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The harmonic adjoint approach to unsteady
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SUMMARY

In recent years, there has been rapid progress in aerodynamic optimization methods which use adjoint
�ow analysis to e�ciently calculate the sensitivity of steady-state objective functions to changes in
the underlying design variables. This paper shows that the same adjoint approach can be used in
turbomachinery applications in which the primary concern is blade vibration due to harmonic �ow
unsteadiness.
The paper introduces the key engineering concepts and discusses the derivation of the adjoint analysis

at the algebraic level. The emphasis is on the algorithmic aspects of the analysis, on the iterative solution
method and on the role played by the strong solid wall boundary condition, in particular. The novel
ideas are exploited to reveal the potential of the approach in the minimization of the unsteady vibration
of turbomachinery blades due to incident wakes. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern turbomachinery has to meet exacting standards of e�ciency resulting in low weight
and highly loaded engine components. As a consequence, high cycle fatigue due to me-
chanical vibration caused by unsteady aerodynamic forces has become an important concern
to be addressed at an early stage of the engine design cycle. Over the past two decades, a
number of aeroelasticity methods have emerged to address this need varying from uncoupled
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linearized potential �ow solvers [1, 2] to fully coupled non-linear three-dimensional unsteady
viscous methods [3]. Within this range, the uncoupled linear harmonic Euler and Navier–
Stokes methods have proved to be a successful compromise between accuracy and cost and
are now widely preferred in industry as a fast, accurate tool for aeroelastic predictions. In-
deed, a growing body of evidence indicates that linear viscous calculations are adequate for
a surprisingly large range of applications [4–6]. For the prediction of the level of structural
vibrations, the most important output from such linear unsteady analyses is a quantity known
as the ‘worksum’ [7]. In the context of Lagrangian mechanics, the worksum corresponds to
the generalized force due to the linear unsteady aerodynamics acting on a particular structural
mode of vibration.
This paper demonstrates how the worksum output produced by the linear harmonic �ow

analysis can be obtained by an adjoint harmonic analysis which, under certain conditions,
is a more e�cient alternative to the usual linear approach. The adjoint approach has been
developed for aeronautical optimal design by Jameson [8, 9]. At each optimization step, a
single adjoint �ow calculation determines the sensitivity of a steady-state functional (e.g. lift
or drag) to a large number of geometric design parameters. The same idea is applied in
this paper in the context of linear unsteady �ow analysis, to compute the worksum values
corresponding to any input unsteady �ow perturbations, whereas the usual approach would
require a separate linear unsteady �ow calculation for each set of inputs.

2. NON-LINEAR FLOW ANALYSIS

We begin with the discrete non-linear analysis of the time-averaged turbulent �ow within a
single turbomachinery blade row in its frame of reference (i.e. stationary for a stator, rotating
for a rotor). The �ow is described by the Reynolds-averaged Navier–Stokes equations coupled
with the Spalart–Allmaras turbulence model. Due to rotation, centrifugal and Coriolis source
terms appear in the momentum equations. The analysis computes the vector U of primitive
�ow variables (including the turbulence variables) corresponding to a computational grid with
nodal co-ordinates X, on which the non-linear �ow equations can be expressed as

N(U;X)=0 (1)

The vector N represents the spatially discretized residuals, a non-linear function of the discrete
�ow variables and, due to the discretization, also a function of the grid node co-ordinates.
Because the governing equations are approximated on an unstructured grid using an edge-
based algorithm [10, 11], the residual vector N is a sum of contributions from all of the
edges of the grid, with each edge contributing only to the residuals corresponding to the two
nodes at either end.
For turbomachinery, the boundary conditions are of three types; in�ow=out�ow, periodic

and wall. The in�ow and out�ow boundaries are handled through �uxes which incorporate the
appropriate far-�eld information. Thus these boundary conditions become part of the residual
vector N. Periodicity is treated very simply through the use of matching pairs of periodic
nodes, one on the lower periodic boundary and one on the upper periodic boundary, at which
the �ow is de�ned to be identical apart from the appropriate rotation of the velocity vectors
to account for the annular nature of the turbomachinery �ow domain. By combining �ux
residuals at the two periodic nodes in an appropriate manner to maintain periodicity, this
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boundary condition again just requires minor changes to the de�nition of the �ux residual
vector N. Further details are given in References [10, 7].
It is the wall boundary condition which requires a more substantial change in the form of

the discrete equations. For viscous �ows, a no-slip boundary condition is applied by discarding
the momentum residuals and replacing these equations by the speci�cation of zero velocity
at the boundary nodes. For inviscid �ows, the formulation of the �ux residuals for boundary
nodes is based on zero mass �ux through the boundary face, but in addition �ow tangency
is enforced by setting the normal component of the surface velocity to zero, disregarding the
normal component of the momentum residuals.
These strong wall boundary conditions, in which one or more components of the momentum

residuals are discarded and replaced by the speci�cation of corresponding velocity components,
can be expressed as

(I − B) N(U;X) = 0 (2)

BU=0 (3)

Here B is a projection matrix which extracts the momentum=velocity components at the wall
boundaries.
These equations are solved using a �ve-stage Runge–Kutta scheme, with a Jacobi precon-

ditioner and multigrid to accelerate convergence [10, 11].

3. LINEAR HARMONIC ANALYSIS

The isolated engine blade row is subject to two sources of small harmonic perturbations. The
�rst source is the mechanical vibration of the blade assembly occurring in the study of the
�utter properties of blade assembly. The second is the presence of circularly periodic non-
uniformities of the �ow which are steady in the frame of reference of a blade row immediately
upstream or downstream of the blade row being modelled. Due to the relative motion of the
two rows, in the frame of reference of the latter these non-uniformities become harmonic
perturbations to the in�ow (or out�ow) boundary conditions. Physically, these perturbations
correspond to incident wakes from upstream, or circumferential pressure variations at either
the in�ow or the out�ow.
The linear harmonic analysis of turbomachinery gas �ow is justi�ed by both the relatively

low levels and the time periodicity of the �ow unsteadiness. The �rst property allows the
unsteadiness to be modelled as a linear perturbation, and the second enables it to be linearly
decomposed into a sum of independent harmonic components. Thus, when considering a single
harmonic component, the unsteady �ow �eld U can be assumed to be a superposition of the
steady non-linear �ow �eld �U and the real part of a small harmonic perturbation of known
frequency ! and unknown complex amplitude u:

U(t)= �U+R{exp (i!t)u} (4)

The periodic boundary conditions for the complex amplitude u are more complicated than
in the steady case, due to the speci�cation of an inter-blade phase angle (IBPA). This is a
complex phase shift exp(i’) between the lower and upper periodic boundaries. In �utter, this
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Figure 1. Convergence histories of a turbine �utter case in which GMRES is used to
stabilize an iteration, either from the original initial conditions or from a restart.

corresponds to a �xed phase shift between the oscillations of neighbouring blades. In forced
response, it arises when the wakes and blades have di�erent pitches and therefore there is a
di�erence in the times at which neighbouring wakes strike neighbouring blades.
When the discrete equations of motion are linearized, one obtains a frequency-domain linear

version of the �ow Equation (2) and solid wall boundary condition (3):

(I − B)(Lu − s) = 0 (5)

Bu= b (6)

L is a combination of the linearization matrix @N=@U giving the sensitivity of the discrete
non-linear residual N to �ow perturbations, plus a complex source term due to the harmonic
unsteadiness. In the case of forced response due to incoming wakes, the wall velocity b is
zero, and the source term s is zero throughout the �ow �eld except at the in�ow boundary
where the speci�cation of the incoming wakes enters through the boundary �uxes. In the
case of �utter, the wall velocity b is non-zero, and the use of a harmonically deforming grid
moving with the blades leads to s being non-zero at all nodes [12].
These linear equations are again solved using the �ve-stage Runge–Kutta scheme together

with Jacobi preconditioning and multigrid. Usually this converges without di�culty, but prob-
lems have been encountered in situations in which the steady �ow calculation itself failed
to converge to a steady-state but instead �nished in a low-level limit cycle, often related to
some physical phenomenon such as vortex shedding at a blunt trailing edge. The correspond-
ing instability in the linear calculation has been dealt with by the use of GMRES, with the
usual multigrid solver being used as a very e�ective preconditioner, as shown in Figure 1.
In aeroelastic applications, the �nal output of the linear harmonic analysis is the worksum

[7] which is a complex inner product between a constant vector and the linear harmonic
solution: w= gHu (where gH denotes the complex conjugate transpose of g). The elements of
the vector g are non-zero only at nodes on the blade surface where g depends on the mode of
blade vibration. In a linear �utter analysis, the worksum value is a measure of the mechanical
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work done on the vibrating blade by the aerodynamic forces generated by the vibration itself.
In the forced response analysis, the magnitude of the worksum value is directly proportional
to the amplitude of blade vibration induced by the �ow perturbations.

4. ADJOINT HARMONIC ANALYSIS

The adjoint harmonic approach is founded on the observation that if Au= f then

w= gHu= gHA−1f =((AH)−1g)Hf = vHf (7)

where v is the solution to the adjoint system

AHv= g (8)

This adjoint approach to evaluating the worksum w is bene�cial when there is one g, corre-
sponding to a single vibration mode, but several di�erent f vectors, corresponding to di�erent
incoming wakes in the case of forced response. In this situation, the usual direct approach
would require a separate linear calculation for each wake, whereas the adjoint approach needs
just one adjoint calculation.
To express the linear system of equations in the required form, we add Equations (5)

and (6) to give

((I − B)L+ B)u=(I − B)s+ b (9)

The corresponding adjoint system of equations is therefore

(LH(I − B) + B)v= g (10)

since the real matrix B is symmetric. To implement the adjoint method, it is convenient to
split v into two orthogonal components¶ using the fact that B is idempotent (i.e. B2 =B):

v= v‖ + v⊥; v‖=(I − B)v; v⊥=Bv (11)

Multiplying Equation (10) by (I − B) yields the equation
(I − B)LHv‖=(I − B)g (12)

which can be solved together with the boundary condition

Bv‖=0 (13)

to determine v‖. Multiplying Equation (10) by B yields

v⊥=−BLHv‖ + Bg (14)

so v⊥ can be calculated in a post-processing step before then evaluating the worksum as

w= vHf = vH‖ s+ v
H
⊥b (15)

¶The reason for the choice of subscript label is that v⊥ is the part of v which is orthogonal to the null-space of
the matrix B, whereas v‖ is the part that lies within the null-space.
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This equation shows that v‖ gives the dependence of the worksum on the distributed harmonic
source term s, whereas v⊥ gives its dependence on the boundary velocities b.
It is not obvious how best to solve the adjoint equations. Using the same iterative method

as for the non-linear and linear equations (except with the transpose of the preconditioning
matrix) was found to work well for inviscid �ows, but there were signi�cant stability prob-
lems with viscous �ows. To overcome these, Giles analysed the iterative evolution of output
functionals such as the worksum product. He found that the adjoint code could be designed to
give exactly the same iterative history for the functionals as with the linear code, by properly
constructing an adjoint version of the usual Runge–Kutta time-marching procedure, and using
adjoint restriction and prolongation operators for the multigrid [13]. This guarantees that the
stability and the iterative convergence rate of the adjoint code will be identical to that of the
linear code, which in turn is equal to the asymptotic convergence rate of the non-linear code.
The memory requirements and CPU cost per iteration for the adjoint harmonic code are

only slightly larger than those for the linear harmonic code; the increase is associated with a
marginally larger cost of evaluating the adjoint �uxes [14]. However, the cost of the adjoint
solution is practically identical with that of the linear solution for any application.

5. VALIDATION

One di�culty in the development of an adjoint �ow code is the lack of test cases for val-
idation. For the harmonic adjoint code, the validation has been performed at two levels. At
the lower level, each subroutine has been checked for consistency with its counterpart in the
linear harmonic code [15, 14]. At the higher level, it has been checked that the adjoint and
linear harmonic codes produce the same value for the worksum output, to within machine
accuracy, at each step of the iterative process. This exact equivalence is one advantage of the
fully discrete adjoint approach, as opposed to the continuous adjoint approach in which one
discretizes the adjoint partial di�erential equation.
The linear harmonic code has itself been validated at a subroutine level by comparison

with the subroutines in the non-linear code [15, 14]. In addition it has been checked using a
range of testcases, starting with simple model problems such as inviscid �ow over 2D �at
plate cascades for which there is an analytic solution [16]. Figure 2 presents results for the
unsteady interaction due to incoming wakes from an upstream blade row. Validation of the
viscous capabilities is based on benchmark experimental testcases, such as the 11th standard
con�guration [17]. Figure 3 shows that the amplitude of the linear pressure coe�cient variation
agrees well with the measurements.

6. EXAMPLE APPLICATION

The adjoint harmonic algorithm is applied here to a realistic design scenario to illustrate
the e�ciency of the adjoint approach. The geometry is a high pressure turbine rotor subject
to unsteady aerodynamic forces caused by incident wakes from an upstream row of blades.
Figure 4 depicts two turbine blades attached to the hub, with an in�ow boundary at left
and an out�ow at right. Two periodic boundaries (not shown) separate each blade from its
neighbours such that the calculations are performed on a single blade passage. This geometry

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:323–332



HARMONIC ADJOINT FOR UNSTEADY FLOW 329

Figure 2. Complex components of the �at plate pressure jump due to wake interaction.

Figure 3. First harmonic pressure variation for the 11th standard con�guration.

has been previously employed [4] to show good agreement in the forced response predicted
by linear uncoupled and non-linear coupled methods.
The design task is to investigate the dependence of the forced vibration upon the shape of

the incoming wakes. In practice, it is very di�cult to signi�cantly reduce the velocity defect
in the wakes, but by changing the three-dimensional shape of the upstream blades (e.g. by
moving the tip section of the blade in the circumferential direction while keeping the hub
section �xed, a process known as re-stacking) it is possible to alter the time at which the
wake shed by the tip section hits the rotor blade row, relative to that shed from the hub
section. Physically, a wake hitting the blade at the same time at di�erent radial sections will
usually produce the maximum structural response, whereas allowing for time delays there may
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Figure 4. High pressure turbine geometry used for the example application.

occur a phase cancellation between the forces at di�erent radial locations leading to a reduced
response.
Mathematically, the e�ect of re-stacking is contained in the worksum calculation. The ad-

joint analysis can be used to determine the worksum values corresponding to a set of di�erent
in�ow wake boundary conditions in order to identify a minimum response. In this example,
these boundary conditions come from the same baseline corresponding to the current design
of the upstream blades and the di�erence between them is a complex phase shift which
is de�ned to vary linearly with radius from zero at the hub to a maximum value at the
tip. This corresponds to a linear re-stacking, leaning the entire blade in the circumferential
direction.
Figure 5 shows the magnitude of the worksum corresponding to the primary torsional mode

computed as a function of the maximum phase shift due to re-stacking. It indicates that within
the range being considered, which is thought to be appropriate, the greater the magnitude of
the phase shift, the greater the degree of phase cancellation between di�erent parts of the
blade and hence the smaller the worksum.
The results for the full range of phase shifts were obtained from a single adjoint calculation.

If the standard linear harmonic approach were used instead, each result would require a
separate linear calculation since it corresponds to a di�erent set of in�ow boundary conditions.
As a check, linear calculations have been performed for a variety of points and they produced
identical values for the worksum output.

7. CONCLUSIONS

This paper has presented what is thought to be the �rst application of adjoint methods to the
linearized analysis of periodic unsteady �ows. The current application is to a turbomachinery
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Figure 5. Worksum magnitude versus maximum re-stacking phase shift.

design problem involving the tailoring of incoming wakes to reduce the level of forced re-
sponse blade vibration. However, a future application will be to �utter prediction and the
design of blades with improved �utter margins.
The development of the harmonic adjoint method, and parallel work on a steady-state adjoint

method, has also involved advances in the methodology for fully discrete adjoint methods.
This includes the treatment of strong wall boundary conditions for node-based discretizations;
adjoint iteration methods giving exactly the same iterative convergence as the corresponding
linear method; and techniques for the validation of the adjoint solver by checking its exact
equivalence to the linear solver.
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