs if the working 
uid feedsenergy into the vibrating blades, while for
ed response vibrations are due to anexternal sour
e of ex
itation su
h as the wakes shed by an upstream blade-row.The estimate of both the mean energy 
ux between 
uid and stru
ture in the
utter 
ase and the unsteady for
es a
ting on the blades in the for
ed responseproblem requires knowledge of the unsteady 
ow �eld. A number of methods havebeen developed to 
arry out the analysis of turboma
hinery aeroelasti
ity [9℄,ranging from un
oupled linearized potential 
ow solvers [4℄ to fully-
oupled non-linear three-dimensional unsteady vis
ous methods [5℄ and within this range theun
oupled linear harmoni
 Euler and Navier-Stokes (NS) methods have provedto be a su

essful 
ompromise between a

ura
y and 
ost. This approa
h relieson the fa
t that the level of unsteadiness in turboma
hinery 
ows is small andhen
e views it as a small perturbation of a spa
e-periodi
 mean steady 
ow.The unsteady 
ow �eld 
an be linearized about the steady one and due to lin-earity 
an be de
omposed into a sum of harmoni
 terms, ea
h of whi
h 
an be
omputed independently. The analysis 
onsiders a single blade passage ratherthan the whole blade-row thanks to the 
y
li
 periodi
ity of both the steadyand unsteady 
ows, thus leading to a great redu
tion of 
omputational 
osts.The periodi
 boundary 
ondition of the linear harmoni
 equations introdu
es aphase-shift between the two periodi
 boundaries, known as Inter-Blade PhaseAngle (IBPA). The small amplitude of the unsteady aerodynami
 for
es with
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t to the me
hani
al for
es often allows one to negle
t the aerodynami

oupling of stru
tural modes and the investigation 
an be 
arried out 
onsid-ering one mode at a time. The 
omplete analysis [2℄ 
onsists of two phases: a)
al
ulation of the nonlinear steady 
ow �eld about whi
h the linearization isperformed and b) solution of the linear harmoni
 equations.The HYDRA suite of parallel 
odes developed at the Oxford UniversityComputing Laboratory in
ludes both a nonlinear (hyd) [6℄ and a linear harmoni
(hydlin) [3℄ solver of the invis
id and vis
ous equations and the solution pro
e-dure of both 
odes is a pre
onditioned �xed-point iteration. Usually the linear
ode 
onverges without diÆ
ulty, but numeri
al instabilities have been en
oun-tered in situations in whi
h the steady 
ow 
al
ulation itself failed to 
onverge toa steady state but instead �nished in a low-level limit 
y
le, often related to somephysi
al phenomenon su
h as 
orner stalls. The main obje
tives of this paperare to: 1) investigate the numeri
al instabilities of hydlin and 2) demonstrateits stabilization a
hieved by means of two methods: the Re
ursive Proje
tionMethod (RPM) and the Generalized Minimal Residuals (GMRES) algorithm.2 Linear equationsThe dis
rete linear harmoni
 Euler and NS equations [2℄ 
an be viewed as a
omplex linear system Ax = b of dimension k equal to the produ
t of the numberof grid nodes and 
ow variables. The matrix A depends on the sensitivity of thenonlinear residuals to 
ow perturbations and the right-hand-side ve
tor b isdue to in
oming perturbations through the in
ow or out
ow boundary in thefor
ed response 
ase and to the harmoni
 deformation of the grid in the 
utterproblem. The unknown 
omplex ve
tor x represents the amplitude and phase ofthe unsteady 
ow for the frequen
y of unsteadiness of interest. The linear solverhydlin 
an be regarded as the �xed-point iteration:xn+1 = (I �M�1A)xn +M�1b (1)in whi
h M�1 is the pre
onditioning operator resulting from the Runge-Kuttatime-mar
hing algorithm, the Ja
obi pre
onditioner and the multigrid s
heme [3℄.It should be noted that M�1 depends on several numeri
al parameters su
h asthe number of iterations on ea
h grid level and neither M�1 nor A are builtexpli
itly, as hydlin only uses the matrix-ve
tor produ
ts M�1Ax. Linear sta-bility analysis of (1) shows that ne
essary 
ondition for its 
onvergen
e is thatall the eigenvalues of M�1A lie in the unit dis
 
entred at (1; 0) in the 
omplexplane. For most aeroelasti
 problems of pra
ti
al interest, this 
ondition is ful-�lled and hydlin 
onverges without diÆ
ulty. However an exponential growthof the residual has been en
ountered for some turboma
hinery test-
ases 
ausedby a few 
omplex 
onjugate eigenvalues lying outside the unit dis
 (outliers). Inthese 
ir
umstan
es the steady 
ow 
al
ulation itself usually failed to 
onvergeto a steady-state but instead �nished in a small-amplitude limit 
y
le, relatedto some physi
al instability su
h as 
ow separations or vortex shedding. Thesolution pro
edure of hyd is not time-a

urate but it nevertheless re
e
ts some
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al properties of the 
ow �eld due to the pseudo time-mar
hing strategyasso
iated with the Runge-Kutta algorithm. Small-amplitude limit 
y
les do notprevent the steady solver from 
onverging (their e�e
t is sometimes visible insmall os
illations of the residual around a 
onstant low level), but they resultin a small number of 
omplex 
onjugate outliers 
ausing the exponential growthof the residual in the linear 
al
ulation. Two di�erent solutions to this problemhave been a
hieved implementing RPM and GMRES in hydlin.3 RPMRPM is an iterative algorithm for the solution of linear and nonlinear systems [8℄and is based on the proje
tion of M�1A onto the orthogonal subspa
es P andQ of Rk asso
iated respe
tively with the subset of mout outliers and that of theremaining (k�mout) eigenvalues lying in the unit dis
. At ea
h RPM iteration theproje
tion of the linear equations on the low-dimensional subspa
e P is solvedwith Newton's method and that on the subspa
eQ with the standard �xed-pointiteration (1). Denoting by Z an orthonormal basis of P , the orthogonal proje
torsP and Q on the subspa
es P and Q are de�ned respe
tively as P =ZZT andQ=I�P . The basis Z is augmented with the 
urrent dominant eigenmode ea
htime the 
al
ulation is diverging or 
onverging very slowly. The proje
tions fand g of (1) on P and Q are de�ned respe
tively asf = P [(I �M�1A)x+M�1b℄ g = Q[(I �M�1A)x+M�1b℄and the outline of the RPM loop is:pinit = Pxinit; qinit = QxinitDo until 
onvergen
e:i: p�+1 = p� + (I � fp)�1(f(p� ; q�))� p�)ii: q�+1 = g(p� ; q�))x� = p� + q� = p�final + q�finalwhere p = Px, q = Qx and fp = P (I �M�1A)P . It is easily veri�ed that(I � fp)�1 = Z[I � ZT (I �M�1A)Z℄�1ZT = ZH�1ZTwhere H is a small matrix of size mout, whose inversion requires minimum 
om-putational e�ort. The stability analysis of this algorithm shows that its spe
tralradius is smaller than 1, that is the stabilized RPM iteration is stable. The im-plementation of RPM in hydlin has required only minor 
hanges to the existing
ode, as q is determined using the 
ore-part of the 
ode performing the standard�xed-point iteration (1) and the remaining 
omputationally 
heap operationsare performed at the top routine-level.4 GMRESGMRES is an iterative method for the solution of linear systems whi
h belongs tothe family of Krylov subspa
e methods [7℄ and is guaranteed to 
onverge even in
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e of outliers. The Krylov subspa
e of dimensionm generated byM�1Aand b is the ve
torial spa
e spanned by the powers ((M�1A)jb; j = 0; : : :m�1),that is Km =< b;M�1Ab; : : : ; (M�1A)m�1b > :The GMRES algorithm is based on the progressive redu
ed Arnoldi fa
toriza-tion [7℄ of M�1A: M�1AQm = Qm+1 ~Hm (2)where ~Hm is a Hessemberg matrix of size ((m+ 1)�m), Qm is a matrix whosem 
olumns form an orthonormal basis for Km and Qm+1 is Qm augmentedwith a new Krylov ve
tor. The length k of ea
h 
olumn of Qm is equal to thatof the 
omplex linear 
ow �eld. At the mth GMRES iteration the solution x isapproximated by the linear 
ombination of the available m Krylov ve
tors whi
hminimizes the 2-norm of the residual.The pre
onditioned GMRES algorithm implemented in hydlin uses its 
orepart as a bla
k-box to determine the Krylov ve
tors whi
h are pre
onditionedin the existing way (multigrid+Runge-Kutta+Ja
obi pre
onditioner) and the
omputationally 
heap optimization is 
arried out at the top routine level. Therestart option [7℄ is used in order to limit the required memory. Using between 10and 30 GMRES iterations per restarted 
y
le makes the 
omputation a�ordableeven for large problems and a good 
onvergen
e level is usually a
hieved within20 restarted 
y
les.5 ResultsThe 
onsidered test-
ase is a three-dimensional fan rotor whose geometry andsurfa
e grid are shown in �g. 1-a. This grid has only 157441 nodes and is quite
oarse, but all the phenomena dis
ussed in this se
tion have been also observedwith �ner 
omputational meshes and for other test-
ases. The 
omplete 
utteranalysis of this rotor is reported in [2℄ and shows that the rotor is aeroelas-ti
ally stable for all 
onsidered steady working 
onditions for IBPA = 1800.However all linear 
al
ulations using the standard �xed-point iteration (1) donot 
onverge. Figure 1-b provides the residual histories of hydlin for the near-stall mean steady 
onditions and for IBPA=1800 obtained using the RPM andthe GMRES solvers with di�erent numeri
al parameters. The solid line refers tothe RPM solver whi
h adds the 
urrent dominant eigenmode to the subspa
e Ponly if the 
al
ulation diverges. The iterations at whi
h a new partitioning ofM�1A is 
arried out are labelled from 1 to 4. Before the �rst dominant modeis added to P this 
onvergen
e history is that of the standard pre
onditionediteration (1) whi
h therefore does not 
onverge. Conversely the stabilized RPMiteration 
onverges (bran
h 40�E0) on
e all the unstable modes have been in-
luded in P . The subset of the spe
trum of M�1A with the �rst 150 dominanteigenvalues is provided in �g. 2, whi
h reveals the presen
e of 4 
omplex 
onju-gate outliers (eigenvalues labelled from 1 to 4). The 
omplex 
onjugate eigenpairin the unit dis
 labelled with 5 determines the asymptoti
 
onvergen
e rate of
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h 40�E0). The dotted line in �g. 1-b refers to the
onvergen
e of RPM obtained adding to P also the eigenpair 5 at the iterationlabelled with 5. The slope of the bran
h 5�E1 is steeper than that of 40�E0,sin
e in the former 
ase the asymptoti
 
onvergen
e rate is determined by theeigenpair 6, whi
h is 
loser than 5 to the 
entre of the unit dis
. The residualof the 
al
ulation with restarted GMRES performing 10 iterations per restarted
y
le and one multigrid 
y
le per GMRES iteration stagnates (dashed line in�g. 1) and an a

eptable 
onvergen
e rate 
an be retrieved only by using 30GMRES iterations per restarted 
y
le and three multigrid 
y
le per GMRESiteration (dashed-dotted line). The analysis of the dominant eigenmodes [2℄ hasshown that these numeri
al instabilities are due to small physi
al unsteadinessof the nonlinear 
ow �eld su
h as the hub 
orner stall.
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(a) (b)Fig. 1. (a) Fan geometry and surfa
e mesh and (b) 
onvergen
e plots of hydlin6 Con
lusionsThe implementation of the RPM and GMRES algorithms in the existing linearsolver based on a pre
onditioned �xed-point iteration has stabilized the 
ode.This allows one to 
arry out the aeroelasti
 analysis even in the presen
e of smallunsteady phenomena in the mean 
ow, whi
h are believed not to a�e
t signi�-
antly the aeroelasti
 behaviour of the 
omponent. The asymptoti
 
onvergen
erate of the restarted GMRES algorithm depends on the spe
trum of the linearoperator, on the number of GMRES iterations per restarted 
y
le and the num-ber of multigrid 
y
les per GMRES iteration. The extra memory allo
ation forstoring the Krylov ve
tors depends only on the number of GMRES iterations perrestarted 
y
le and not on the number of outliers. The asymptoti
 
onvergen
erate of RPM depends on the spe
tral radius of the proje
tion of the linear op-erator onto the stable spa
e Q. The required extra memory allo
ation depends
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Fig. 2. First 150 eigenvalues of M�1Aon the number of outliers and is 
omparable with that of the restarted GMRESwith 10 iterations per restarted 
y
le if the linear operator has not more than 4
omplex 
onjugate pairs of outliers. Therefore the overall CPU-time and extramemory allo
ation using either solver is 
onsiderably 
ase-dependent.Referen
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