
Preconditioned Euler and Navier-Stokes Calculations onUnstructured MeshesP. Moinier M.B. GilesOxford University Computing LaboratoryNumerical Analysis Group1 IntroductionMultigrid techniques for unstructured meshes have proven to be very successful for both 2Dand 3D inviscid problems, and recent advances concerning unstructured mesh generation,ow solvers and parallel computing techniques have made the predictions of these ows forcomplex geometries a rapid and robust procedure [3, 8, 11]. However, for an accurate aero-dynamic analysis, viscous e�ects must be considered and to capture these, turbulence andtransition modelling are required. The highly stretched computational cells, that are neededto e�ciently resolve a high Reynolds number boundary layer limit the e�ectiveness of multi-grid procedures which can not eliminate all the error modes which can exist in the solution.To overcome this drawback, di�erent methods have been proposed. One is a semi-coarseningmultigrid strategy, in which the mesh is not coarsened in every direction simultaneously [10],while others are based on the use of a preconditioner [1] which has the e�ect of moving theeigenvalues away from the origin of the Fourier complex plan providing, within an optimisedRunge-Kutta update, a very good damping of the high-frequency error modes.Recently, Pierce and Giles [12] have analysed di�erent combinations of preconditioner andmultigrid method for both inviscid and viscous ow applications on structured grids. It hasturned out that for turbulent Navier-Stokes calculations, a block-Jacobi preconditioner and aJ-coarsened multigrid method provide an e�ective damping of all modes inside the boundarylayer. The preconditioner damps all the convective modes, while the multigrid strategy, inwhich the grids are coarsened only along the normal to the boundary layer, ensures that allacoustic modes disappear. Thus, they have demonstrated that considerable speed-up can beachieved when using stretched structured meshes.The present work follows this idea, but uses an unstructured grid approach. The samepreconditioner has been implemented in a multigrid solver which has proven to be highlysuccessful for inviscid meshes [4, 2], and has been modi�ed to treat the highly stretched gridsrequired for high Reynolds number ows [5] so that the equivalent of a J-coarsening strategyis employed. In the following sections we describe how the local preconditioner is constructed,how the boundary conditions are treated, and exemplify the resulting method through 2Dand 3D test cases.2 Scheme DescriptionThe pre-conditioned semi-discrete equation appears asP�1dQdt +R(Q) = 0; (2.1)1



2 Moinier & Gileswhere Q 1 denotes the set of conservative variables, R(Q) the residual vector of the spatialdiscretisation and P�1 the local preconditioner. Since the spatial discretisation as the mul-tigrid method are not the subject of this paper, the interested reader is referred to [5]. Theblock-Jacobi preconditioner is based on a local linearisation of the 3D Navier-Stokes equa-tions, in a �rst order upwind discretisation and built by extracting the terms correspondingto the central node. As the ux can be split into inviscid and viscous parts, the matrixpreconditioner has contributions coming from both.2.1 The Inviscid ContributionUsing a �nite volume approach, the integration of the inviscid terms over some control volume
 gives, after the application of the divergence theorem,RIi = 1Vi I@
FI(n;Q)dS; (2.2)where Vi is the measure of the control volume associated with index i, and FI(n;Q) isthe inviscid ux in the direction of the unit vector n. As explained in [5], the discreteapproximation to equation (2.2) isRIi = 1Vi 0@Xj2Ei F Iij 4 sij + Xk2Bi F Ibik 4 sbik1A ; 8i (2.3)where F Iij is the numerical inviscid ux in the direction nij associated with an edge (i; j), andF Ib is the one associated with a boundary face. Ei is the set of all nodes connected to nodei via an edge, Bi the set of all boundary edges (2D) or faces (3D) connected to it, 4sij and4sbik a distance (2D) or area (3D) associated with the edge considered. The uxes includethe average of the ux at mid-edge plus some arti�cial dissipation which is a blend of secondand fourth di�erences.Following the same approach used successfully on structured grids [13], the preconditioner isbased on a �rst order discretisation even though a high-order method with limiters is usedto de�ne RIi . Using �rst order characteristic smoothing, and a local linearisation about auniform ow, the ux F Iij in (2.3) becomesF Iij � 12 (Aij(Qi +Qj)� jAij j(Qj �Qi)) ;where Aij � @F Iij=@Q. Now Pj2Ei AijQi 4sij = 0 since a ux integral of a uniform owvector over a closed surface is zero. Hence, retaining only those terms a�ecting the centralnode, one gets the preconditioner�P Ii ��1 = 12Vi 0@Xj2Ei jAij j 4 sij + Xk2Bi jAikj 4 sbik1A : (2.4)2.2 The Viscous ContributionThe integration of the viscous terms follows the usual rule over each volume, equation (2.2),giving a consistent �nite volume treatment of the inviscid and viscous uxes. Consequently,1In this paper Roman letters are used to denote discrete quantities, whereas calligraphic letters areused to denote analytic functions and variables. Bold quantities are vectors in Cartesian coordinates.



Preconditioned Euler and Navier-Stokes Calculations on Unstructured Meshes 3the viscous residual may be writtenRVi = 1Vi I@
FV (n;Q;rQ)dS: (2.5)Following a linearising procedure, equation (2.5) is approximated using the same pre-computededge weights as mentioned previously, but only for an interior grid point since there is noviscous contribution for a node which lies on a adiabatic solid wall at which the velocity isset to zero. Thus, RVi = 1Vi Xj2Ei F Vij 4 sij; 8i (2.6)where F Vij is the numerical viscous ux in the direction nij associated with the edge (i; j). Forconvenience, to construct the viscous contribution of the matrix preconditioner the followingapproximations are made:� All cross derivatives are neglected.� rQ is approximated by @Q@l l:, where l is a unit vector for the edge pointing from nodei to node j and @Q@l = Qj�Qijxj�xij .After having rearranged the terms, the linearised version of (2.6) can then be written asRVi = 1Vi Xj2Ei BM�1@Q@l 4 sij ;where B is a 5�5 matrix calculated with respect to the primitive variables ~Q = (�; u; v; w; p)T ,and M is the transformation matrix M = @Q@ ~Q .The corresponding preconditioner is�P Vi ��1 = 1Vi Xj2Ei BM�1 1jxj � xij 4 sij: (2.7)Finally, the full matrix preconditioner isP�1i = �P Ii ��1 + �P Vi ��1 : (2.8)3 Boundary ConditionTo form the block-Jacobi preconditioner, the inviscid and viscous Jacobians need to be cal-culated at each node of the grid. However, at the wall, as already mentioned, the viscousJacobian does not have to be evaluated. In fact, only a no-slip condition has to be satis�edwhich is achieved by setting all momentum components in the residual to zero. For Eulercalculations, the procedure is slightly di�erent. In addition to the corrections made on theresidual, the preconditioner is modi�ed at the wall in order that the condition u:n = 0 issatis�ed; u and n denote respectively the velocity vector and the unit normal vector to thewall. This is accomplished by re-evaluating the matrix in the coordinate system (xn; xt1 ; xt2),by using a rotation matrix T from the original (x; y; z) coordinate system to the new one. xnis the coordinate in the direction normal to the surface and the other two are mutually or-thogonal tangential coordinates. Once done, it is transformed back to the original coordinatesystem. Thus, equation (2.1) becomes�P�1 � T�1ST (P�1 � I)� dQdt = (I � T�1ST )R; (3.1)



4 Moinier & Gileswhere S is the matrix which sets the normal momentum component to zero. T�1ST onlyinvolves the unit normal vector.4 ResultsThe results to be presented compare the use of matrix and scalar (local timestep) precondi-tioning. The inviscid calculations use full-coarsening V-cycle multigrid whereas the viscouscalculations use semi-coarsening. The �ne grid is collapsed twice to produce coarse grids forthe multigrid sequence [5], and the iterative scheme used to converge the discrete residuals tozero is pseudo time-stepping using the 5-stage Runge-Kutta method developed by Martinelli[7], with CFL number equal to 2.5 on each mesh. The turbulence model is the one equationmodel developed by Spalart and Allmaras [15], and follows the same iterative scheme. The5 � 5 block-Jacobi preconditioner is computed for each node before the �rst stage of eachtime step, then inverted and multiplied by the residual vector. To prevent singularities atstagnation points, the matrix preconditioner requires an entropy �x. Although the van Leer[16] entropy �x is used for the characteristic smoothing in the residual evaluation, the moresevere Harten [6] treatment is used for the preconditioner with the minimum of the bound-ing parabola equals to one eighth the speed of the sound. All the calculations have beenperformed on a IBM SP2, using six nodes, except from the 3D viscous bypass duct problem,which has been performed on a SGI Power Challenge.4.1 2D ViscousFirstly, we consider the standard 2D RAE2822 airfoil test case 9 [9] (M1 = 0:73, � = 2:8,Re = 6:5 � 106). The calculations have been performed on a grid with 11298 nodes, witha maximum cell aspect ratio on the airfoil surface of 5238. The �rst point nearest to thewall is �xed such that at this point y+ < 1. In Figure 1, we show the pressure contour plot,the skin friction and the convergence history. The computed pressure distributions comparewell with the experimental data, and the shock is well captured, even if a bit forward of theexperimental location, behaviour which has been previously observed [15].Convergence of the Navier-Stokes residuals is shown for the new block-Jacobi preconditionerwith semi coarsening strategy and the standard approach with scalar preconditioner. Bothconverge to machine accuracy, along with the turbulence model. The new approach yieldscomputational savings of a factor 3. In term of asymptotic performance, the computationalspeedup is roughly a factor 10.Figure 2 shows a bypass duct of a turbofan engine with the �ne grid of the sequence usedfor the multigrid acceleration, the Mach contour plot and the convergence history for bothapproaches. The ow is from left to right, with periodic boundary conditions top and bottom.Here there is a row of struts and a pylon; the latter is treated with inviscid boundary condi-tions to reduce the computational requirements of the calculation, and because the purposeof studying this geometry did not require the pylon boundary layer to be resolved. The gridresolution used for each of the blades in the row is roughly equivalent to that used for theRAE2822 airfoil and the mesh has 55006 grid points. The Mach contours reveal that theturbulent wake emanating from the blade row disappears when the grid cannot resolve it. Ifthe location of the wake was of paramount importance then grid adaption would be required.The oscillation which can be seen on the convergence history is present in both approaches.This is explained by the fact that the boundary layer is still not fully developed and duringthe transients there are some moving shocks and tiny separation bubbles at the leading edgeof some of the struts. By comparing the two approaches when these phenomenoms have com-



Preconditioned Euler and Navier-Stokes Calculations on Unstructured Meshes 5pletely vanished, one can again identify a computational saving of approximately a factor 3.
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Figure 1: RAE2822 Case 9 (M1 = 0:73, Re = 6:5 � 106, � = 2:8). Coe�cient of Pressure,Skin Friction, Convergence History.
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Figure 2: 2D Bypass duct geometry (Minlet = 0:55, Re = 106, � = 0). Fine grid, Machcontours and convergence history.
4.2 3D InviscidHere, we demonstrate the 3D inviscid capability of the method through the ONERA M6 wingtest case. The grid considered has 124249 nodes with a maximum aspect ratio of 15, and thetest case is M1 = 0:84; � = 3:06. Comparison with experimental data [14] shows that thegrid resolves properly the lambda shock structure, which is depicted in Figure 3. Looking atthe convergence history, it appears that the gain due to the preconditioner is not as good asfor the viscous cases. This lack of e�ciency is explained by the grid which could be improvedto be more regular with a smaller maximum aspect ratio, since some 2D investigations havedemonstrated that a better grid with moderated stretched cells leads to computational savingscomparable to [12], precisely between a factor three and four for asymptotic convergence. Inaddition, one must keep in mind that for such cases, the errors that are high frequency in onedirection, but low frequency in the other direction, and which are well damped by a multigridsemi-coarsening strategy for viscous cases, are here not treated as e�ciently. Thus, only afactor of 1.8 improvement is achieved for engineering accuracy.
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Figure 3: M6 wing (M1 = 0:84, � = 3:06). Fine grid, Mach contours and convergencehistory.
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Figure 4: 3D Bypass duct geometry (Minlet = 0:55, Re = 106, � = 0). Fine grid, Machcontours and convergence history.4.3 3D ViscousThe last example that we show is the 3D bypass duct problem. The grid has 274730 gridpoints and is constructed by stacking a sequence of 2D grids, and the one located at thetip (outer annulus) is exactly that used in Figure 2. Grid, Mach contours and convergencehistory can be seen in Figure 4. It is important to notice that the grid has high aspect ratiosin the radial direction, which is a consequence of the grid being composed of stacked 2Dgrids with a �xed radial step, producing a high aspect ratio in the radial direction in all theregions of the 2D grid that have much smaller mesh spacing than the radial step and alsoacross the boundary layer. Looking at the convergence history, where a work unit is a RungeKutta step on the �nest grid, one can already appreciate the bene�ts of the block-Jacobipreconditioner, almost a factor three. However, after three orders of magnitude, the residualdoes not reduce further. This needs some further investigation, but it is thought that thisis due to the poor grid resolution, and a limit cycle associated with the limiters used in thehigher-order residual discretisation.5 ConclusionAn e�cient preconditioned multigrid method has been implemented and tested for bothinviscid and viscous ow applications. The standard scheme employing the usual scalar
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