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Abstract

In mathematical finance, the sensitivities of option prices to various market param-

eters, also known as the “Greeks”, reflect the exposure to different sources of risk.

Computing these is essential to predict the impact of market moves on portfolios and

to hedge them adequately. This is commonly done using Monte Carlo simulations.

However, obtaining accurate estimates of the Greeks can be computationally costly.

Multilevel Monte Carlo offers complexity improvements over standard Monte

Carlo techniques. However the idea has never been used for the computation of

Greeks. In this work we answer the following questions: can multilevel Monte Carlo

be useful in this setting? If so, how can we construct efficient estimators? Finally,

what computational savings can we expect from these new estimators?

We develop multilevel Monte Carlo estimators for the Greeks of a range of

options: European options with Lipschitz payoffs (e.g. call options), European

options with discontinuous payoffs (e.g. digital options), Asian options, barrier op-

tions and lookback options. Special care is taken to construct efficient estimators

for non-smooth and exotic payoffs. We obtain numerical results that demonstrate

the computational benefits of our algorithms.

We discuss the issues of convergence of pathwise sensitivities estimators. We

show rigorously that the differentiation of common discretisation schemes for Ito

processes does result in satisfactory estimators of the the exact solutions’ sensitiv-

ities. We also prove that pathwise sensitivities estimators can be used under some

regularity conditions to compute the Greeks of options whose underlying asset’s

price is modelled as an Ito process.

We present several important results on the moments of the solutions of stochas-

tic differential equations and their discretisations as well as the principles of the

so-called “extreme path analysis”. We use these to develop a rigorous analysis of

the complexity of the multilevel Monte Carlo Greeks estimators constructed earlier.

The resulting complexity bounds appear to be sharp and prove that our multilevel

algorithms are more efficient than those derived from standard Monte Carlo.





Contents

1 Multilevel Monte Carlo Greeks 5

1.1 Monte Carlo Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Underlying asset’s model and pricing . . . . . . . . . . . . . . 6

1.1.2 Path simulation and convergence modes . . . . . . . . . . . . 6

1.1.3 Complexity of standard Monte Carlo Pricing . . . . . . . . . 9

1.2 Multilevel Monte Carlo Setting . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Multilevel Monte Carlo’s principle . . . . . . . . . . . . . . . 10

1.2.2 Complexity theorem . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 A short overview of multilevel Monte Carlo research . . . . . 11

1.3 Monte Carlo simulation of Greeks . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Pathwise sensitivities . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Likelihood Ratio Method . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Beyond those methods . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Multilevel Monte Carlo Greeks . . . . . . . . . . . . . . . . . . . . . 15

1.5 Plan of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Simulations 19

2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 The Black & Scholes SDE . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Black & Scholes price formulas of common contracts . . . . . 20

2.1.3 Discretisation scheme . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Principle of the numerical simulations . . . . . . . . . . . . . 23

2.2 Lipschitz payoffs (European call) . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Pathwise sensitivities . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Pathwise sensitivities and Conditional Expectations . . . . . 29

2.2.3 Split pathwise sensitivities . . . . . . . . . . . . . . . . . . . . 36

2.2.4 Vibrato Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Discontinuous payoffs (European digital call) . . . . . . . . . . . . . 45

2.3.1 Pathwise sensitivities and conditional expectations . . . . . . 45

2.3.2 Vibrato Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Asian call option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Payoff estimator . . . . . . . . . . . . . . . . . . . . . . . . . 49

1



2.4.2 Pathwise sensitivities . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 European lookback call . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.1 Payoff estimator . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.2 Pathwise sensitivities . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.3 Conditional Expectations, path splitting or Vibrato Monte Carlo 58

2.6 European barrier call . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.1 Payoff estimator . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.2 Pathwise sensitivities . . . . . . . . . . . . . . . . . . . . . . . 60

2.6.3 Conditional Expectations . . . . . . . . . . . . . . . . . . . . 63

3 Numerical analysis, preliminary notes 65

3.1 Estimating the underlying asset’s sensitivity . . . . . . . . . . . . . . 65

3.1.1 Order of discretisation and differentiation . . . . . . . . . . . 66

3.1.2 Evolution SDE for the underlying asset’s value and its sensitivity 67

3.1.3 Differentiation of the discretisation/discretisation of the dif-

ferentiated SDE . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.4 Note on Brownian Bridge midpoints . . . . . . . . . . . . . . 73

3.2 Applicability of pathwise sensitivity Greeks . . . . . . . . . . . . . . 75

3.2.1 Conditions of unbiasedness of pathwise sensitivities . . . . . . 75

3.2.2 Applicability of pathwise sensitivities in the Black & Scholes

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.3 Applicability of pathwise sensitivities in the general Ito model 78

3.2.4 Convergence of the payoff estimators’ sensitivities . . . . . . 81

3.3 Assumptions on the volatility . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 Black and Scholes density . . . . . . . . . . . . . . . . . . . . 85
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Chapter 1

Multilevel Monte Carlo Greeks

In mathematical finance, Monte Carlo methods are often used to compute the

value of an option by estimating the expected value of an appropriately discounted

payoff E(P ). Here, P is a payoff function that depends on an underlying asset’s

scalar price S(t) whose initial value S(0) is given and whose evolution SDE on the

time interval [0, T ] is of the form

dS(t) = aθ(S, t) dt+ bθ(S, t) dWt , (1.1)

where Wt is a Brownian motion. We also write St := S(t). The drift aθ(S, t) and

the volatility bθ(S, t) depend on a certain parameter θ. For brevity, we commonly

ignore the subscript and just write

dS(t) = a(S, t) dt+ b(S, t) dWt . (1.2)

This is just one use of Monte Carlo in finance. In practice the prices of common

contracts are often quoted and used to calibrate our market models; the option’s

sensitivities to market parameters, the so-called Greeks, reflect the exposure to differ-

ent sources of risk. Computing these is essential to hedge portfolios and is therefore

even more important than pricing the option itself. However, obtaining accurate

estimates of the Greeks can be computationally costly, much more so than simply

estimating prices. This is why our research focuses on getting fast and accurate

estimates of Greeks through Monte Carlo simulations.

Multilevel Monte Carlo offers complexity improvements over standard Monte

Carlo simulations. This has been proved in a range of settings, including option

pricing. Nevertheless the idea has never been used for the computation of Greeks.

In this work we answer the following questions: can multilevel Monte Carlo be

useful in this setting? If so, how can we construct efficient estimators? Finally,

what computational savings can we expect from these new estimators?
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In this chapter, we begin by recalling basic principles of Monte Carlo pricing,

then introduce the multilevel technique before presenting methods used to compute

Greeks.

1.1 Monte Carlo Pricing

The first step to pricing an option via Monte Carlo is to simulate the underlying

asset’s evolution on the time interval considered.

1.1.1 Underlying asset’s model and pricing

We write Vt, the value at time t of an option paying the payoff P at time T

(0 ≤ t ≤ T ). Basic asset pricing theory proves that under certain assumptions

(absence of arbitrage, completeness of the market, see [HK04] for more details), we

can associate to any numeraire (a traded asset serving as a unit of account) with a

value Nt, a unique measure N, the equivalent martingale measure such that
Vt
Nt

is a

martingale. We can then write

Vt = NtEN

[
VT
NT
|Ft
]

= NtEN

[
P (ST )

NT
|Ft
]

(1.3)

where EN denotes the expectation with respect to the measure N. In simple cases

(simple equity options, deterministic riskless interest rate rt), Nt is taken to be

the money market account Bt = exp

 t∫
0

rsds

, i.e. the value of a unit of currency

invested at the riskless rate r between time 0 and t. With B the associated equivalent

martingale measure, the present value of the option can then be written as

V0 = EB

[
B0

BT
P (ST ) |F0

]
=
B0

BT
EB [P (ST ) |F0 ] (1.4)

where St’s evolution equation under the equivalent martingale measure is (1.2),

dS(t) = a(S, t) dt + b(S, t) dWt and D(t,T ) =
Bt
BT

can be thought of as a discount

factor. That is, to price an option, we estimate the discounted expectation of the

payoff (see also [WHD95] for more details).

In our study, we focus on the computation of E [P (ST ) |F0 ] and for the sake of

brevity we ignore the discount factor D(0,T ) in the payoff as it does not alter the

techniques involved.

1.1.2 Path simulation and convergence modes

The Monte Carlo estimator of V0 is obtained by simulating trajectories of the

underlying asset St between the present time t = 0 and expiry T . We then com-

pute the payoff’s value corresponding to each of these simulations and estimate the

expectation of the payoff by averaging the results.
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To simulate the paths described by equation (1.2), we discretise the time interval

[0, T ] into N regular time steps of width h := ∆t = T/N . We associate the index n

to the n-th discretisation time and write the discretisation of the solution of equation

(1.2) between times tn = nh and tn+1 = (n+ 1)h as

Ŝn+1 = fθ

(
Ŝn,∆Wn

)
(1.5)

where fθ is some function dependent on the parameter θ, ∆Wn = W(n+1)h −Wnh

and Ŝn, Ŝn+1 correspond to the discretised approximations of Snh and S(n+1)h re-

spectively.

Two common discretisation schemes used for 1-dimensional stochastic differential

equations are the Euler and the Milstein scheme (see [KP92] or [Mil95] for a detailed

presentation of various discretisation schemes and their properties).

The Euler scheme is very straightforward; it consists in approximating the drift

and the volatility by assuming they are constant on each interval [tn, tn+1[. Applied

to equation (1.2), it yields

Ŝ(n+1) = Ŝn + aθ

(
Ŝn, tn

)
h+ bθ

(
Ŝn, tn

)
∆Wn (1.6)

The Milstein scheme ([Mil79]) is derived from a higher order expansion of the volatil-

ity on the interval [tn, tn+1[. It can be written as

Ŝ(n+1) = Ŝn + aθ

(
Ŝn, tn

)
h+ bθ

(
Ŝn, tn

)
∆Wn

+
1

2
bθ

(
Ŝn, tn

) ∂bθ (Ŝn, tn)
∂Ŝn

(
∆W 2

n − h
) (1.7)

As explained below, this second scheme offers better convergence properties than the

simple Euler scheme. However, note that its use would not be straightforward if we

were to consider equations driven by multidimensional Brownian motions. Indeed,

it would then involve the problematic simulation of iterated Itô integrals known as

Lévy areas (see [RW01], [Wik01], [GL94]).

The weak error of a scheme is defined as

E [P (ST )]− E
[
P
(
ŜT/h

)]
(1.8)

where the payoff value P (ST ) depends on the exact solution of the SDE and its

approximation P
(
ŜT/h

)
is based on the discretisation of S on the interval [0, T ].

The weak order of convergence corresponds to the rate at which the weak error

converges to 0 as we refine the discretisation of the path. If it is defined, it is the

largest value α ∈ R such that

E
[
P
(
ŜT/h

)]
− E [P (ST )] = O (hα) (1.9)
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as h → 0 for a certain family of payoffs P . It corresponds to the bias of the

payoff estimator resulting from the discretisation and it is therefore the value usually

considered in most financial applications. Note that we also casually refer to O (hα)

as being the order of weak convergence as no ambiguity arises from doing so.

In practice, note that instead of just considering the weak error, we often end

up studying the behaviour of the weak approximation error, defined as

E [P (ST )]− E
[
P̂
(
ŜT/h

)]
(1.10)

where the function P̂ is an approximation of the payoff P .

The strong error of the scheme is usually defined as√
E
[(
ŜT/h − ST

)2
]

(1.11)

and the order of strong convergence, if it exists, is the largest value of β ∈ R such

that √
E
[(
ŜT/h − ST

)2
]

= O
(
hβ
)

(1.12)

that is, a measure of the average error for each individual path. We also casually

refer to O
(
hβ
)

as being the order of strong convergence.

We will see in section 1.2.2 that the strong order of convergence, and therefore

the discretisation scheme used, is one of the important parameters determining the

efficiency of the multilevel Monte Carlo approach.

Under some smoothness conditions on the coefficients of the SDE (1.2), the weak

order of convergence offered by the Euler scheme is αEuler = 1 for payoffs P that are

piecewise smooth with polynomial growth and have a finite number of discontinuities

(see [Tal84] in the case of smooth functions P and [BT95] for weaker conditions on

P ). This is for example the case for European options with Lipschitz payoffs like

European calls/puts or with discontinuous payoffs like digital calls/puts. The strong

order of convergence is βEuler = 1/2 (see [KP92]).

Under higher order smoothness conditions on the coefficients of (1.2), the weak

and the strong orders of convergence of the Milstein scheme are αMilstein = 1 and

βMilstein = 1 (see Theorem 3.4.3).

Note that an alternative definition of the order of strong convergence is sometimes

found in the literature. It is then defined as the largest value β ∈ R such that

E
(∣∣∣ ŜT/h − ST ∣∣∣) = O

(
hβ
)

(1.13)

The results we just presented still hold with this definition (see [KP92]).

In section 2.1.3, we will explain in detail how those schemes are applied to the

Black and Scholes evolution SDE. In section 3.1, we will also explain how they can

be applied to the joint evolution equations of an asset and its sensitivities.
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1.1.3 Complexity of standard Monte Carlo Pricing

We now estimate the computational cost of pricing an option via standard Monte

Carlo. Let us suppose we want to estimate an option price with an accuracy ε. The

mean square error of the Monte Carlo estimator of the price can be decomposed into

two terms. With V = E [P (S)] the true option value, V̂ = E
[
P̂
(
Ŝ
)]

its discretised

approximation and Ŷ =
1

M

M∑
i=1

P̂
(
Ŝ
)(i)

its Monte Carlo estimator, we can write

the mean square error

E
((

Ŷ − V
)2
)

= E
((

Ŷ − V̂ + V̂ − V
)2
)

= E
[(
Ŷ − V̂

)2
]

+ E
[(
V̂ − V

)2
]

+ 2E
[(
Ŷ − V̂

)(
V̂ − V

)]
= E

[(
Ŷ − V̂

)2
]

+
(
V̂ − V

)2

=
1

M
V
(
P̂
(
Ŝ
))

+
(
E
[
P̂
(
Ŝ
)]
− E [P (S)]

)2

(1.14)

where the first term corresponds to the variance of the estimator and the second

term to the bias due to the discretisation. The first term tends to 0 when we take

an infinite number of samples M . The second term vanishes when we reduce the

size of the time steps thanks to the weak convergence properties of the discretisation

scheme.

In the case of a European option with a Lipschitz payoff, we usually take P̂
(
Ŝ
)

=

P
(
Ŝ
)

. The weak order of convergence of the Euler scheme being 1 for such a payoff,

it means that the mean square error is

E
((

Ŷ − V
)2
)

=
1

M
V
(
P̂
(
Ŝ
))

+O

(
1

N2

)
To achieve

(
E
[
P̂
(
Ŝ
)]
− E [P (S)]

)2
= O

(
ε2
)
, we need N = O

(
ε−1
)

time steps

and to achieve
1

M
V
(
P̂
(
Ŝ
))

= O
(
ε2
)
, we need M = O

(
ε−2
)
. The computational

complexity C being O (N M), the total computational cost is finally O
(
ε−3
)
.

1.2 Multilevel Monte Carlo Setting

As shown in section 1.1.3, achieving a root-mean square error of O (ε) via stan-

dard Monte Carlo requires O
(
ε−2
)

independent paths and O
(
ε−1
)

time steps for

discretisations with first order weak convergence, giving a total computational cost

O
(
ε−3
)
. We now present Giles’ multilevel Monte Carlo technique [Gil08b] and ex-

plain how it can reduce this cost to O(ε−2) under certain conditions.
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1.2.1 Multilevel Monte Carlo’s principle

The idea is to write the expected payoff with a fine discretisation using 2−L

uniform time steps as a telescopic sum. Let P̂l be the simulated payoff with a

discretisation using 2l uniform time steps. We then have

E(P̂L) = E(P̂0) +

L∑
l=1

E(P̂l − P̂l−1) (1.15)

We use Monte Carlo estimators using Ml independent samples to estimate each term

of the sum on the right-hand side of (1.15)

Yl := E(P̂l − P̂l−1) ≈ Ŷl :=
1

Ml

Ml∑
i=1

(
P̂l − P̂l−1

)(i)
(1.16)

where
(
P̂l − P̂l−1

)(i)
is a small corrective term that comes from the difference be-

tween the fine and coarse discretisations of the path driven by the Brownian motion

of the i-th sample. Its magnitude depends on the strong convergence properties of

the scheme used.

To ensure a better efficiency we may modify (1.16) and use different estimators

of P̂ on the fine and coarse levels of Ŷl as long as the telescoping sum property is

respected, that is

E(P̂ fL) = E(P̂ c0 ) +
L∑
l=1

E(P̂ fl − P̂
c
l−1) (1.17)

with

E(P̂ fl ) = E(P̂ cl ). (1.18)

1.2.2 Complexity theorem

Let Vl be the variance of a single sample P̂
(i)
l −P̂

(i)
l−1. The next theorem, originally

introduced in [Gil08b] and improved in [CGST11], shows that what determines the

efficiency of the multilevel approach is primarily the convergence speed of Vl as

l→∞.

Theorem 1.2.1. For a real-valued random variable P , we let P̂l be the corresponding

approximation using the discretisation at level l, i.e. with 2l steps of width hl =

2−l T .

If there exist independent estimators Ŷl of computational complexity Cl based on

Ml samples and there are positive constants α ≥ 1

2
min (1, β) , β, c1, c2, c3 such that

10



A1 : E(Ŷl) =

{
E(P̂0) if l = 0

E(P̂l − P̂l−1) if l > 0

A2 :
∣∣∣E(P̂l − P )

∣∣∣ ≤ c1h
α
l

A3 : V(Ŷl) ≤ c2h
β
l M

−1
l

A4 : Cl ≤ c3Ml h
−1
l

(1.19)

Then there is a constant c4 such that for any ε < e−1, there are values for L and

(Ml)l=0,...,L resulting in a multilevel estimator Ŷ =
L∑
l=0

Ŷl with a mean-square-error

MSE = E((Ŷ − E(P ))2) < ε2 with a complexity C bounded by

C ≤


c4ε
−2 if β > 1

c4ε
−2 (log ε)2 if β = 1

c4ε
−2−(1−β)/α if 0 < β < 1

(1.20)

Proof. See [Gil08b].

Constructing estimators with properties A1 and A4 is usually straightforward.

In simple cases of pricing, we know α thanks to the literature on weak convergence.

Results mentioned in section 1.1.2 and [GDR13] give α = 1 for the Milstein scheme

for typical European and Asian options.

The value of β depends on the payoff shape. It can be found for the various

options considered here in [GDR13]. Giles explains in [Gil08b] that it actually

determines where the computational effort is primarily expended: at the coarsest

levels when β > 1 and at the finest levels when β < 1. In practice it is often

the parameter that determines the efficiency of the multilevel approach. The main

challenge is therefore to determine the value of β and to come up when possible with

estimators resulting in higher values of this parameter.

Equation (1.20) shows that the efficiency of the multilevel approach improves

as the rate of convergence of V
(
Ŷl

)
increases, this suggests it is advisable to use

discretisation schemes with high rates of strong convergence. Giles indeed shows

in [Gil08a] that the use of the Milstein scheme yields better results than the Euler

scheme.

1.2.3 A short overview of multilevel Monte Carlo research

Giles introduces in [Gil08b] the method and the fundamental complexity theorem

1.2.2. He provides a complexity analysis for European options with Lipschitz payoffs

using the Euler scheme and numerical evidence of the scheme’s behaviour for digital,

Asian, barrier and lookback options. In [Gil08a] he demonstrates numerically that

the use of carefully chosen multilevel estimators of the previous options in conjunc-
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tion with the Milstein discretisation scheme yield higher orders of convergence and

therefore improved computational benefits.

A rigorous justification of the convergence speeds observed with the Euler scheme

is provided by Giles, Higham and Mao[GHM09], and independently for digital op-

tions by Avikainen in [Avi09a] while a complete analysis of the use of the Milstein

scheme is provided by Giles, Debrabant and Roessler in [GDR13].

The multilevel technique has also been applied to the pricing of other classes of

option. In [Gil09a], Giles shows it can easily be applied to efficiently price basket

options. Belomestny and Schoenmakers propose in [BSD13] a multilevel Monte

Carlo-based method to reduce the computational complexity of the dual method for

pricing American options.

Burgos and Giles explain in [BG12] how to compute Greeks of common options

using multilevel techniques and provide numerical evidence of the algorithms’ effi-

ciency.

Multilevel Monte Carlo and quasi Monte Carlo have been combined by Giles and

Waterhouse in [GW09] as well as by Gerstner and Noll in [GN13].

Other recent developments in the field of multilevel Monte Carlo applied to

Brownian SDEs include the work of Giles and Szpruch’s [GS13], where it is shown

that it is possible to apply the Milstein scheme to multi-dimensional SDEs while

avoiding the costly simulation of Lévy areas by constructing antithetic estimators.

Hoel, von Schwerin, Szepessy and Tempone in [HSST12] as well as Gerstner and

Heinz in [GH13] also investigate the possibilities offered by adaptive non uniform

time discretisations in a multilevel setting.

Multilevel Monte Carlo has also been applied to discontinuous processes. In

[XG12], Xia and Giles present multilevel simulations with jump-diffusion SDEs and

provide numerical evidence of their behaviour. Dereich and Heidenreich introduce

and analyse in [DH11] an algorithm for a Lévy-driven stochastic differential equa-

tion. Ferreiro-Castilla and Van Schaik develop in [FCKSS13] a multilevel version of

the Wiener-Hopf Monte Carlo [KKPS11], which they use to simulate the joint law

of the position and running maximum of a Lévy process, which they apply to deter-

mine first passage times [FCvS13]. Multilevel Monte Carlo has also been applied to

SPDEs, as seen in Giles’ and Reisinger’s paper [GR12].

Finally, let us note that multilevel algorithms have also been used by Bujok,

Hambly and Reisinger for the pricing of basket credit derivatives [BHR12].

1.3 Monte Carlo simulation of Greeks

Now that we have presented how to estimate option prices via Monte Carlo

simulations and how to make these estimates more efficient via multilevel Monte

Carlo, we explain how to compute the Greeks, the prices’ sensitivities. We briefly

recall two classic methods used to compute Greeks in a Monte Carlo setting: the
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pathwise sensitivities and the Likelihood Ratio Method. More details can be found

in [BG96], [L’E90] or [Gla04].

We consider Ŝ =
(
Ŝn

)
n∈[0,N ]

the discretised solution of equation 1.2 at times

(tn)n=0,...,N and
(

∆Ŵn

)
n∈[0,N−1]

the corresponding set of Brownian increments. P̂

is the corresponding payoff estimator and V̂ the estimated value of the option.

1.3.1 Pathwise sensitivities

In the pathwise sensitivity approach, also known as Infinitesimal Perturbation

Analysis (IPA) [L’E90], we assume that P̂
(
Ŝ
)

is a K-Lipschitz function (i.e. there

exists a uniform constantK such that
∣∣∣ P̂ (Ŝ)− P (S)

∣∣∣ < K
∥∥∥Ŝ − S∥∥∥ where

∥∥∥Ŝ − S∥∥∥
is defined as sup

t∈[0,T ]

∥∥∥Ŝt − St∥∥∥ for path-dependent options and as
∥∥∥ŜN − ST∥∥∥ for Euro-

pean options), differentiable almost everywhere and that Ŝ (θ) is sufficiently regular

in θ (see lemma 3.2.1 for more details) and then we can write

∂V̂

∂θ
=
∂E
(
P̂
(
Ŝ
))

∂θ
= E

∂P̂
(
Ŝ
)

∂θ

 (1.21)

For simple payoffs, the sensitivity of V̂ to θ comes from the sensivity of Ŝ to this

same parameter. Using the chain rule, we can then write the pathwise estimator of

the Greek as

∂V̂

∂θ
= E

 N∑
n=0

∂P̂
(
Ŝ
)

∂Ŝn

∂Ŝn
∂θ

 (1.22)

Note that if we assume that P̂ also has a direct dependency on θ, equation (1.22)

becomes

dV̂

dθ
= E

 N∑
n=0

∂P̂θ
(
Ŝ
)

∂Ŝn

∂Ŝn
∂θ

+
∂P̂θ

(
Ŝ
)

∂θ

 (1.23)

We typically obtain the sensitivities
∂Ŝ

∂θ
=

(
∂Ŝn
∂θ

)
n=0,...,N

by differentiating the

discretisation of the evolution SDE. Indeed, for a discretisation scheme of the form

Ŝk+1 = f
(
θ, Ŝk,∆Wk

)
(1.24)

a simple differentiation leads to

∂Ŝk+1

∂θ
=
∂f
(
θ, Ŝk,∆Wk

)
∂θ

+
∂f
(
θ, Ŝk,∆Wk

)
∂Ŝk

∂Ŝk
∂θ

(1.25)

which we can iterate between t0 and tn. This is explained and justified in detail in

sections 2.2 and 3.1.
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Usually Ŝ(θ) is regular enough to be differentiated (see section 3.2.4.2) and the

main limitation of this technique is that it requires the payoff to be Lipschitz, a

condition not met by some simple payoffs like that of the digital call.

Note that this approach lends itself well to the use of the so-called “adjoint

method” presented in [GG06], which permits the simultaneous computation of mul-

tiple Greeks at a fixed computational cost.

1.3.2 Likelihood Ratio Method

The Likelihood Ratio Method [BG96], [L’E90] consists of writing that

V (θ) = E
[
P̂ (Ŝ)

]
=

∫
P̂ (Ŝ) p(θ, Ŝ) dŜ (1.26)

The dependence on θ comes through the probability density function p(θ, Ŝ). As

discussed in [Gla04], under relatively benign conditions ensuring the validity of the

interchange of the order of integration and differentiation, we can write for a scheme

of the form (1.24) that

∂V

∂θ
=

∫
Ŝ∈RN

P̂ (Ŝ)
∂p(Ŝ)

∂θ
dŜ

=

∫
Ŝ∈RN

P̂ (Ŝ)
∂ log p(Ŝ)

∂θ
p(Ŝ) dŜ

= E

[
P̂ (Ŝ)

∂ log p(Ŝ)

∂θ

]
(1.27)

with

dŜ =
N∏
n=1

dŜn (1.28)

and

p(Ŝ) =
N∏
n=1

pn (1.29)

where pn = p(Ŝn|Ŝn−1).

The main limitation of the method is that the estimator’s variance is O(N),

becoming infinite as we refine the discretisation. For example if we assume that St’s

evolution follows a Geometric Brownian Motion, dSt = r St dt+ σ St dWt, its Euler

discretisation between tn and tn+1 results in the following transition density

log (pn) = − log
(
σŜn

)
− 1

2
log (2πh)−

(
Ŝn+1 − Ŝn (1 + r h)

)2

2σ2 Ŝn
2
h

(1.30)

Letting Zn the unit normal random variable defined by Ŝn+1−Ŝn (1 + rh) = σŜn
√
hZn,
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we have
∂ log pn
∂σ

=
Z2
n − 1

σ
(1.31)

and the approximation of Vega is

∂E
[
P
(
ŜN

)]
∂σ

= E

(
N∑
n=1

Z2
n − 1

σ
P
(
ŜN

))
(1.32)

noting that the increments are independent and that V
[
Z2
n − 1

]
= 2, we get

V

(
N∑
n=1

Z2
n − 1

σ
f
(
ŜN

))
= O (N) = O (T/h) (1.33)

that is, we have a O
(
h−1

)
blow-up of the variance.

1.3.3 Beyond those methods

We have seen that neither the Likelihood Ratio Method nor pathwise sensitivities

can be used universally. Even simple cases like the computation of the Greeks

of a digital option using a path discretisation cannot be adequately covered by

either (pathwise sensitivities not applicable, large variance of the Likelihood Ratio

Method). We therefore need to devise alternative techniques.

To cope with payoff discontinuities and use pathwise sensitivities in more cases,

one simple idea would consist in smoothing the payoff. A crude smoothing introduces

a bias in our estimators and is clearly not satisfactory, a refinement of this idea is

provided in section 2.3.1, it consists of stopping the simulation before expiry and

then considering the conditional expectation of the payoff. Building on this idea,

Giles introduced in [Gil09b] a hybrid of the Likelihood Ratio Method and pathwise

sensitivities, the Vibrato Monte Carlo, which we present in section 2.3.2. Finally,

other estimators using the tools of Malliavin calculus (see [Nua05] for example)

have been developed. Those were introduced in [FLL+99a] and developed further

in [FLL+01], [GKH03] or [Ben03] for example. It is also shown in [CG07] that such

estimators are closely related to “classical” estimators but they are nevertheless

beyond the scope of this thesis.

1.4 Multilevel Monte Carlo Greeks

By combining the elements of sections 1.2 and 1.3 together, we write

∂V

∂θ
=
∂E(P )

∂θ
≈ ∂E(P̂L)

∂θ
=
∂E(P̂0)

∂θ
+

L∑
l=1

∂E(P̂l − P̂l−1)

∂θ
(1.34)
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Similarly to equation (1.16), we define the multilevel estimators

Ŷ0 = M−1
0

M∑
i=1

∂P̂0

∂θ

(i)

Ŷl = M−1
l

Ml∑
i=1

(
∂P̂l
∂θ

(i)

− ∂P̂l−1

∂θ

(i)

)

(1.35)

where
∂P̂0

∂θ
,
∂P̂l−1

∂θ
,
∂P̂l
∂θ

can be computed with the techniques presented in section

1.3. The detail of how these techniques are effectively used together is presented for

different cases (various payoffs, various methods) in chapter 2.

1.5 Plan of the thesis

We begin our study of multilevel Monte Carlo Greeks with an experimental part.

In chapter 2, we consider a common evolution model for the asset S, the Black -

Scholes model under which S is modeled as a geometric Brownian motion. We

recall that in this particular case, many properties of the underlying price process

are known, which facilitates the computation of option prices and their sensitivities,

many of which can be expressed as closed form formulae.

We use this convenient setting to introduce and implement various multilevel al-

gorithms for the computation of Greeks. While we often have closed form expressions

for the desired quantities and we can actually perform exact path simulations (ge-

ometric Brownian motions can be integrated directly between two different dates),

we avoid using these properties that are specific to the Black - Scholes model for any

purpose other than verification. The point of this chapter is to introduce various

estimators and get some experimental insight into their efficiency, therefore we only

use methods that can be applied in the general Ito setting presented in chapter 1.

We choose to apply our techniques to various common contracts presenting dif-

ferent challenges: the European call option, the European digital call with a discon-

tinuous payoff, the Asian, lookback and barrier calls for which the payoffs depend on

the whole trajectory of the underlying asset’s price and not just its value at expiry

T .

The main focus of chapter 2 being essentially the introduction of new ideas and

obtaining experimental results on their efficiency, we first make what we deem to be

sensible assumptions as to what is applicable and what is not without immediately

proving their well-foundedness. Closed form formulas then enable us to check the

proposed techniques behave as expected.

In chapter 3, we justify a posteriori why our assumptions in chapter 2 are actu-

ally correct. Notably, we check the naive technique used to obtain the underlying

asset’s sensitivities does indeed correspond to a proper discretisation scheme of the

stochastic equation describing the evolution of the Greeks and that the discretised
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sensitivities therefore converge to the exact sensitivities. We then proceed to prove

that under reasonably relaxed hypotheses on the coefficients of the evolution SDE

(1.2), a Lipschitz payoff means that pathwise sensitivities can be applied (as had

been assumed previously).

We then discuss some additional assumptions on the volatility that make the nu-

merical analysis smoother and proceed to present several essential theorems that are

used throughout the numerical analysis of multilevel Monte Carlo Greeks (chapters

4, 5, 6, 7 and 8). Those theorems give results on the moments of SDE solutions, on

their approximation by continuous interpolations of the Milstein scheme and on the

likelihood of so-called “extreme paths”.

In chapter 4, we provide the first proofs for the computational cost of multilevel

Greeks. We use pathwise sensitivities to compute the sensitivities of a European

option with a smooth Lipschitz payoff. This is a “toy” problem that doesn’t actually

correspond to commonly traded contracts but is convenient to introduce some basic

ideas (notably this case does not require us to deal with “extreme paths” separately).

The efficiency of the multilevel approach is determined by the coefficients α and β of

theorem 1.2.1. Our analysis of this case and other cases therefore aims at computing

these values.

We then move on to a more realistic payoff type, European options with con-

tinuous, yet non-smooth payoffs like the European call whose payoff function is

P (ST ) = (ST −K)+. The payoff’s derivative with respect to the underlying asset’s

value ST being possibly discontinuous, we now have to take special care of “extreme

paths”, which can be roughly described as paths with “unusually” large random in-

crements (this is properly formalised in chapter 3) when computing the coefficients

α and β.

As explained in chapters 2 and 3, pathwise sensitivities cannot be applied di-

rectly to discontinuous payoffs like that of a European digital call whose payoff

is P (ST ) = 1[0,T ] and we use a variation of pathwise sensitivities, pathwise sen-

sitivities with conditional expectations, which leads to a quite technical analysis

of the estimators’ convergence speed. This technique can be seen as a particular

form of payoff smoothing and can also be used with non-smooth Lipschitz payoffs

like that of the European call. An analysis of this use of pathwise sensitivities

with conditional expectations confirms what we had already conjectured from our

simulations: the method offers an increased convergence speed compared to sim-

ple pathwise sensitivities by compensating for the effects of the discontinuity of

the payoff’s first derivative.

We then provide analytical proofs confirming the observed behaviours of “split

pathwise sensitivities” and Vibrato Monte Varlo, which both derive from pathwise

sensitivities with conditional expectations. This analysis also offers a better insight

into the way we should choose the number of final samples for both of these methods.

In chapter 6, we analyse the convergence properties of the multilevel estimators
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we proposed for Asian options, that is options that depend on the average value

of the underlying asset on the time interval [0, T ] instead of just its final value ŜT .

The analysis for this sort of payoff is slightly tricky as it is strongly path dependent

and estimators involve approximations of the underlying asset’s price over the whole

time period considered; it therefore requires the use of stronger results than the ones

used previously.

Chapter 7 deals with the analysis of multilevel Greeks for barrier options. We

consider a down-and-out option where the payoff is

P (S) = (ST −K)+ 1 min
t∈[0,T ]

St>B. The discontinuity resulting from the barrier is

dealt with by considering the probability of hitting it knowing some intermediate

simulated values; in this it is similar to the idea behind pathwise sensitivities with

conditional expectations. Nevertheless, as for Asian options, this analysis relies on

results that hold on the whole time interval and not just at a fixed point in time.

Finally in chapter 8, we analyse the case of lookback options for which the payoff

is P = ST − min
t∈[0,T ]

St. We begin by providing a semi-analytical explanation for the

behaviour of its multilevel Greeks’ estimators. It highlights the fact that for pric-

ing, the fine and coarse levels of discretisation reaching their respective minima at

different times in [0, T ] has little impact on the convergence speed of the estimator’s

variance. Nevertheless, this possibility leads to greatly reduced convergence speed

of the Greeks’ estimators. A fully analytical approach to this problem is difficult,

we therefore analyse another a lookback option with a discretely sampled minimum.

When the number of samples is high, its payoff is very similar to that of the contin-

uously sampled lookback option; a more thorough explanation of this last point can

be found in [BGK99].
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Chapter 2

Simulations

In this chapter, we investigate the joint use of the techniques presented in chapter

1, that is, the ways we can define and implement multilevel Monte Carlo Greeks

estimators for various options.

The payoffs considered present various challenges: the digital call’s discontinuous

payoff prevents a direct use of pathwise sensitivities, Asian and lookback options are

path dependent and naive estimators for the computation of prices and sensitivities

with the Milstein scheme will generally generate sub-optimal results. Finally, barrier

options are path dependent and their payoffs are discontinuous in the underlying

asset’s extrema.

We present various ideas enabling the techniques introduced in section 1.3 to be

exploited in a multilevel setting: building on the relevant multilevel pricing methods

found in [BG12], we derive efficient Greeks estimators.

We then use our implementations to get experimental convergence rates for the

multilevel estimators, which we then relate to their computational complexity via

theorem 1.2.1.

Finally, we present intuitive interpretations of the observed convergence rates.

Those give an interesting insight into the ideas underlying the analysis of chapters

4 to 8.

2.1 Setting

In this section, for the sake of generality, we discuss the different techniques in

the generic setting where option prices depend on an underlying asset paying no

dividends whose value satisfies an Itô diffusion (1.2) under the risk-neutral measure.

We still have to pick a specific case for the implementation. For the sake of simplicity

and verifiability, we use the well-known Black & Scholes model, in which (1.2) is

a geometric Brownian motion and for which the literature provides a number of

analytical results.
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2.1.1 The Black & Scholes SDE

We perform the simulations in the popular Black & Scholes model for which

a(St, t) = rSt

b(St, t) = σSt
(2.1)

that is, the evolution equation (1.2) on [0, T ] becomes

dSt = rSt dt+ σSt dWt, (2.2)

where r is the (constant) riskless interest rate and σ > 0 the (constant) volatility

parameter.

This equation corresponds to a geometric Brownian motion. Several arguments

justify its use to model a stock price: we see it is a random process that, when

starting from a positive initial value, only takes positive values and that the expected

returns are independent of the underlying stock’s price. It is clearly not an entirely

realistic representation of the stock’s evolution, the most obvious shortcomings being

the assumption of a constant volatility and the normality of the model’s returns (real

returns usually have fatter tails than the normal distribution, as shown in [Fam76]

for example), nevertheless the simplicity of the above equation and its flexibility

(several objections to this model can be addressed in a relatively simple way, see

[Wil10]) ensure it is still one of the most common models in use.

SDE (2.2) is convenient in several ways: the coefficients a(St, t) and b(St, t) are

smooth and Lipschitz (we will see in chapter 3 why this is important) and, more

importantly, we can get a closed form formula for the density of its solution and

therefore for the price and sensitivities of simple options, which will be useful for

verification purposes.

2.1.2 Black & Scholes price formulas of common contracts

We briefly recall some well-known analytical results for equation (2.2) and derive

the price of some important options.

The SDE corresponds to a lognormal process and can be integrated between 0

and T into

ST = S0 exp

((
r − σ2

2

)
T + σWT

)
(2.3)

which has a lognormal density

p (ST |S0) =
1

σS0

√
2πT

exp

−
(

log (ST /S0)−
(
r − σ2

2

)
T
)2

2σ2T

 (2.4)

As explained in section 1.1.1, we can get the call’s value at t = 0 for an initial

underlying’s price S0 = S by computing the discounted expectation of call’s payoff
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Pcall(ST ) = (ST −K)+ under the risk neutral measure and we get

Vcall (S, 0) = exp (−rT )

∞∫
0

(ST −K)+ p(ST |S0 = S) dST (2.5)

Then, defining

d1 =
log (S/K) +

(
r + σ2/2

)
T

σ
√
T

d2 =
log (S/K) +

(
r − σ2/2

)
T

σ
√
T

(2.6)

it can be shown that

Vcall (S, 0) = S Φ (d1)−K exp (−rT ) Φ (d2) (2.7)

and by differentiation,

∆call (S, 0) =
∂Vcall
∂S

= Φ (d1)

νcall (S, 0) =
∂Vcall
∂σ

= S
√
Tφ (d1)

(2.8)

where Φ is the normal cumulative distribution function and φ the normal density

function.

Similarly for the digital call, an integration of Pdigital(ST ) = 1ST>K gives

Vdigital (S, 0) = exp (−rT ) Φ (d2) (2.9)

and

∆digital (S, 0) =
∂Vdigital
∂S

=
exp (−rT )φ (d2)

σS
√
T

νdigital (S, 0) =
∂Vdigital
∂σ

= − exp (−rT )φ (d2)

(√
T +

d2

σ

) (2.10)

Note that using Ito’s lemma and no arbitrage arguments, we can show that the price

V (St, t) of a vanilla option on S satisfies the Black & Scholes equation (2.11)

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.11)

The prices Vcall and Vdigital can thus also be derived as solutions of this partial dif-

ferential equation (2.11) using the payoffs V (ST , T ) = Pcall and V (ST , T ) = Pdigital

as terminal conditions.

For a down-and-out barrier call option with a strike K and a barrier B, we let

Vcall be the Black & Scholes price of a vanilla call with the same strike and expiry
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as the barrier option considered. We then have

Vbarrier (St, t) = Vcall (St, t)−
(
St
B

)1−(2r/σ2)

Vcall

(
B2

St
, t

)
(2.12)

We can check (see [Wil07] for example) that this formula still satisfies the Black &

Scholes equation (2.11) before the barrier is hit and that the appropriate boundary

conditions are respected when S = B or t = T . This means that (2.12) is indeed

the Black & Scholes price of the barrier option. In particular,

Vbarrier (S, 0) = Vcall (S, 0)−
(
S

B

)1−(2r/σ2)

Vcall

(
B2

S
, 0

)
(2.13)

The Asian option satisfies a different partial differential equation, indeed its price

Vasian is also a function of It =

t∫
0

Stdt. Using a reasoning similar to that used to

derive (2.11), we get a modified Black & Scholes equation

∂Vasian
∂t

+
1

2
σ2S2∂

2Vasian
∂S2

+ rS
∂Vasian
∂S

− rVasian + S
∂Vasian
∂I

= 0 (2.14)

the solution cannot be written as an analytical formula and has to be found numer-

ically.

The Black & Scholes price for a lookback option also admits a closed form formula

which can be found in [MR05] or [Wil07].

Vlookback (S, 0) = SΦ (d1)− S exp (−rT ) Φ (d2)

+ S exp (−rT )
σ2

2r
Φ

(
−d1 +

2r
√
T

σ

)
− Sσ

2

2r
Φ (−d1)

(2.15)

2.1.3 Discretisation scheme

As explained in section 2.1.2, the Black & Scholes evolution SDE (2.2) can be

integrated exactly into (2.3) and we can perform exact simulations of the underlying

asset’s price at t = T . There is therefore a priori no real need to discretise (2.2) on

the interval [0, T ] to estimate the price of a vanilla European option via Monte Carlo

simulations. It would be sufficient to simulate the value of the Brownian motion at

expiry, WT ∼ N (0, T ) to simulate various values of the payoff P (ST ) and estimate

the option’s value via the formula

V = E
[
exp(−rT )P

(
S0 exp

((
r − σ2

2

)
T + σWT

))]
(2.16)

For path-dependent options where we need to compute some intermediate val-

ues, we could also use an exact integration of the lognormal Black & Scholes SDE
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on each subdivision [tn, tn+1] of [0, T ],

Sn+1 = Sn exp

((
r − σ2

2

)
(tn+1 − tn) + σ∆Wn

)
(2.17)

where the Brownian increment ∆Wn = Wtn+1 −Wtn ∼ N (0, tn+1 − tn). It would

also be possible to use the known properties of the geometric Brownian motion on

each of these intervals (e.g. distribution of its minimum) to derive more accurate

estimators.

Nevertheless, a direct integration of the evolution SDE is not possible in more

general cases of (1.2) (e.g. local volatility function) and the use of a proper discreti-

sation then becomes necessary. To illustrate multilevel techniques designed to work

in a general setting, we therefore treat the Black & Scholes equation as any other

SDE and discretise it on the considered time interval.

The simplest discretisation of (1.2) is the Euler discretisation. Assuming a con-

stant time step h = tN−tN−1 = . . . = t1−t0 between all points of the discretisation,

it is written

Ŝn+1 = Ŝn + r Ŝnh+ σ Ŝn∆Wn (2.18)

As discussed in [Gil08a] and recalled in 1.2.2, the Euler scheme’s strong convergence

properties are not entirely satisfactory in the context of multilevel Monte Carlo

simulations and it is preferable to use the Milstein scheme instead, which is then

Ŝn+1 = Ŝn + r Ŝnh+ σ Ŝn∆Wn +
1

2
σ2 Ŝn

(
∆W 2

n − h
)

(2.19)

2.1.4 Principle of the numerical simulations

As stated above, the goal is to develop ideas that enable multilevel Monte Carlo

to work efficiently in conjunction with the techniques used for the computation of

Greeks. We devise and implement multilevel estimators of Greeks based on dis-

cretisation (2.19) for the various options considered (European Lipschitz payoffs,

European discontinuous payoffs, Asian options, Barrier options, Lookback options).

We recall the superscripts/subscripts f and c denote the values corresponding

specifically to the “fine” and “coarse” levels at any given level l of the simulation.

When considering the estimator at a given level l, we can drop the index l from our

notation for the sake of conciseness as it does not result in any ambiguity. Using the

notation of section 1.4, the multilevel estimation of the price sensitivity is written

as

∂V

∂θ
≈ Ŷ0 +

L∑
l=1

Ŷl (2.20)

where Ŷl ≈ E

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
is defined using fine and coarse discretisations with

Nf (l) = 2l fine time steps and Nc(l) = 2l−1 corresponding coarse time steps
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of size h := hf (l) = T/2l and hc(l) = T/2l−1 respectively.

Using the multilevel Monte Carlo complexity theorem, we see that to evaluate

the sensivitity ∂V /∂θ at a low computational cost equates to constructing estimators

Ŷl satisfying conditions A1 − A4 of theorem 1.2.1 with α ≥ 1/2 and β as large as

possible (ideally β > 1 to get maximum benefits).

To determine the efficiency of our estimators for each payoff, we consider several

levels of discretisation l. Using Ml path simulations, we estimate the the corre-

sponding values E
(
Ŷl

)
and Vl = Ml V

(
Ŷl

)
. We then plot the results in log-log

plots where the x-axis corresponds to the level l (the binary logarithm of the num-

ber of fine steps) and the y-axis corrresponds to log2 E
(
Ŷl

)
and log2 Vl. Assuming

we have

E
(
Ŷl

)
= O (hα)

Vl = O
(
hβ
) (2.21)

we get

log2 E
(
Ŷl

)
∼ α log2 (h) ∼ −l α

log2 Vl ∼ β log2 (h) ∼ −l β
(2.22)

therefore we can estimate the coefficients α and β directly by “measuring” the

asymptotic slopes of the graphs resulting from our simulations (i.e. performing

a linear regression on the values described above).

The result of section 3.2.4 guarantees that the α measured this way is indeed the

same as the one of theorem 1.2.1.

Note that we are interested only in the asymptotic behaviour of the estimators,

therefore it may be necessary to exclude low values of l from our slope measure-

ments/linear regressions if the graphs exhibit a non-linear behaviour.

Note also that a certain degree of uncertainty comes with the measurement of

these slopes (each point on which the regression is based is a random variable). We

obtain reasonable estimates by taking the numbers of samples Ml large enough at

each level to keep

√
V
(
Ŷl

)
� Ŷl.

Unless otherwise stated, the simulations used in this dissertation use the param-

eters S0 = 100, K = 100, r = 0.05, σ = 0.20, T = 1.

2.2 Lipschitz payoffs (European call)

We first consider a Lipschitz payoff, that of the European call for which (including

the discount in the payoff),

P = exp (−rT ) (ST −K)+ = exp (−rT ) max (0, ST −K)
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We illustrate the techniques by computing delta (∆) and vega (ν), the sensitivities

to the asset’s initial value S0 and to its volatility σ.

2.2.1 Pathwise sensitivities

Since the payoff is Lipschitz, the rule of thumb presented in section 1.3.1 ensures

we can use pathwise sensitivities (see section 3.2 for a rigorous justification).

We write the discretisation (2.19) as

Ŝn+1 = ŜnDn (2.23)

with

Dn := 1 + r h+ σ∆Wn +
σ2

2
(∆W 2

n − h). (2.24)

The differentiation of this scheme gives

∂Ŝn+1

∂θ
=
∂Ŝn
∂θ
·Dn + Ŝn

∂Dn

∂θ
(2.25)

In particular for ∆,

∂Ŝ0

∂S0
= 1

∂Ŝn+1

∂S0
=
∂Ŝn
∂S0

·Dn

(2.26)

and for ν, we have

∂Ŝ0

∂σ
= 0

∂Ŝn+1

∂σ
=
∂Ŝn
∂σ
·Dn + Ŝn

(
∆Wn + σ(∆W 2

n − h)
) (2.27)

Note that as explained later in section 3.1, the differentiation of the discretisa-

tion scheme actually corresponds to the discretisation scheme for the sensitivity
∂St
∂θ

. This means this “naive” technique does indeed provide estimators of the sen-

sitivities and we also get the same weak and strong convergence properties for the

discretisation of the asset’s value and for its sensitivities.

To compute Ŷl, we take Ml samples and noticing the call payoff has no direct

dependency on θ,

Ŷl =
1

Ml

Ml∑
i=1

∂P
∂S

(
ŜfNf

) ∂ŜfNf
∂θ

−(∂P
∂S

(
ŜcNc

) ∂ŜcNc
∂θ

)(i)

(2.28)

As explained for example in [Gil08b], the fine and coarse levels correspond to two

discretisations of the same driving Brownian motion. In [ANvST14] it is shown that

for the Milstein scheme, defining the fine level as having twice as many steps as the
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coarse level is near-optimal. This is easily implemented by first generating the fine

Brownian increments Ŵf and then summing them in pairs to get the coarse level’s

increments Ŵc, that is,

Ŵ f =
(

∆W f
0 ,∆W

f
1 , . . . ,∆W

f
Nf−1

)
Ŵ c =

(
∆W c

0 , . . . ,∆W
c
Nc−1

)
=
(

∆W f
0 + ∆W f

1 , . . . ,∆W
f
Nf−2 + ∆W f

Nf−1

) (2.29)

Estimated complexity

In figures 2.1, 2.2 we carry out the procedure explained in section 2.1.4: we plot

E
(
Ŷl

)
and Vl as a function of the level l, where we take Ŷl to be successively the

multilevel estimator for the option’s value, its delta and its vega.

The slopes of the graphs give numerical estimates of the parameters α and β of

theorem 1.2.1, which then gives an estimated complexity of the multilevel algorithm

(see table 2.1).

“Intuitive” interpretation

Giles has shown in [Gil08a] that α = 1 and β = 2 for the estimators of the value

of a Lipschitz European payoff (and therefore for the estimators of the value of the

European call).

Indeed, as explained in section 1.1.2, the Milstein scheme gives O (h) weak and

O (h) strong convergence. At expiry, we have

E
(
P
(
ŜN

)
− P (ST )

)
= O (h) (2.30)

and

E
((

ŜN − ST
)2
)

= O
(
h2
)

(2.31)

The payoff P being 1-Lipschitz , we have(
P
(
ŜN

)
− P (ST )

)2
<
(
ŜN − ST

)2
(2.32)

and equation (2.31) leads to

V
[
P
(
ŜN

)
− P (ST )

]
= O

(
h2
)

(2.33)

Using the convergence properties of the sensitivity at expiry (proved rigorously

in section 3.1), we also obtain

E

(
∂ŜN
∂θ
− ∂ST

∂θ

)
= O (h)

E

(∣∣∣∣∣ ∂ŜN∂θ − ∂ST
∂θ

∣∣∣∣∣
)

= O (h)

(2.34)
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Figure 2.1: Pathwise sensitivities, European call : E(Ŷl)

Figure 2.2: Pathwise sensitivities, European call : Vl

Estimator α β MLMC Complexity

Value ≈ 1.0 ≈ 2.0 O(ε−2)

Delta ≈ 1.0 ≈ 0.9 O(ε−2.1)

Vega ≈ 1.0 ≈ 1.1 O(ε−2)

Table 2.1: Pathwise sensitivities, European call : estimated complexity
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We explain here how what we observe is similar to what is described for the pric-

ing of discontinous options in [GHM09]: the convergence of Greeks’ estimators

is degraded by the lack of smoothness of the payoff, i.e. by the discontinuity

of
∂P

∂S
(ST ) = exp (−rT ) 1ST>K .

Note that this chapter being dedicated to providing an intuitive explanation of

the observed convergence rates, we here use the notation O (.) in an informal way

to express the characteristic size of various quantities. Rigorous and more formal

proofs are provided in later chapters.

We see from equation (2.4) that in the Black & Scholes model, the distribution

of ST is smooth (in the more general setting of an Ito diffusion 1.2 we could assume

it is, see section 3.3 for a rigorous justification of this fact). Therefore, a fraction

O(h) of all paths are such that the final value ST is at a distance O(h) from the

discontinuity K. The order of strong convergence being O (h), this means that for

such paths, there is a O(1) probability that the fine and coarse discretisations ŜfNf
and ŜcNc are on different sides of the strike K. Then we write∂P

∂S

(
ŜfNf

) ∂ŜfNf
∂θ

−(∂P
∂S

(
ŜcNc

) ∂ŜcNc
∂θ

)

=
∂P

∂S

(
ŜfNf

)∂ŜfNf
∂θ

−
∂ŜcNc
∂θ

+

(
∂P

∂S

(
ŜfNf

)
− ∂P

∂S

(
ŜcNc

)) ∂ŜcNc
∂θ

= O (1)O (h) +O (1)O (1)

= O (1)

(2.35)

The majority of paths (i.e. a fraction O (1)) arrive further from K and the strong

convergence of the scheme intuitively means their fine and coarse discretisations are

bound to be on the same side of the strike where
∂P

∂S
is Lipschitz (actually constant).

Therefore for those paths,∂P
∂S

(
ŜfNf

) ∂ŜfNf
∂θ

−(∂P
∂S

(
ŜcNc

) ∂ŜcNc
∂θ

)
= O (h) (2.36)

Finally we can use the law of total expectation and, with a slight abuse use of the

O (. . .) notation (see notes in 3.5), write that

E

∂P
∂S

(
ŜfNf

) ∂ŜfNf
∂θ

−(∂P
∂S

(
ŜcNc

) ∂ŜcNc
∂θ

) = O (h)O (1) +O (1)O (h)

= O (h)

(2.37)
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and

E

∂P
∂S

(
ŜfNf

) ∂ŜfNf
∂θ

−(∂P
∂S

(
ŜcNc

) ∂ŜcNc
∂θ

)2
= O (h)O (1) +O (1)O

(
h2
)

= O (h)

(2.38)

and thus Vl = O (h). We have thus explained why we expected α = 1 and β = 1 for

the Greeks.

2.2.2 Pathwise sensitivities and Conditional Expectations

We have seen that the payoff’s lack of smoothness prevents the variance of

Greeks’ estimators Ŷl from decaying quickly and limits the potential benefits of

the multilevel approach.

To improve the convergence speed in the case of an option whose payoff only

depends on the final value of the underlying asset, we can use conditional expecta-

tions to smooth the payoff without introducing any additional bias (see [Gla04] for

the basic idea and [Gil08a] for its use in the multilevel context). Let us consider a

single level of discretisation with a step h = T/N : instead of simulating the whole

path from t0 = 0 to tN = T , we simulate it up to the penultimate discretisation

time tN−1 = (N − 1)h. We get ŜN−1 using the Milstein scheme with the Brow-

nian increments Ŵ = (∆W0, . . . ,∆WN−2). We then consider the full distribution

of
(
ŜN |ŜN−1

)
resulting from the use of the Euler scheme based on a Brownian

increment ∆WN−1 on the last time step [tN−1, tN ] .

With

aN−1 = a
(
ŜN−1, tN−1

)
bN−1 = b

(
ŜN−1, tN−1

) (2.39)

we can write

ŜN = ŜN−1 + aN−1h+ bN−1∆WN−1 (2.40)

this means we get a Normal distribution for
(
ŜN |ŜN−1

)
.

Proposition 2.2.1. Using the Euler scheme for the final step does not degrade the

superior strong convergence of the Milstein scheme. Indeed, under the assumptions

guaranteeing that the Milstein scheme’s order of convergence is 1 (see section 3.4

for more details), the strong order of convergence of such a hybrid scheme is also 1.

Proof. Let ŜMil
N be the final simulated value resulting from a “pure” Milstein dis-

cretisation of the process on [0, T ], the classical convergence results can be applied
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to ŜMil
N and we can write

ŜN = ŜMil
N − 1

2
bN−1

∂bN−1

∂ŜN−1

(
∆W 2

N−1 − h
)

(2.41)

then

E
[(
ST − ŜN

)2
]

= E
[(
ST − ŜMil

N + ŜMil
N − ŜN

)2
]

= E
[(
ST − ŜMil

N

)2
+
(
ŜMil
N − ŜN

)2

+2
(
ST − ŜMil

N

)(
ŜMil
N − ŜN

)] (2.42)

using the convergence properties of the Milstein scheme, we have

E
[(
ST − ŜMil

N

)2
]

= O
(
h2
)

(2.43)

also, using Hölder’s inequality

E
[(
ŜMil
N − ŜN

)2
]

= E

1

4
b2N−1

(
∂bN−1

∂ŜN−1

)2 (
∆W 2

N−1 − h
)2

≤ 1

4
E
[
bN−1

8
]1/4 E

( ∂bN−1

∂ŜN−1

)8
1/4

E
[(

∆W 2
N−1 − h

)4]1/2

(2.44)

Under the assumptions presented in section 3.4, the solution of SDE (1.2) and its

discretisation have finite moments. Under these assumptions, b (S, t) and
∂b

∂S
(S, t)

have a linear growth bound. Therefore, E
[
bN−1

8
]1/4

and E

( ∂bN−1

∂ŜN−1

)8
1/4

are

finite. ∆W 2
N−1− h =: h

(
Z2
N−1 − 1

)
where ZN−1 is a unit normal random variable,

therefore E
[(

∆W 2
N−1 − h

)4]1/2
= O

(
h2
)
. Thus we have

E
[(
ŜMil
N − ŜN

)2
]

= O
(
h2
)

(2.45)

Finally,

E
[(
ST − ŜMil

N

)(
ŜMil
N − ŜN

)]
=

E

[(
ST − ŜMil

N

) 1

2
bN−1

(
∂bN−1

∂ŜN−1

)(
∆W 2

N−1 − h
)] (2.46)

and similarly, using Hölder’s inequality, the strong convergence property of ŜMil
N ,
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the finite moments of bN−1 and
∂bN−1

∂S
and ZN−1, we obtain

E
[(
ST − ŜMil

N

)(
ŜMil
N − ŜN

)]
= O

(
h2
)

(2.47)

which achieves the proof that

E
[(
ST − ŜN

)2
]

= O
(
h2
)

(2.48)

i.e. the combination of the Milstein scheme with a final Euler step still results in a

strong convergence of order 1.

Using the final Euler step, the probability density of ŜN conditional on ŜN−1 is

p(ŜN |ŜN−1) =
1

σN−1

√
2π

exp

−
(
ŜN − µN−1

)2

2σ2
N−1

 (2.49)

with

{
µN−1 = ŜN−1 + aN−1h

σN−1 = bN−1

√
h

We can thus compute E
[
P
(
ŜN

)
|ŜN−1

]
. Using the tower property, we get

V̂ = E
[
P (ŜN )

]
= E

ŜN−1

[
E∆WN−1

[
P (ŜN )|ŜN−1

]]
(2.50)

Using Ŝ
(1)
N−1, . . . , Ŝ

(M)
N−1, M simulations of ŜN−1, we get

V̂ ≈ 1

M

M∑
m=1

E
[
P
(
ŜN

)
|Ŝ(m)
N−1

]
(2.51)

Let us now compute an analytical expression for E
[
P (ŜN )|ŜN−1

]
.)

E
[
P (ŜN )|ŜN−1

]
=

∞∫
−∞

P
(
ŜN

)
p
(
ŜN

∣∣∣ŜN−1

)
dŜN

=

∞∫
K

(
ŜN −K

) 1√
2πσN−1

exp

−
(
ŜN − µN−1

)2

2σ2
N−1

 dŜN

=

∞∫
K

ŜN − µN−1√
2πσN−1

exp

−
(
ŜN − µN−1

)2

2σ2
N−1

 dŜN

+

∞∫
K

µN−1 −K√
2πσN−1

exp

−
(
ŜN − µN−1

)2

2σ2
N−1

 dŜN

(2.52)
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We let φ be the normal probability density function and Φ be the normal cumulative

distribution functions and obtain

E
[
P (ŜN )|ŜN−1

]
= σN−1φ

(
µN−1 −K
σN−1

)
+ (µN−1 −K)Φ

(
µN−1 −K
σN−1

)
(2.53)

This expected payoff is smooth with respect to the input parameters µN−1 and

σN−1, which themselves are smooth functions of the input parameters and ŜN−1.

We can apply the pathwise sensitivities technique to this Lipschitz function at

time tN−1.

∂V̂

∂θ
=
∂E

ŜN−1

[
E∆WN−1

[
P (ŜN )|ŜN−1

]]
∂θ

= E
ŜN−1

∂E∆WN−1

[
P (ŜN )|ŜN−1

]
∂θ


= E

ŜN−1

∂E∆WN−1

[
P (ŜN )|ŜN−1

]
∂µN−1

∂µN−1

∂θ

+
∂E∆WN−1

[
P (ŜN )|ŜN−1

]
∂σN−1

∂σN−1

∂θ



(2.54)

where
∂E∆WN−1

[
P (ŜN )|ŜN−1

]
∂µN−1

,
∂E∆WN−1

[
P (ŜN )|ŜN−1

]
∂σN−1

result from a direct dif-

ferentiation of equation (2.53) and
∂µN−1

∂θ
,
∂σN−1

∂θ
are easily obtained via Pathwise

Sensitivities.

In a multilevel setting, the estimator of the Greek is written as

Ŷl =
1

Ml

Ml∑
i=1

[
∂P̂f
∂θ
− ∂P̂c

∂θ

](i)

(2.55)

where P̂f and P̂c correspond to the smoothed payoff functions based on the condi-

tional expectations of P
(
ŜfNf

)
and P

(
ŜcNc

)
respectively.

At the fine level we simulate ŜfNf−1, compute aNf−1 = a
(
ŜfNf−1, t

f
Nf−1

)
, bNf−1 =

b
(
ŜfNf−1, t

f
Nf−1

)
and µfNf−1, σfNf−1 the corresponding values defined in (2.49).

µfNf−1 = ŜN−1 + aNf−1hf

σfNf−1 = bNf−1

√
hf

(2.56)

In the Black & Scholes model,

µfNf−1 = (1 + rhf ) ŜfNf−1

σfNf−1 = σSfNf−1

√
hf

(2.57)
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Equation (2.53) then gives the analytical expression of P̂f := E
[
P
(
ŜfNf

)]
,

P̂f = σfNf−1φ

µfNf−1 −K

σfNf−1

+ (µfNf−1 −K)Φ

µfNf−1 −K

σfNf−1

 (2.58)

It is a function of µfNf−1 and σfNf−1. We can then write

∂P̂f
∂θ

=
∂µfNf−1

∂θ

∂P̂f

∂µfNf−1

+
∂σfNf−1

∂θ

∂P̂f

∂σfNf−1

(2.59)

where
∂µfNf−1

∂θ
and

∂σfNf−1

∂θ
are computed via Pathwise Sensitivities.

Numerical experiments have shown that defining directly P̂c = E
(
P
(
ŜcNc

) ∣∣∣ŜcNc−1

)
at the coarse level leads to an unsatisfactorily low convergence rate of V

(
Ŷl

)
(intu-

itively the problem comes from using the diffusion of the underlying process on an

interval that is too wide). As explained in (1.17) we can use a modified estimator.

To achieve better convergence rates of the variance, we include the knowledge of the

final fine Brownian increment in the computation of the conditional expectation over

the last coarse Brownian increment. This helps ensure that for a given path there

isn’t too much discrepancy between the fine and coarse payoff estimators, thereby

keeping the variance low.

Using the Euler scheme, ŜcNc is distributed as if it were the value at time T

of a simple Brownian motion with constant drift a
(
ŜcNc−1, t

c
Nc−1

)
and volatility

b
(
ŜcNc−1, t

c
Nc−1

)
on the final coarse step

[
tcNc−1, T

]
with value ŜcNc−1 at tcNc−1. Given

that the fine Brownian increment on the first half of the final step is ∆W f
Nf−2, we

get for such a process the following density:

pc

(
ŜcNc

∣∣∣ŜcNc−1,∆W
f
Nf−2

)
=

1

σcNc−1

√
2π

exp

−
(
ŜcNc − µ

c
Nc−1

)2

2σcNc−1
2

 (2.60)

with

µcNc−1 = ŜcNc−1 + a
(
ŜcNc−1, t

c
Nc−1

)
hc + b

(
ŜcNc−1, t

c
Nc−1

)
∆W f

Nf−2

σcNc−1 = b
(
ŜcNc−1, t

c
Nc−1

)√
hc/2 = b

(
ŜcNc−1, t

c
Nc−1

)√
hf

(2.61)

From this distribution we derive that E
[
P
(
ŜcNc

) ∣∣∣ŜcNc−1,∆W
f
Nf−2

]
can be ex-

pressed via the same payoff formula as before, (2.53) applied to µcNc−1 and σcNc−1.

P̂c := E
[
P
(
ŜcNc

) ∣∣∣ŜcNc−1,∆W
f
Nf−2

]
= σcNc−1φ

(
µcNc−1 −K
σcNc−1

)
+ (µcNc−1 −K)Φ

(
µcNc−1 −K
σcNc−1

)
(2.62)
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In the Black & Scholes model,

µcNc−1 = (1 + rhc) Ŝ
c
Nc−1 + σŜcNc−1∆W f

Nf−2

σcNc−1 = σŜcNc−1

√
hf

(2.63)

Note that using P̂c instead of E
(
P
(
ŜcNc

) ∣∣∣ŜcNc−1

)
does not introduce any bias.

Indeed, using the tower property on the last coarse time step, we can check that the

two expressions have the same expectation.

E
∆W f

Nf−2

[
E
[
P
(
ŜcNc

) ∣∣∣ŜcNc−1,∆W
f
Nf−2

]
|ŜcNc−1

]
= E∆W c

Nc−1

[
P
(
ŜcNc

) ∣∣∣ŜcNc−1

] (2.64)

Therefore P̂f and P̂c satisfy the telescoping sum condition (1.18).

We then apply pathwise sensitivities to P̂c and obtain a formula similar to (2.59).

∂P̂c
∂θ

=
∂µcNc−1

∂θ

∂P̂c
∂µcNc−1

+
∂σcNc−1

∂θ

∂P̂c
∂σcNc−1

(2.65)

where
∂µcNc−1

∂θ
and

∂σcNc−1

∂θ
are computed via Pathwise Sensitivities.

2.2.2.1 Estimated complexity

Our numerical experiments (figures 2.3, 2.4) show the benefits of the conditional

expectation technique on the European call: we observe higher convergence rates β

which translate into lower complexities (table 2.2).

2.2.2.2 “Intuitive” interpretation

Using the fact that ST has a smooth density function (see (2.4)), a fractionO(
√
h)

of the paths arrive in the area of width O
(√

h
)

around the strike where the first

order derivative of the conditional expectation
∂E
(
P
(
ŜN

)
|ŜN−1

)
∂ŜN−1

transitions from

being almost 0 to almost 1. In this area of width O
(√

h
)

,
∂2E

(
P
(
ŜN

)
|ŜN−1

)
∂Ŝ2

N−1

is therefore intuitively of order O
(
h−1/2

)
and elsewhere it is almost 0. The strong

convergence properties of the discretisation scheme imply that the coarse and fine

paths differ by O (h); we thus have O (h)O
(
h−1/2

)
difference between the fine and

coarse values of
∂E
(
P
(
ŜN

)
|ŜN−1

)
∂ŜN−1

which results in a O
(√

h
)

difference between

the coarse and fine Greeks’ estimates.

34



Figure 2.3: Pathwise sensitivities and conditional expectations, European call :
E(Ŷl)

Figure 2.4: Pathwise sensitivities and conditional expectations, European call : Vl

Estimator α β MLMC Complexity

Value ≈ 1.0 ≈ 2.0 O(ε−2)

Delta ≈ 1.6 ≈ 1.5 O(ε−2)

Vega ≈ 1.0 ≈ 2.0 O(ε−2)

Table 2.2: Pathwise sensitivities and conditional expectations, European call :
estimated complexity
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Reasoning as before, we get

E

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
= O (1)O (h) +O

(√
h
)
O
(√

h
)

= O (h)

(2.66)

and

V

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
= O (1)O (h)2 +O

(√
h
)
O
(√

h
)2

= O
(
h3/2

) (2.67)

This means α = 1 and β = 3/2 for the Greeks’ estimators, which corresponds to

what we observe.

We note that taking the conditional expectation of a non-smooth payoff results

in a smooth function, which suggests that this approach is also applicable to discon-

tinuous payoffs. We explore this idea in section 2.3.1.

The main limitation of this method is that in many situations (complicated

payoff functions, multidimensional case) it leads to integral computations for which

we don’t necessarily have analytic solutions. Path splitting, to be discussed next,

represents a useful numerical approximation to this technique.

2.2.3 Split pathwise sensitivities

This technique is based on the previous one. The idea is to avoid the potentially

tricky computation of E
[
P
(
ŜfNf

)
|ŜfNf−1

]
and

E
[
P
(
ŜcNc

)
|ŜcNc−1,∆W

f
Nf−2

]
. We instead get numerical estimates of these values

by “splitting” every path simulation on the final time step.

At the fine level: we use a sequence of Brownian increments

Ŵf =
(

∆W f
0 , . . . ,∆W

f
Nf−2

)
to compute ŜfNf−1. For every such path, we then

simulate a set of d final increments based on d independent Brownian increments

(∆W f
Nf−1

(i)
)i=1,...,d, which we average to get

E
[
P
(
ŜfNf

)
|ŜfNf−1

]
≈ 1

d

d∑
i=1

P

(
ŜNf (ŜfNf−1,∆W

f
Nf−1

(i)
)

)
(2.68)

At the coarse level we use Ŵc =
(

∆W f
0 + ∆W f

1 , . . . ,∆W
f
Nf−4 + ∆W f

Nf−3

)
to

simulate ŜcNc−1. As in the previous section, we improve the convergence rate of

V
(
Ŷl

)
by considering estimators of E

∆W f
Nf−2

[
E
(
P
(
ŜcNc

)∣∣∣ ŜcNc−1,∆W
f
Nf−2

)]
in-

stead of E
[
P
(
ŜcNc

)
|ŜcNc−1

]
. We can do so by constructing the final coarse incre-

ments as (∆W c
Nc−1

(i))i=1,...,d =

(
∆W f

Nf−2 + ∆W f
Nf−1

(i)
)
i=1,...,d

and using them to
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estimate

E
[
P (ŜcNc)|Ŝ

c
Nc−1

]
≈ 1

d

d∑
i=1

P
(
ŜcNc(Ŝ

c
Nc−1,∆W

c
Nc−1

(i))
)

(2.69)

To get the Greeks, we simply compute the corresponding pathwise sensitivities

estimators when applicable.

2.2.3.1 Estimated complexity

In figures 2.5, 2.6 we plot the results of our simulations for d = 400 (we discuss

below the choice of d ).

Table 2.3 summarises the observed convergence rates and corresponding multi-

level complexities for different values of d.

Note that if we take d = 1, then the simulation is identical to the one performed

in section 2.2.1 except for the final time step which here uses the Euler scheme

instead of the Milstein scheme.

As expected this method yields higher values of β than simple pathwise sensi-

tivities: the convergence rates increase and tend to the rates offered by conditional

expectations as d increases and the approximation of the conditional expectation

gets more precise. We provide an interpretation for this in section 2.2.3.2.

2.2.3.2 Choice of the number of splittings

We here analyse how the variance of split pathwise sensitivies estimators can be

decomposed and show the influence of the number of final samples d.

The following proposition is presented in [Gil09b] and [AG07].

Proposition 2.2.2. If W and Z are independent random variables and the random

variable f (W,Z) is such that EW,Z [| f (W,Z) |], EW [EZ [| f (W,Z) |]] and

EW,Z [| f (W,Z) |] are finite, then

ŶM,d =
1

M

M∑
m=1

(
1

d

d∑
n=1

f
(
W (m), Z(m,n)

))

with independent samples W (m) and Z(m,n) is an unbiased estimator for

EW,Z [f (W,Z)] = EW [EZ [f (W,Z)]]

and its variance is

V
[
ŶM,d

]
=

1

M
VW [EZ [f (W,Z)]] +

1

Md
EW [VZ [f (W,Z)]]

Proof. See [Gil09b].
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Figure 2.5: Pathwise sensitivities and path splitting, European call : E(Ŷl)

Figure 2.6: Pathwise sensitivities and path splitting, European call : Vl

Estimator d α β MLMC Complexity

Value 10 ≈ 1.0 ≈ 2.0 O(ε−2)

400 ≈ 1.0 ≈ 2.0 O(ε−2)

Delta 10 ≈ 1.0 ≈ 1.0 O(ε−2(log ε)2)

400 ≈ 1.3 ≈ 1.4 O(ε−2)

Vega 10 ≈ 1.0 ≈ 1.6 O(ε−2)

400 ≈ 1.0 ≈ 1.9 O(ε−2)

Table 2.3: Pathwise sensitivities and path splitting, European call : estimated
complexity
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Using this decomposition, we can write the variance of the Greeks’ estimator as

V(Ŷl) =
1

Ml
V
Ŵf

[
E

∆W f
Nf−1

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)]

+
1

dMl
E
Ŵf

[
V

∆W f
Nf−1

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)] (2.70)

The first term of this expression is the same as what we obtain with the payoff

smoothing of section 2.2.2. As explained before, we can expect

V
Ŵf

[
E

∆W f
Nf−1

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)]
= O

(
h3/2

)
As before, the majority of paths arrive in a region where the payoff is Lipschitz and

for which we therefore have

V
∆W f

Nf−1

[
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

]
= O

(
h2
)

but a proportion O
(√

h
)

of all paths is such that ST is within O
(√

h
)

of the

the payoff’s “kink” at K. Then for those paths, there is a O
(
h/
√
h
)

proba-

bility that the fine and coarse discretisations arrive on different sides of K and

that therefore
∂P̂f
∂θ
− ∂P̂c

∂θ
= O (1). Else we have

∂P̂f
∂θ
− ∂P̂c

∂θ
= 0. Therefore for

those paths that are close to K, we have

V
∆W f

Nf−1

[
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

]
= O

(√
h
)

Combining the two contributions via the law of total expectations, we get

E
Ŵf

[
V

∆W f
Nf−1

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)]
= O(h)

and finally

V
(
Ŷl

)
=

1

Ml
O
(
h3/2

)
+

1

dMl
O (h) (2.71)

We note that taking d = 1 gives V
(
Ŷl

)
= O (h), which matches the results of

section 2.2.1.

Taking a constant number of splittings d for all levels is not optimal. We optimise

the variance at a fixed computational cost. As seen in equation (2.71), the variance

is of the form

V
(
Ŷl

)
=

1

Ml
v1 +

1

Ml dl
v2
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with v1 = O
(
h3/2

)
and v2 = O (h) while the cost of the simulation is of the form

C
(
Ŷl

)
= c1 Ml + c2 Ml dl

where c1 = O
(
h−1

)
is the cost of a path simulation and c2 = O (1) the cost of a

payoff evaluation. Keeping the computational cost constant, the variance can be

minimised by minimising the product(
1

Ml
v1 +

1

Ml dl
v2

)
(c1 Ml + c2 Ml dl) = v1c1 + v1c2dl +

v2c1

dl
+ c2v2

which gives an optimal value of d as being

doptl =

√
v2c1

v1c2
= O

(
h−3/4

)
(2.72)

Note also that sampling dl = O
(
h−3/4

)
final samples does not affect the asymp-

totic cost of the simulation path which is still C
(
Ŷl

)
= MlO

(
h−1

)
and the variance

of the estimator is then V
(
Ŷl

)
=

1

Ml
O
(
h3/2

)
. This means that the use of path

splitting does not, to leading order, increase the variance or the computational cost

compared to the use of exact conditional expectation in the cases where this can be

evaluated by a closed form formula.

2.2.4 Vibrato Monte Carlo

Since the path splitting method is still based on the pathwise sensitivity analysis,

it is not applicable when payoffs are discontinuous. We also saw in section 2.2.2 that

in general, the conditional expectation technique wasn’t easily used as it required the

computation of analytic formulas. To address these limitations, we use the Vibrato

Monte Carlo method introduced by Giles in [Gil09b]. This hybrid method combines

pathwise sensitivities and the Likelihood Ratio Method.

We reuse the notations of section 2.2.2 and 2.2.3. Considering again equation

(2.50) for a discretisation based on N time steps and noting that, as explained previ-

ously, p
(
ŜN

∣∣∣ŜN−1

)
and E∆WN−1

[
P (ŜN )

∣∣∣ŜN−1

]
are functions of µN−1

(
ŜN−1, tN−1

)
and σN−1

(
ŜN−1, tN−1

)
, we now use the Likelihood Ratio Method on the last time
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step and we get

∂V̂

∂θ
= E

ŜN−1

∂E∆WN−1

[
P (ŜN )

∣∣∣ŜN−1

]
∂θ


= E

ŜN−1

∂µN−1

∂θ

∂E∆WN−1

[
P (ŜN )

∣∣∣ŜN−1

]
∂µN−1

+
∂σN−1

∂θ

∂E∆WN−1

[
P (ŜN )

∣∣∣ŜN−1

]
∂σN−1


= E

ŜN−1

∂µN−1

∂θ
E∆WN−1

P (ŜN) ∂ log p
(
ŜN

∣∣∣ŜN−1

)
∂µN−1

∣∣∣∣∣∣ ŜN−1


+
∂σN−1

∂θ
E∆WN−1

P (ŜN) ∂ log p
(
ŜN

∣∣∣ŜN−1

)
∂σN−1

∣∣∣∣∣∣ ŜN−1



(2.73)

This leads to the estimator

∂V̂

∂θ
≈ 1

Ml

Ml∑
m=1

(
∂µ

(m)
N−1

∂θ
E∆WN−1

[
P
(
ŜN

) ∂(log p)

∂µN−1

∣∣∣Ŝ(m)
N−1

]

+
∂σ

(m)
N−1

∂θ
E∆WN−1

[
P
(
ŜN

) ∂(log p)

∂σN−1

∣∣∣Ŝ(m)
N−1

]) (2.74)

where
∂µ

(m)
N−1

∂θ
and

∂σ
(m)
N−1

∂θ
are computed via pathwise sensitivities.

With Ŝ
(m,i)
N = ŜN (Ŝ

(m)
N−1,∆W

(i)
N−1) and noting that, as before with a final Euler

step, ŜN is normally distributed conditionally on ŜN−1, we use the

following estimators to evaluate the conditional expectations of (2.74)

E∆WN−1

[
P
(
ŜN

) ∂ log p

∂µN−1

∣∣∣∣ Ŝ(m)
N−1

]
≈ 1

d

d∑
i=1

[
P

(
µ

(m)
N−1 + σ

(m)
N−1

∆W
(i)
N−1√
h

)

− P

(
µ

(m)
N−1 − σ

(m)
N−1

∆W
(i)
N−1√
h

)]
∆W

(i)
N−1

2
√
hσ

(m)
N−1

E
∆W

(i)
N−1

[
P
(
ŜN

) ∂ log p

∂σN−1

∣∣∣∣ Ŝ(m)
N−1

]
≈ 1

d

d∑
i=1

[
P

(
µ

(m)
N−1 + σ

(m)
N−1

∆W
(i)
N−1√
h

)
− 2P

(
µ

(m)
N−1

)

+P

(
µ

(m)
N−1 − σ

(m)
N−1

∆W
(i)
N−1√
h

)]
∆W

(i)
N−1

2
− h

2σ
(m)
N−1h

(2.75)

Note that the estimators of (2.75) use antithetic variables for reducing the

41



variance. See [Gil07] for more details.

At the fine level of a multilevel simulation, we base our simulations on P̂f :=

E
∆W f

Nf−1

[
P
(
ŜfNf

) ∣∣∣ŜfNf−1

]
and the estimation of

E
ŜfNf−1

[
∂P̂f
∂θ

]
= E

ŜfNf−1

∂µfNf−1

∂θ

∂P̂f

∂µfNf−1

+
∂σfNf−1

∂θ

∂P̂f

∂σfNf−1

 (2.76)

For this, we use a sequence of Brownian increments Ŵf to simulate ŜfNf−1. We then

use the set (∆W f
Nf−1

(i)
)i=1,...,d of final “split” increments to evaluate the sensitivity

(2.76) via the Vibrato Monte Carlo estimators (2.74) and (2.75).

At the coarse level, as before, we reuse the fine Brownian increments to construct

the coarse ones,

Ŵc = (∆W f
1 + ∆W f

2 , . . . ,∆W
f
Nf−4 + ∆W f

Nf−3)

(∆W
(i)
Nc−1)i=1,...,d = (∆W f

Nf−2 + ∆W f
Nf−1

(i)
)i=1,...,d

(2.77)

Once again, we consider P̂c := E
[
P
(
ŜcNc

) ∣∣∣ŜcNc−1,∆W
f
Nf−2

]
and the tower property

on the last coarse step written in equation (2.64) guarantees the telescoping sum

condition (1.18) is verified.

The sensitivity to θ is still given by the estimation of the quantity

E
ŜcNc−1,∆W

f
Nf−2

[
∂P̂c
∂θ

]
= E

ŜcNc−1,∆W
f
Nf−2

[
∂µcNc−1

∂θ

∂P̂c
∂µcNc−1

+
∂σcNc−1

∂θ

∂P̂c
∂σcNc−1

]
(2.78)

where

∂P̂c
∂µcNc−1

= E
∆W f

Nf−1

[
P
(
ŜcNc

) ∂ log pc
∂µcNc−1

∣∣∣∣∣ ŜcNc−1 ,∆W
f
Nf−2

]
∂P̂c

∂σcNc−1

= E
∆W f

Nf−1

[
P
(
ŜNc

) ∂ log pc
∂σcNc−1

∣∣∣∣∣ ŜcNc−1 ,∆W
f
Nf−2

] (2.79)
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which we compute with the following estimators

E
∆W f

Nf−1

[
P
(
ŜcNc

) ∂ log pc
∂µcNc−1

∣∣∣ ŜcNc−1

(m)
,∆W f

Nf−2

]

≈ 1

d

d∑
i=1

P
µcNc−1 + σcNc−1

∆W f
Nf−1

(i)√
hf


−P

µcNc−1 − σcNc−1

∆W f
Nf−1

(i)√
hf

 ∆W f
Nf−1

(i)

2
√
hfσ

c
Nc−1

(m)

E
∆W f

Nf−1

[
P
(
ŜNc

) ∂ log pc
∂σcNc−1

∣∣∣∣∣ ŜcNc−1

(m)
,∆W f

Nf−2

]

≈ 1

d

d∑
i=1

P
µcNc−1 + σcNc−1

∆W f
Nf−1

(i)√
hf

− 2P
(
µcNc−1

)

+P

µcNc−1 − σcNc−1

∆W f
Nf−1

(i)√
hf

 ∆W f
Nf−1

(i) 2

− hf
2σcNc−1hf


(m)

(2.80)

2.2.4.1 Estimated complexity

The results of our numerical experiments are found in figures 2.7 and 2.8. We

present the corresponding convergence rates and computational complexities for

d = 10 in table 2.4.

2.2.4.2 “Intuitive” interpretation

As in section 2.2.3, this is an approximation of the conditional expectation tech-

nique, and so getting the same convergence rates as before was expected.

We can also note that increasing the number of samples d does not improve the

convergence rate of the algorithm (as was the case for split pathwise sensitivities).

The analysis of this fact is beyond the scope of this thesis and will be investigated

in future research.
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Figure 2.7: Vibrato Monte Carlo, European call : E(Ŷl)

Figure 2.8: Vibrato Monte Carlo, European call : Vl

Estimator α β MLMC Complexity

Value ≈ 1.0 ≈ 2.0 O(ε−2)

Delta ≈ 1.6 ≈ 1.5 O(ε−2)

Vega ≈ 1.0 ≈ 2.0 O(ε−2)

Table 2.4: Vibrato Monte Carlo, European call : estimated complexity
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2.3 Discontinuous payoffs (European digital call)

The European digital call’s payoff is P = 1ST>K . The discontinuity of the payoff

makes the computation of Greeks more challenging. We cannot apply pathwise

sensitivities, and so we have to use conditional expectations or Vibrato Monte Carlo.

2.3.1 Pathwise sensitivities and conditional expectations

With the same notation as in section 2.2.2 we compute the conditional expecta-

tions of the digital call’s payoff at the fine and coarse levels,

P̂f := E
(
P
(
ŜfNf

) ∣∣∣ŜfNf−1

)
= Φ

µfNf−1 −K

σfNf−1

 (2.81)

and

P̂c := E
(
P
(
ŜcNc

) ∣∣∣ŜcNc−1,∆W
f
Nf−2

)
= Φ

(
µcNc−1 −K
σcNc−1

)
(2.82)

which we use to compute the sensitivities as in (2.59) and (2.65).

2.3.1.1 Estimated complexity

The simulations give figure 2.9, 2.10 and table 2.5. We then obtain the complex-

ities listed in table 2.5.

2.3.1.2 “Intuitive” interpretation

Noting that the first order derivative of the European call’s payoff corresponds

to the payoff of the digital call, the analysis of the European Call in section 2.2.2

explains why we could expect β = 3/2 for the value’s estimator. Giles has actually

proved in [GDR13] that for the digital call we have β = 3/2− δ for any δ > 0.

ST having a smooth distribution, a fraction O
(√

h
)

of all paths arrive in the area

of width O
(√

h
)

around the strike where
∂E
(
P
(
ŜN

) ∣∣∣ŜN−1

)
∂ŜN−1

is not close to 0. In

this area, the second derivative
∂2E

(
P
(
ŜN

) ∣∣∣ŜN−1

)
∂Ŝ2

N−1

= O
(
h−1

)
. Using the strong

convergence properties of the discretisation scheme, we have
∣∣∣ŜfNf − ŜcNc∣∣∣ = O (h)

which results in a difference of order O (h) between the fine and coarse values of

µN−1 and σN−1. For these paths, we therefore have O(1) difference between the fine

and coarse Greeks’ estimates.

The majority of paths arrive further from the strike where the payoff is constant

and
∂E
(
P
(
ŜN

) ∣∣∣ŜN−1

)
∂ŜN−1

≈ 0 and their contribution to the global variance of the
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Figure 2.9: Pathwise sensitivities and conditional expectations, digital call: E(Ŷl)

Figure 2.10: Pathwise sensitivities and conditional expectations, digital call: V(Ŷl)

Estimator α β MLMC Complexity

Value ≈ 1.1 ≈ 1.4 O(ε−2)

Delta ≈ 0.9 ≈ 0.5 O(ε−2.5)

Vega ≈ 1.6 ≈ 0.6 O(ε−2.2)

Table 2.5: Pathwise sensitivities and conditional expectations, digital call : esti-
mated complexity
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multilevel estimator is negligible. Then, the law of total expectations gives

E

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
= O (1) 0 +O

(√
h
)
O (1)

= O
(√

h
) (2.83)

and

V

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
= O (1) 02 +O

(√
h
)
O (1)2

= O
(√

h
) (2.84)

This explains the experimental α ≈ 1/2 and β ≈ 1/2 for the Greeks.

2.3.2 Vibrato Monte Carlo

The Vibrato Monte Carlo technique can be applied to digital options in the same

way as for European calls. Writing P the digital call’s payoff, the formulas of section

2.2.4 still hold.

2.3.2.1 Estimated complexity

We take d = 800 and get figures 2.11, 2.12 and table 2.6.

We observe that unlike in the case of section 2.2.4 (European call), the observed

convergence rate depends heavily on the number of samples d taken. A low number

of final samples will result in unsatisfactory convergence rates. The study of this

behaviour is beyond the scope of this thesis and will be performed in future research.

2.3.2.2 Intuitive interpretation and number of splittings

The reasoning is once again similar to the one presented in section 2.2.3.2: we

write again

V(Ŷl) =
1

Ml
V
Ŵf

[
E

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)]

+
1

dMl
E
Ŵf

[
V

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)] (2.85)

The first term of this expression is similar to what we obtain with the payoff smooth-

ing of section 2.3.1. We can expect

V
Ŵf

[
E

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)]
= O

(√
h
)
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Figure 2.11: Vibrato Monte Carlo, digital call : E(Ŷl)

Figure 2.12: Vibrato Monte Carlo, digital call : V(Ŷl)

Estimator α β MLMC Complexity

Value ≈ 1.0 ≈ 1.4 O(ε−2)

Delta ≈ 1.1 ≈ 0.4 O(ε−2.5)

Vega ≈ 1.7 ≈ 0.5 O(ε−2.3)

Table 2.6: Vibrato Monte Carlo, digital call : estimated complexity
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As explained in equation (2.84), we can also expect

E
Ŵf

[
V

(
∂P̂f
∂θ
−∂P̂c
∂θ

∣∣∣∣∣ Ŵf

)]
= O

(√
h
)

therefore

V(Ŷl) =
1

Ml

(
O
(√

h
)

+
1

d
O
(√

h
))

(2.86)

and the two terms have the same order of convergence, it is therefore fine to take d

constant.

2.4 Asian call option

The payoff of the Asian call option is of the form

P =
(
S −K

)+
(2.87)

where S is defined as the average value of the underlying over the considered time

interval [0, T ].

S =
1

T

∫ T

0
Stdt (2.88)

For an Asian call, pathwise sensitivities is the most appropriate technique. In-

deed, it is a Lipschitz payoff of the underlying’s average price on [0, T ] and its

approximation based on the discretisation Ŝ0, . . . , ŜN is also Lipschitz in those dis-

cretised prices (see below). Also, the fact that this option is path dependent suggests

the importance of a fine path discretisation, which, as seen in section 1.3, renders

the Likelihood Ratio Method inappropriate.

2.4.1 Payoff estimator

As before, we simulate the underlying asset’s price and its sensitivities on a

discretisation t0, . . . , tN of the time interval [0, T ] using the Milstein scheme. As

suggested in [Gil08a], we then use a Brownian bridge construction to define the

following continuous extension on each interval [tn, tn+1].

ŜBB(t) := Ŝn +
t− tn
h

(
Ŝn+1 − Ŝn

)
+ bn

(
W (t)−Wn −

t− tn
h

∆Wn

)
∂ŜBB(t)

∂θ
=
∂Ŝn
∂θ

+
t− tn
h

(
∂Ŝn+1

∂θ
− ∂Ŝn

∂θ

)

+

(
∂Ŝn
∂θ

∂bn
∂S

+
∂bn
∂θ

)(
W (t)−Wn −

t− tn
h

∆Wn

) (2.89)
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where an = a
(
Ŝn, tn

)
, bn = b

(
Ŝn, tn

)
.

We also define a piecewise linear approximation

Ŝ(t) := ŜPL(t) := Ŝn +
t− tn
h

(
Ŝn+1 − Ŝn

)
∂Ŝ(t)

∂θ
=
∂ŜPL(t)

∂θ
=
∂Ŝn
∂θ

+
t− tn
h

(
∂Ŝn+1

∂θ
− ∂Ŝn

∂θ

)
(2.90)

The integral

S =
1

T

∫ T

0
S(t)dt (2.91)

can be approximated by

ŜBB =
1

T

∫ T

0
ŜBB(t)dt (2.92)

and more easily by the trapezoidal approximation

Ŝ := ŜPL =
1

T

∫ T

0
ŜPL(t)dt (2.93)

which can be written

Ŝ =
N−1∑
n=0

1

N

(
Ŝn + Ŝn+1

2

)

=
1

2N

(
Ŝ0 + ŜN

)
+

1

N

N−1∑
n=1

Ŝn

(2.94)

The payoff estimator is then P̂ := P
(
Ŝ
)

=
(
Ŝ −K

)+

2.4.2 Pathwise sensitivities

We note that Ŝ is defined as a smooth Lipschitz function of all
(
Ŝn

)
n=1..N

and

a simple differentiation gives

∂Ŝ

∂θ
=

1

2N

(
∂Ŝ0

∂θ
+
∂ŜN
∂θ

)
+

1

N

N−1∑
n=1

∂Ŝn
∂θ

(2.95)

In the multilevel setting, we use these formulas at the fine level of discretisation by

simulating Ŝfn and
∂Ŝfn
∂θ

for n = 0, . . . , Nf . Equation (2.95) then gives Ŝ
f

and
∂Ŝ

f

∂θ
.

At the coarse level, we simulate Ŝcn,
∂Ŝcn
∂θ

for n = 0, . . . , Nc. We then use these

values to compute Ŝ
c

and
∂Ŝ

c

∂θ
with equation (2.95).

Note that the telescoping property (1.18) needed for the multilevel Monte Carlo

to work is obviously respected when we define these estimators which are identical

for a discretisation with a given number of time steps, no matter whether they are

considered as coarse or fine level estimators.
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The payoff P̂ is a Lipschitz function of Ŝ that is smooth almost everywhere.

Therefore P̂ is also a Lipschitz function of all
(
Ŝn

)
n=1..N

, which is differentiable

everywhere except on the hyperplane defined by
1

N

N∑
n=0

Ŝn = K, i.e. almost every-

where. This confirms that pathwise sensitivities are applicable to this option and

we can write

∂P̂ f

∂θ
=
∂P

∂Ŝ

(
Ŝ
f
)
∂Ŝ

f

∂θ

∂P̂ c

∂θ
=
∂P

∂Ŝ

(
Ŝ
c) ∂Ŝc

∂θ

(2.96)

2.4.2.1 Estimated Complexity

The simulations give the results presented in figures 2.13, 2.14 and in table 2.7

2.4.2.2 “Intuitive” interpretation

Under minimal assumptions, we can again assume that the values
(
Ŝk

)
k=1,...,N

have smooth probability density functions and that the average value Ŝ also has a

smooth probability density function. The interpretation of the observed convergence

rates is then fairly similar to the one for the European call found in section 2.2.1.

The Milstein scheme’s O (h) strong convergence implies that E
(∣∣∣∣ Ŝf − Ŝc ∣∣∣∣) =

O (h). The payoff being Lipschitz, this leads to V
(
P

(
Ŝ
f
)
− P

(
Ŝ
c))

= O
(
h2
)
,

i.e. β = 2 for the value of the option.

For Greeks, the strong convergence of the Milstein scheme implies there is typi-

cally a O (h) difference between
∂Ŝ

f

∂θ
and

∂Ŝ
c

∂θ
. A fraction O (h) of all paths is such

that Ŝ is within O (h) of the strike K. For those, there is a O (1) likelihood that Ŝ
f

and Ŝ
c

are on different sides of the discontinuity in
∂P

∂S
, implying

∂P
∂S

(
Ŝ
f
)
∂Ŝ

f

∂θ

−(∂P
∂S

(
Ŝ
c) ∂Ŝc

∂θ

)
= O (1) (2.97)

For all other paths, Ŝ is far from K and intuitively, the two values Ŝ
f

and Ŝ
c

are

located on the same side of the discontinuity. On each side of the discontinuity,
∂P

∂S
is locally Lipschitz (actually constant), therefore for these paths∂P

∂S

(
Ŝ
f
)
∂Ŝ

f

∂θ

−(∂P
∂S

(
Ŝ
c) ∂Ŝc

∂θ

)
= O (h) (2.98)

51



Figure 2.13: Pathwise sensitivities, Asian call: E(Ŷl)

Figure 2.14: Pathwise sensitivities, Asian call: Vl

Estimator α β MLMC Complexity

Value ≈ 1.0 ≈ 1.8 O
(
ε−2
)

Delta ≈ 0.9 ≈ 1.0 O
(
ε−2 (log ε)2

)
Vega ≈ 1.0 ≈ 1.2 O

(
ε−2
)

Table 2.7: Pathwise sensitivities, Asian call: estimated complexity
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and finally,

E

∂P
∂S

(
Ŝ
f
)
∂Ŝ

f

∂θ

−(∂P
∂S

(
Ŝ
c) ∂Ŝc

∂θ

) = O (h)O (1) +O (1)O (h)

= O (h)

(2.99)

and

E


∂P

∂S

(
Ŝ
f
)
∂Ŝ

f

∂θ

−(∂P
∂S

(
Ŝ
c) ∂Ŝc

∂θ

)2
 = O (h)O (1) +O (1)O

(
h2
)

= O (h)

(2.100)

which suggests α = 1 and β = 1 for Greeks.

2.5 European lookback call

The lookback call payoff is

P = ST − min
t∈[0,T ]

St (2.101)

Pathwise sensitivities is once again the most appropriate technique. The payoff

is a smooth function of the underlying’s value on [0, T ]. As detailed below, its

approximation based on the discretisation Ŝ0, . . . , ŜN remains smooth.

The path dependency once again suggests the importance of a fine discretisation,

which makes the Likelihood Ratio Method inappropriate.

2.5.1 Payoff estimator

The naive approximation of the payoff would be P̂ = (ŜN − min
n
Ŝn). Nev-

ertheless, as explained in [Gil08a], it does not result in satisfactory convergence

rates with the Milstein scheme. The numerical results of Andersen and Brotherton-

Radcliffe [ABR96] and Beaglehole, Dybvig and Zhou [BDZ97] indicate the following

approach can be very effective at improving the convergence rates: after simulating(
Ŝn

)
n=0,...,N

, we approximate the behaviour of the process within each fine time

step [tn, tn+1] as a Brownian bridge with constant volatility bn = b
(
Ŝn, tn

)
. We

write Ŝ(t) := ŜBB(t) the Brownian Bridge extension of the Milstein discretisation

of St. As shown in section 6.4 of [Gla04] and detailed in section 3.4.2, we can then

simulate its local minimum for each time step,

Ŝn,min :=
1

2

(
Ŝn + Ŝn+1 −

√(
Ŝn+1 − Ŝn

)2
− 2 (bn)2 h logUn

)
(2.102)
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with Un a uniform random variable on [0, 1].

In the multilevel setting, for the sake of clarity, we use indices based on the fine

discretisation for both the fine and coarse discretisations, that is,

Ŝfn := Ŝf
(
tfn

)
= Ŝf (nhf )

Ŝcn := Ŝc
(
tfn

)
= Ŝc (nhf )

(2.103)

We define the fine level’s payoff estimator as follows: we simulate the path

Ŝf0 , . . . , Ŝ
f
Nf

and then with bfn = b(Ŝfn , tn), we can simulate the local minimum of

each step as

Ŝfn,min :=
1

2

(
Ŝfn + Ŝfn+1 −

√(
Ŝfn+1 − Ŝ

f
n

)2
− 2

(
bfn
)2
hf logUn

)
(2.104)

The simulated path’s minimum is then defined as the minimum of the the local

minima over all time steps , i.e.

P̂ f = ŜfNf − min
n=0,...,Nf−1

Ŝfn,min (2.105)

At the coarse level we first simulate the “natural” points of the coarse discreti-

sation (i.e. those with even indices Ŝc2k). To get better convergence rates, the idea

is again to consider that the process behaves like a simple Brownian motion on each

time step [t2k, t2k+2] with constant volatility bc2k.

Ŝc(t) = Ŝc2k +
t− t2k
h

(
Ŝc2k+2 − Ŝc2k

)
+ bc2k

(
Wt −W2kh −

t− t2k
h

(W2kh+2 −W2k)

)
(2.106)

We use the Brownian increments of the fine level to define a midpoint value for each

coarse step (thus constructing the values for odd indices Ŝc2k+1).

Ŝc2k+1 :=
1

2

(
Ŝc2k + Ŝc2k+2 − bc2k

(
∆W f

2k+1 −∆W f
2k

))
(2.107)

We recall
(

∆W f
2k+1 −∆W f

2k

)
is the difference of the fine Brownian increments on

the fine time steps [t2k+1, t2k+2] and [t2k, t2k+1]. Conditional on this value, we then

define the minimum over the whole step [t2k, t2k+2] as the minimum of the minima

over each half step, that is

Ŝc2k,min := min

[
1

2

(
Ŝc2k + Ŝc2k+1 −

√(
Ŝc2k+1 − Ŝc2k

)2
− (bc2k)

2hf logU2k

)
,

1

2

(
Ŝc2k+1 + Ŝc2k+2 −

√(
Ŝc2k+2 − Ŝc2k+1

)2
− (bc2k)

2hf logU2k+1

)]
(2.108)

where U2k and U2k+1 are the values we sampled to compute the minima of the
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corresponding time steps [t2k+1, t2k+2] and [t2k, t2k+1] at the fine level. The payoff

estimator is then

P̂ c = ŜcNf − min
k=0,...,Nf/2−1

Ŝc2k,min (2.109)

Note that the fine and coarse estimators of two consecutive levels (l− 1), (l) are

based on the same process Ŝt defined as a Milstein discretisation of St with N :=

Nc(l) = Nf (l− 1) steps and extended as a Brownian bridge with constant volatility

within each time step. The only difference in the estimation of the expectation of the

minimum is that the coarse estimator of level (l− 1) is also based on the simulation

of the mid-values on each time step. Using the indices of the fine discretisation at

level l, for any function f , we can write the tower property

E
(
f
(

min Ŝ2k,min

) ∣∣∣Ŝ0, Ŝ2, . . . , ŜN−2, ŜN

)
=

E
(
E
(
f

(
min
k
Ŝ2k,min

) ∣∣∣Ŝ0, Ŝ1, Ŝ2, . . . , ŜN

) ∣∣∣Ŝ0, Ŝ2, . . . , ŜN−2, ŜN

)
(2.110)

Taking f

(
min
k
Ŝ2k,min

)
= min Ŝ2k,min, the telescoping sum property (1.18) is still

respected for the lookback call’s payoff, which proves the estimators are valid.

2.5.2 Pathwise sensitivities

Using the treatment described above, we see all the quantities defined in the pay-

off estimators are almost surely Lipschitz functions of the simulated values Ŝf0 , . . . , Ŝ
f
Nf

and Ŝc0, . . . , Ŝ
c
Nf

. More precisely, it is locally Lipschitz except when the square root

term appearing in equation (2.102) for the computation of the minimum is 0. This

happens when for some index n, we have Ŝn = Ŝn+1 = min
t∈[tn,tn+1]

Ŝt, which is clearly

a 0-probability event and will be analysed more precisely later.

We can then apply straighforward pathwise sensitivities to compute the multi-

level estimator of the sensitivity. Differentiating (2.104) to get the sensitivity of a

local minimum yields

∂Ŝfn,min
∂θ

=
1

2

[
∂Ŝfn
∂θ

+
∂Ŝfn+1

∂θ

−

(
Ŝfn+1 − Ŝ

f
n

)(
∂Ŝfn+1

∂θ − ∂Ŝfn
∂θ

)
√(

Ŝfn+1 − Ŝ
f
n

)2
− 2

(
bfn
)2
hf logUn

+
2bfn

(
∂bfn
∂θ + ∂bfn

∂Sn
∂Ŝfn
∂θ

)
hf logUn√(

Ŝfn+1 − Ŝ
f
n

)2
− 2

(
bfn
)2
hf logUn



(2.111)

where each term can be easily computed by Pathwise sensitivities.
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Under minimal assumptions, for any 0 ≤ n1 < n2 ≤ Nf , the density functions

of the increments Ŝfn2,min − Ŝfn1,min are clearly smooth (see section 3.3 for more

details). Therefore, for each path, there is almost surely a unique index nfmin such

that Ŝf
nfmin,min

= min
n
Ŝfn,min.

Finally we get

∂P̂ f

∂θ
=
∂ŜfNf
∂θ

−
∂Ŝf

nfmin,min

∂θ
(2.112)

At the coarse level, there is also almost surely a unique index ncmin such that

Ŝcncmin,min = min
n
Ŝcn,min. Note that intuitively the indices ncmin and nfmin are likely to

be the same but that it is not necessarily the case. The sensitivity of Ŝcncmin,min is

computed by differentiating equation (2.108), which results in a formula similar to

(2.111) and we then have

∂P̂ c

∂θ
=
∂ŜcNf
∂θ

−
∂Ŝcncmin,min

∂θ
(2.113)

2.5.2.1 Estimated complexity

The results of our simulations are presented in figures 2.15, 2.16 and table 2.8.

2.5.2.2 “Intuitive” interpretation

Giles et al have proved in [GDR13] that for the value’s estimator, β = 2. For

the lookback option with floating strike with the Black & Scholes model, we have

the particular proportionality relationship between the option’s value and its delta

(∆). Using equation (2.3), we have

∆ =
∂P

∂S0

=
∂ (ST − Smin)

∂S0

=
1

S0
(ST − Smin)

=
1

S0
P

(2.114)

Therefore V (∆l −∆l−1) and V (Pl − Pl−1) are expected to converge at the same

speed and β = 2 for ∆ too. Therefore we focus on a more “typical” Greek like the

vega (ν).

The convergence speed of vega’s estimator cannot be derived as easily as that

of the price in [GDR13]. Indeed, while we know from the convergence properties

of the Milstein scheme that E

∂ŜfNf
∂θ

−
∂ŜcNf
∂θ

 = O (h) and that for any fixed

index n0, E

(
∂Ŝfn0

∂θ
−
∂Ŝcn0

∂θ

)
= O (h), it is difficult to predict the behaviour of
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Figure 2.15: Pathwise sensitivities, lookback call : E(Ŷl)

Figure 2.16: Pathwise sensitivities, lookback call : Vl

Estimator α β MLMC Complexity

Value ≈ 0.9 ≈ 1.9 O(ε−2)

Delta ≈ 0.9 ≈ 1.9 O(ε−2)

Vega ≈ 1.0 ≈ 1.1 O(ε−2)

Table 2.8: Pathwise sensitivities, lookback call : estimated complexity
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E

∂Ŝfnfmin,min

∂θ
−
∂Ŝcncmin,min

∂θ

, which clearly depends on the quantity t
nfmin
−tncmin

=(
nfmin − n

c
min

)
hf , the difference between the times at which the fine and coarse paths

reach their respective minima. This is discussed in detail in chapter 8.

2.5.3 Conditional Expectations, path splitting or Vibrato Monte

Carlo

Unlike the regular call option, the payoff of the lookback call is perfectly smooth

and so therefore there is no benefit from using conditional expectations and associ-

ated methods.

2.6 European barrier call

Barrier options are contracts which are activated or deactivated when the un-

derlying asset’s price St reaches a certain barrier value B. We consider here the

down-and-out call for which the payoff can be written as

P = (ST −K)+ 1 min
t∈[0,T ]

(St) > B (2.115)

Once again the path dependency highlights the importance of a fine discretisation

and we use pathwise sensitivities based estimators.

2.6.1 Payoff estimator

Both the naive estimators and the approach used with the lookback call (simu-

lating minima on each time step using a Brownian Bridge interpolation) are unsat-

isfactory: the discontinuity induced by the barrier results in a high variance when

pricing and makes pathwise sensitivities inapplicable. Therefore, we use the ap-

proach presented in [BCI99] or [GS01] and used in [GDR13]: after simulating the

path at times t0, . . . , tN , we compute for each time step [tn, tn+1] the probability pn

that the Brownian interpolant Ŝ(t) crosses the barrier, i.e. that the local minimum

is below B. It can be proved (see [Gla04] for example) that

pn = exp

(
−2(Ŝn −B)+(Ŝn+1 −B)+

b2n h

)
(2.116)

We then define the price estimator

P̂ = (ŜN −K)+
N−1∏
n=0

(1− pn) (2.117)
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and note that

E
((

ŜN −K
)+

1
min Ŝt>B

∣∣∣Ŝ0, . . . , ŜN

)
=
(
ŜN −K

)+
E
(
1

min Ŝt>B

∣∣∣Ŝ0, . . . , ŜN

)
=
(
ŜN −K

)+
E

(
N∏
n=0

1
min

[tn,tn+1]
Ŝt>B

∣∣∣Ŝ0, . . . , ŜN

)

=
(
ŜN −K

)+
N∏
n=0

E

(
1

min
[tn,tn+1]

Ŝt>B

∣∣∣Ŝn, Ŝn+1

)
= P̂

(2.118)

As P̂ is the conditional expectation of
(
ŜN −K

)+
1

min Ŝt>B
, the two have the same

expectation (tower property). Just like the Pathwise sensitivities with Conditional

Expectations in the case of Vanilla options, this is an instance of what Boyle et al.

call the conditional Monte Carlo method in [BBG97] and using P̂ instead of sampling

the local minimums to estimate the second expression contributes to reducing the

variance of the price estimator.

For multilevel simulations we again index both the fine and coarse levels with

respect to the fine discretisation grid, as described in equation (2.103).

At the fine level, we simulate Ŝf0 , Ŝ
f
1 , . . . , Ŝ

f
Nf

and using the Brownian Bridge

interpolant Ŝf (t) on each step, we simply apply the previous formula to define

P̂ f = (ŜfNf −K)+

Nf−1∏
n=0

(
1− pfn

)
(2.119)

with

pfn = exp

(
−2(Ŝfn −B)+(Ŝfn+1 −B)+

(bfn)2 hf

)
(2.120)

At the coarse level we proceed as for the lookback option: we first simulate

the discretised values on the coarse grid: Ŝ0, Ŝ2, . . . , ŜNf . Then,on each coarse

time step [t2k, t2k+2], we simulate a midpoint value Ŝc2k+1 corresponding to time

t2k+1 = (2k + 1)hf using the Brownian interpolation formula (2.89). Then for each

coarse time step, we consider pc[2k,2k+2] the probability of not hitting B in [t2k, t2k+2],

that is, the conditional probability that the Brownian Bridge interpolant Ŝc(t) does

not hit B in the fine time steps [t2k, t2k+1] and [t2k+1, t2k+2], conditional on its value
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at t2k+1. Thus we write

P̂ c = (ŜcNf −K)+

Nf/2−1∏
k=0

(
1− pc[2k,2k+2]

)

= (ŜcNf −K)+

Nf/2−1∏
k=0

(
(1− pc2k)(1− pc2k+1)

) (2.121)

where pc2k and pc2k+1 are the probabilities of the coarse interpolant not hitting B on

[t2k, t2k+1] and [t2k+1, t2k+2], conditional on its values Ŝc2k, Ŝ
c
2k+1, Ŝ

c
2k+2, i.e.

pc2k = exp

(
−2(Ŝc2k −B)+(Ŝc2k+1 −B)+

(bc2k)
2 hf

)

pc2k+1 = exp

(
−2(Ŝc2k+1 −B)+(Ŝc2k+2 −B)+

(bc2k)
2 hf

) (2.122)

Note that we keep the same volatility on the whole coarse interval, i.e. for k =

0, . . . , Nf/2− 1, we use bc2k = bc2k+1 := bc[2k,2k+2]. As in the case of lookback options

(see 2.110), the tower property guarantees the estimator satisfies the telescoping

sum property (1.18).

2.6.2 Pathwise sensitivities

Note that in the Black & Scholes model we can assume the existence of a strictly

positive lower bound of the volatility: if Ŝn < B, we know that P̂ = 0 and there is

no need for interpolation. Therefore we can always assume b (S, t) = σSt > σB > 0.

Assuming the volatility terms bfn and bcn are non-zero, we see clearly from equa-

tions (2.119) and (2.121) that the multilevel estimator Ŷl = P̂ f−P̂ c is Lipschitz with

respect to all
(
Ŝfn

)
n=1,...,Nf

and
(
Ŝcn

)
n=1,...,Nf

and we can use pathwise sensitivities.

At the fine level, we have

∂P̂ f

∂θ
= 1

ŜfNf
>K

∂ŜfNf
∂θ

Nf−1∏
n=0

(
1− pfn

)

−
(
ŜfNf −K

)+
Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ

 (2.123)

with

∂pfn
∂θ

= 1(
Ŝfn,Ŝ

f
n+1>B

)pfn
−2δ̂fn

(
Ŝfn+1 −B

)
bfn

2
hf

+
−2δ̂fn+1

(
Ŝfn −B

)
bfn

2
hf

+
4
(
Ŝfn −B

)(
Ŝfn+1 −B

)
b̃n
f

bfn
3
hf


(2.124)

60



where δ̂fn :=
∂Ŝfn
∂θ

and b̃fn :=

(
∂bfn
∂θ

+
∂bfn
∂Sn

∂Ŝfn
∂θ

)
are computed easily via pathwise

sensitivities.

At the coarse level, we obtain similar expressions for
∂P̂ c

∂θ
by differentiating

(2.121), see chapter 7 for more details.

2.6.2.1 Estimated complexity

Our numerical simulations give the results presented in figures 2.17, 2.18 and

table 2.9.

2.6.2.2 “Intuitive” interpretation

Giles et al prove in [GDR13] that for the value’s estimator, β =
3

2
− δ for any

δ > 0. For the Greeks, the intuitive assumption is again that the joint distribution

of the discretised values Ŝ1, . . . , ŜNf is continuous. This suggests that a fraction

O
(√

h
)

of all paths have their fine discretisation’s minimum in an interval of width

O
(√

h
)

, IB =
[
B −O

(√
h
)
, B +O

(√
h
)]

.

Also within each time step [tn, tn+1] of width h, the typical maximum deviation

of the Brownian interpolant from the endpoints is O
(√

h
)

, this means that the value

of the probability pn

(
Ŝn, Ŝn+1

)
goes from 1 (when Ŝn < B or Ŝn+1 < B) to 0 (when

min
(
Ŝn, Ŝn+1

)
− B �

√
h) in an area of width O

(√
h
)

(when Ŝn or Ŝn+1 move

away from the barrier), therefore in this area we intuitively get
∂pn

∂Ŝn
= O

(
h−1/2

)
,

∂pn

∂Ŝn+1

= O
(
h−1/2

)
,
∂2pn

∂Ŝ2
n

= O
(
h−1

)
and

∂2pn

∂Ŝ2
n+1

= O
(
h−1

)
.

The minima of the fine and coarse discretisations differ by O (h). For paths

whose fine discretisation’s minimum is not within the interval IB, they are therefore

either both above B + O
(√

h
)

, or both below B − O
(√

h
)

. Therefore all the

probabilities
(
pfn, p

c
n

)
n=0,...,Nf−1

are going to be almost constant, at either 0 or 1.

In the first case, we never approach the barrier and the payoff is similar to that

of the standard European call:
∂P̂ f

∂θ
− ∂P̂ c

∂θ
= O (h) for the O (1) fraction of paths

such that ST is far from K and
∂P̂ f

∂θ
− ∂P̂ c

∂θ
= O (1) for the fraction O

(√
h
)

of

paths that arrive close to K.

In the second case, the barrier is hit by both discretisations and
∂P̂ f

∂θ
− ∂P̂

c

∂θ
= 0,

this happens for a fraction O (1) of all paths.

For paths whose fine discretisation’s minimum is in IB: let us assume the path

gets close to B on a given step [tn, tn+1]. Intuitively, the volatility will be similar at

the coarse and fine levels and we can approximate pfn (x, y) ≈ pcn(x, y) := pn(x, y),
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Figure 2.17: Pathwise sensitivities, barrier call : E(Ŷl)

Figure 2.18: Pathwise sensitivities, barrier call : V(Ŷl)

Estimator α β MLMC Complexity

Value ≈ 1.0 ≈ 1.6 O(ε−2)

Delta ≈ 1.0 ≈ 0.6 O(ε−2.4)

Vega ≈ 1.0 ≈ 0.6 O(ε−2.4)

Table 2.9: Pathwise sensitivities, barrier call : estimated complexity
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we can write the difference

pfn − pcn ≈
∂pn

∂Ŝn

(
Ŝfn , Ŝ

f
n+1

)(
Ŝfn − Ŝcn

)
+

∂pn

∂Ŝn+1

(
Ŝfn , Ŝ

f
n+1

)(
Ŝfn − Ŝcn

)
= O

(
h−1/2

)
O (h) +O

(
h−1/2

)
O (h)

= O
(√

h
) (2.125)

Now, assuming there is no direct dependency of pn on θ (which is the case for ∆),

∂pfn
∂θ
− ∂pcn

∂θ
=
∂pfn

∂Ŝn

∂Ŝfn
∂θ

+
∂pfn

∂Ŝn+1

∂Ŝfn+1

∂θ
− ∂pcn

∂Ŝn

∂Ŝcn
∂θ

+
∂pcn

∂Ŝn+1

∂Ŝcn+1

∂θ

=
∂pfn

∂Ŝn

(
∂Ŝfn
∂θ
− ∂Ŝcn

∂θ

)
+

∂pfn

∂Ŝn+1

(
∂Ŝfn+1

∂θ
−
∂Ŝcn+1

∂θ

)

+
∂Ŝcn
∂θ

(
∂pfn

∂Ŝn
− ∂pcn

∂Ŝn

)
+
∂Ŝcn+1

∂θ

(
∂pfn+1

∂Ŝn+1

−
∂pcn+1

∂Ŝn+1

)
≈ O

(
h−1/2

)
O (h) +O

(
h−1/2

)
O (h)

+O (1)
∂2pn

∂Ŝ2
n

(
Ŝfn − Ŝcn

)
+O (1)

∂2pn+1

∂Ŝ2
n+1

(
Ŝfn+1 − Ŝ

c
n+1

)
= O

(
h1/2

)
+O

(
h−1

)
O (h) +O

(
h−1

)
O (h)

= O (1)

(2.126)

therefore from formula (2.123) and its coarse equivalent, we expect a difference

∂P̂ f

∂θ
− ∂P̂ c

∂θ
= O (1) for these paths.

Combining the previous results on the contributions of various types of paths

using the law of total expectation, we get

E

(∂P̂ f
∂θ
− ∂P̂ c

∂θ

)2
 = O (1) 0 +O (1)O

(
h2
)

+O
(√

h
)
O (1) +O

(√
h
)
O (1)

= O
(√

h
)

(2.127)

which suggests the rate β ≈ 1/2, which is indeed what we observe experimentally.

Similarly, we can show we expect α ≈ 1/2.

2.6.3 Conditional Expectations

The low convergence rates observed in the previous section come from from both

the discontinuity at the barrier and from the lack of smoothness of the call around

K. To address the latter, we could use the techniques described in section 2.2:

Conditional Expectations, split pathwise sensitivities and Vibrato Monte Carlo.

Nevertheless, the above analysis reveals that the contributions to the global
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variance of the two sources of discontinuity have the same amplitude: in both cases,

a fraction O
(√

h
)

of all paths (the ones not hitting the barrier and such that ST

is close to K or the ones not hitting the barrier and whose minimum is close to B)

result in a difference O (1) between the fine and coarse estimates of the Greek. The

techniques mentioned earlier would not reduce the contribution of the barrier and

therefore the asymptotic rate of convergence would remain the same. Asymptoti-

cally there is therefore no benefit from using them and they would not reduce the

computational cost of the multilevel computations.
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Chapter 3

Numerical analysis, preliminary

notes

In this chapter, we deal with various questions that are essential for a rigorous

mathematical analysis of the multilevel techniques presented in chapter 2.

We begin by proving that the method used in chapter 2, the differentiation of the

simulated underlying asset’s values Ŝ0, . . . , ŜN does result in satisfactory estimators

of the underlying asset’s sensitivities
∂S0

∂θ
, . . . ,

∂ST
∂θ

, i.e. the sensitivity analysis of

the discrete path approximation is equivalent to a discrete approximation of the sen-

sitivity’s SDE. This equivalence seems intuitively natural but needs to be established

to prove convergence as the timestep h→ 0.

We provide practical conditions ensuring that pathwise sensitivities are appli-

cable. We verify the method is valid in the setting of the Black & Scholes model

and explain under which conditions it still is in the more general setting of an Ito

process as described by equation (1.2). We then check that the differentiation of the

simulated option’s value does result in satisfactory estimators of the Greeks.

Certain regularity properties of the underlying asset’s density function are nec-

essary or at least desirable to make the analysis valid or to simplify it; we provide

practical conditions on the process’s volatility ensuring those are satisfied.

We present several important results on the moments of the solution of the

evolution equation (1.2), on the properties of its discretisation and its continuous

extensions. We introduce the fundamental theorem on which the so-called “extreme

paths analysis” used in chapters 4 to 8 is based. Finally we introduce a convenient

abuse of notation.

3.1 Estimating the underlying asset’s sensitivity

We recall that in chapter 2, we first discretised the asset’s evolution equation

(2.2): we split the time interval [0, T ] into N time steps of width h = T/N and as
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in equation (2.19) we obtained a discretisation formula of the form

Ŝn+1 = f
(
θ, Ŝn,∆Wn

)
(3.1)

This enabled us to simulate approximate solutions Ŝ0, Ŝ1, . . . , ŜN . Then, to obtain

their sensitivities
∂Ŝ0

∂θ
, . . . ,

∂ŜN
∂θ

, we simply differentiated the discretisation scheme

(3.1) as in equation (2.25) and obtained a discrete equation of the form

∂Ŝn+1

∂θ
=
∂f
(
θ, Ŝn,∆Wn

)
∂θ

+
∂f
(
θ, Ŝn,∆Wn

)
∂Ŝn

∂Ŝn
∂θ

(3.2)

3.1.1 Order of discretisation and differentiation

Classical convergence results on the Euler and Milstein schemes (see [Mil79],

[Tal84], [KP92] or [GS72] and section 1.1.2) guarantee the weak and strong conver-

gence of Ŝ0, Ŝ1, . . . , ŜN towards S0, Sh, . . . , SNh = ST but they do not guarantee a

priori that their sensitivities
∂Ŝ0

∂θ
, . . . ,

∂ŜN
∂θ

can be used as “naive” estimators that

will converge towards
∂S0

∂θ
, . . . ,

∂ST
∂θ

. Here we prove that it is actually the case by

showing we can equivalently consider the evolution SDE for the asset’s value and

its sensitivity, that is, the vector SDE satisfied by Ut =

(
St,

∂St
∂θ

)
and to then

discretise it into Û0, Û1, . . . , ÛN using the Euler or Milstein schemes or alternatively

consider (as before) the Milstein discretisation for the evolution SDE of the asset St

and to then differentiate it with respect to the parameter θ. That is, we will prove

that for k = 0, . . . , N ,

Ûk =

 Ŝk

∂Ŝk
∂θ

 (3.3)

Note that, more generally, if we want the sensitivities of St with respect to n dif-

ferent parameters, we can obviously consider the n + 1-dimensional process Ut =(
St,

∂St
∂θ1

, . . . ,
∂St
∂θn

)
still driven by the 1-dimensional Brownian motion Wt and com-

pare its discretisation Û0, Û1, . . . , ÛN to the result of differentiating the discretised

asset’s value Ŝk with respect to each of the elements θ1, . . . , θn. As the number of

sensitivities considered at once does not change the analysis, we focus only on the

case n = 1 for the sake of readability.

From now on, we also assume for the sake of simplicity that the parameter θ does

not have any effect on the size of the time step h = T/N . If it did (e.g. considering

the sensitivity of the price to the time to expiry T ), we would have to add extra

terms into our equations to take into account the impact of the parameter on the

discretisation itself but the analysis would be essentially the same.

The values Û0, Û1, . . . , ÛN result from a proper Euler or Milstein discretisation of

the process Ut =

(
St,

∂St
∂θ

)
. The properties of those schemes ensure they converge
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towards U0, U1, . . . , UN , i.e. for any fixed time t = k h, we have

Ûk −−−→
h→0

 St
∂St
∂θ

 (3.4)

The importance of the discretisation-differentiation/differentiation-discretisation equiv-

alence comes from the fact that if we prove it by showing that (3.3) holds, then we

have for k = 0, . . . , N ,

∂Ŝk
∂θ
−−−→
h→0

∂St
∂θ

(3.5)

that is, the naive estimators

(
∂Ŝk
∂θ

)
k=0,...,N

used in chapter 2 do converge (as hoped)

towards the sensitivities of the exact solution

(
∂St
∂θ

)
k=0,...,N

. The convergence

speed is then determined by the weak and strong convergence properties of the

schemes used (again see [Mil79], [Tal84], [KP92] or [GS72] and

section 1.1.2).

3.1.2 Evolution SDE for the underlying asset’s value and its sensi-

tivity

Equation (1.2) means that for t ∈ [0, T ], the solution St can be written as

St = S0 +

t∫
0

a(Su, u) du+

t∫
0

b(Su, u) dWu (3.6)

and then, differentiating with respect to θ,

∂St
∂θ

=
∂S0

∂θ
+

∂

∂θ

t∫
0

a(Su, u) du+
∂

∂θ

t∫
0

b(Su, u) dWu (3.7)

Intuitively, we would like to be able to conclude that we have

∂St
∂θ

=
∂S0

∂θ
+

t∫
0

(
∂a

∂θ
(Su, u) +

∂a

∂S
(Su, u)

∂Su
∂θ

)
du

+

t∫
0

(
∂b

∂θ
(Su, u) +

∂b

∂S
(Su, u)

∂Su
∂θ

)
dWu

(3.8)

that is, in an infinitesimal form,

d
∂St
∂θ

=

(
∂a

∂θ
(St, t) +

∂a

∂S
(St, t)

∂St
∂θ

)
dt+

(
∂b

∂θ
(St, t) +

∂b

∂S
(St, t)

∂St
∂θ

)
dWt (3.9)
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To get (3.8) from (3.7), we need some conditions ensuring it is possible to interchange

the order of integration and differentiation in both integrals. Some interesting results

enabling this interchange can be found in [Kar83] and [HN84]. We present here

slightly more restrictive, yet more convenient and readily applicable conditions on

the flows of SDE solutions. These are presented and proved in section V.7 of [Pro90].

We consider an n-dimensional process Xt =
(
Xi
t

)
i=1,...,n

on the probability space

(Ω,F , P ), solution of a stochastic differential equation of the form

Xt = x+

t∫
0

F (Xs)dZs (3.10)

where Zt = (Zαt )α=1,...,m is a continuous m-dimensional semimartingale with Zα0 = 0

for α = 1, . . . ,m. The vector x =
(
xi
)
i=1,...,n

corresponds to the initial values of Xt

and F (Xt) is an n×m matrix of functions F iα (Xt) from Rn to R.

Clearly the solution of the equation depends on the set of initial parameters x

and we can study the flow of the equation, that is, the function φ : x → X (t, ω, x)

which can be seen as mapping Rn → Rn for (t, ω) fixed or as mapping Rn → Dn for

ω fixed, where Dn is the space of càdlàg functions from R+ to Rn with the topology

of uniform convergence on compacts (in practice we consider a finite expiry T and

this topology is then the topology of uniform convergence on [0, T ]).

Theorem 3.1.1. (Theorem 38 in [Pro90]) Assuming that the functions(
F iα (Xt)

)
i=1,...,n;α=1,...,m

are globally Lipschitz on Rn, then there exists a unique

càdlàg solution X (t, ω, x) to equation (3.10) on R+×Ω×Rn. For each x, the process

X (t, ω, x) is a solution of the equation and for almost all ω, the flow x→ X (., ω, x)

from Rn to Dn is continuous on Rn in the topology of uniform convergence on com-

pacts.

The previous theorem gives a result on the continuity of flows. The next one is

an extension that deals with their differentiability.

Theorem 3.1.2. (Theorem 39 in [Pro90]) If in addition to the hypotheses of theorem

3.1.1 we also assume that the functions
(
F iα (Xt)

)
have bounded locally Lipschitz first

order derivatives, then (3.10) has a unique solution X (t, ω, x) that for almost all ω

is continuously differentiable in x.

For any k ∈ [1, n], the partial derivative
∂X

∂xk
(t, ω, x) is then the solution of

∂Xi
t

∂xk
= δki +

m∑
α=1

n∑
j=1

t∫
0

∂F iα
∂Xj

(Xs)
∂Xj

s

∂xk
dZαs (3.11)

where δki is Kronecker’s delta symbol.

Note that as explained in sections V.7 and V.8 of [Pro90], theorem 3.1.2 can be

extended to prove that the flow of the solution Xt is N times continuously differ-
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entiable in x if we also assume the functions F iα (Xt) have locally Lipschitz partial

derivatives up to order N (see theorem 40 in [Pro90]).

For our practical application of this result to equation (3.6), we consider Xt, the

vector process containing the underlying price St as well as different parameters of

interest with respect to which we want to differentiate the price (e.g. volatility σ,

interest rate r, initial value S0), that is,

x =



S0

θ1

θ2

...

θn


and

Xt =



St

θ1

θ2

...

θn


All but the first element of Xt are constant, which corresponds to the case where(
F iα (Xt)

)
i=2,...,n

= 0. Usually θ1, . . . , θn are taken to be independent parameters

and the sensitivities are then

∂Xi

∂θk
(t) =



∂St
∂θk
∂θ1

∂θk
∂θ2

∂θk
...
∂θn
∂θk


=



∂St
∂θk
δk1

δk2

. . .

δkn


(3.12)

The continuous semimartingale with respect to which we integrate is

Zt =

(
Wt

t

)

and the matrix F is then

F =


b(S, t) a(S, t)

0 0

0 0
...

...


We can apply theorem 3.1.2 that ensures that if a(S, t) and b(S, t) are Lipschitz and
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their first order partial derivatives are bounded and locally Lipschitz, then the flow

θk → St is differentiable and
∂St
∂θk

is the solution of

∂St
∂θk

=
∂S0

∂θk
+

n∑
j=1

t∫
0

∂F iα
∂Xj

(Xs)
∂Xj

s

∂xk
dWs +

n∑
j=1

t∫
0

∂F iα
∂Xj

(Xs)
∂Xj

s

∂xk
ds (3.13)

Noting that for j ≥ 2 the term
∂Xj

s

∂xk
of equation (3.11) is

∂θj
∂θk

= δkj , this becomes

∂St
∂θk

=
∂S0

∂θk
+

 t∫
0

∂b

∂S
(Xs, s)

∂Ss
∂θk

+
∂b

∂θk
(Xs, s)

dWs

+

 t∫
0

∂a

∂S
(Xs, s)

∂Ss
∂θk

+
∂a

∂θk
(Xs, s)

 ds

(3.14)

This means that assuming a (S, t) and b (S, t) are Lipschitz and have bounded locally

Lipschitz first order derivatives, the solution of (1.2) and its sensitivity with respect

to θ follow the joint evolution SDE (3.15)

dS(t) = a(St, t) dt+ b(St, t) dWt

d
∂St
∂θ

=

(
∂a

∂θ
(St, t) +

∂a

∂S
(St, t)

∂St
∂θ

)
dt

+

(
∂b

∂θ
(St, t) +

∂b

∂S
(St, t)

∂St
∂θ

)
dWt

(3.15)

Note the second term of this joint evolution SDE does indeed correspond to the

naively differentiated equation we hoped for in (3.9).

We can rewrite (3.15) as a vector equation describing the evolution of the 2-

dimensional process Ut =

(
St,

∂St
∂θ

)
driven by a single 1-dimensional Brownian

motion Wt.

dUt =


a(S, t)

∂a

∂θ
(St, t) +

∂a

∂S
(St, t)

∂St
∂θ

dt

+


b(S, t)

∂b

∂θ
(St, t) +

∂b

∂S
(St, t)

∂St
∂θ

 dWt

(3.16)
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3.1.3 Differentiation of the discretisation/discretisation of the dif-

ferentiated SDE

We now compare the formulas resulting from the differentiation of the discreti-

sation of the evolution SDE for St and the ones resulting from the discretisation of

the evolution SDE for Ut =

(
St,

∂St
∂θ

)
.

3.1.3.1 Differentiation of the Euler discretisation

We have seen in section 1.1.2 that the Euler discretisation of equation (1.2) is

Ŝn+1 = Ŝn + a
(
Ŝn, tn

)
h+ b

(
Ŝn, tn

)
∆Wn (3.17)

Assuming the coefficients a (S, t) and b (S, t) are differentiable with respect to S

and θ, we differentiate (3.17) with respect to θ and obtain

∂Ŝn+1

∂θ
=
∂Ŝn
∂θ

+

(
∂a

∂θ

(
Ŝn, tn

)
+
∂a

∂S

(
Ŝn, tn

) ∂Ŝn
∂θ

)
h

+

(
∂b

∂θ

(
Ŝn, tn

)
+
∂b

∂S

(
Ŝn, tn

) ∂Ŝn
∂θ

)
∆Wn

(3.18)

3.1.3.2 Euler discretisation of the differentiated equation

Now that we have proved that (3.16) is the evolution SDE for Ut =

(
St,

∂St
∂θ

)
,

we can apply the multidimensional Euler discretisation as described in section 10.2

of [KP92]. For n = 0, . . . , N − 1, we obtain

Ûn+1 = Ûn +

 a(Stn , tn)
∂a

∂θ
(Stn , tn) +

∂a

∂S
(Stn , tn)

∂Stn
∂θ

h

+

 b(Stn , tn)
∂b

∂θ
(Stn , tn) +

∂b

∂S
(Stn , tn)

∂Stn
∂θ

∆Wn

(3.19)

Comparing it to (3.18), this proves that (3.3) holds for the Euler scheme.

3.1.3.3 Differentiation of the Milstein discretisation

As seen in section 1.1.2, for n = 0, . . . , N − 1, the Milstein discretisation of

equation (1.2) is

Ŝn+1 = Ŝn + a
(
Ŝn, tn

)
h+ b

(
Ŝn, tn

)
∆Wn

+
1

2
b
(
Ŝn, tn

) ∂b

∂S

(
Ŝn, tn

) (
∆W 2

n − h
) (3.20)

Assuming that
∂a

∂S
,
∂b

∂S
,
∂a

∂θ
,
∂b

∂θ
,
∂2b

∂S2
,
∂2b

∂S∂θ
exist, differentiating (3.20) with re-
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spect to θ gives

∂Ŝn+1

∂θ
=
∂Ŝn
∂θ

+

(
∂Ŝn
∂θ

∂a

∂S

(
Ŝn, tn

)
+
∂a

∂θ

(
Ŝn, tn

))
h

+

(
∂Ŝn
∂θ

∂b

∂S

(
Ŝn, tn

)
+
∂b

∂θ

(
Ŝn, tn

))
∆Wn

+
1

2

[
∂Ŝn
∂θ

(
∂b

∂S

(
Ŝn, tn

))2

+
∂Ŝn
∂θ

b
∂2b

∂S2

(
Ŝn, tn

)
+
∂b

∂θ

∂b

∂S

(
Ŝn, tn

)
+ b

∂2b

∂θ∂S

(
Ŝn, tn

)] (
∆W 2

n − h
)

(3.21)

Writing δ̂n for
∂Ŝn
∂θ

, this is

δ̂n+1 = δ̂n +

(
δ̂n

∂a

∂S
+
∂a

∂θ

)(
Ŝn, tn

)
h

+

(
δ̂n

∂b

∂S
+
∂b

∂θ

)(
Ŝn, tn

)
∆Wn

+
1

2

[
δ̂n

(
∂b

∂S

)2

+ δ̂n b
∂2b

∂S2

+
∂b

∂θ

∂b

∂S
+ b

∂2b

∂θ∂S

](
Ŝn, tn

) (
∆W 2

n − h
)

(3.22)

3.1.3.4 Milstein discretisation of the differentiated equation

We can apply the multidimensional Milstein discretisation to (3.16), as described

in section 10.3 of [KP92]. Note that even though Ut is technically a multidimensional

SDE, its Milstein scheme is still easily computed as the driving Brownian motion is

only 1-dimensional. We get as in p346 of [KP92] that

Ŝn+1 = Ŝn + a
(
Ŝn, tn

)
h+ b

(
Ŝn, tn

)
∆Wn +

1

2
b
∂b

∂S

(
Ŝn, tn

) (
∆W 2

n − h
)

δ̂n+1 = δ̂n +

(
δ̂n
∂a

∂S
+
∂a

∂θ

)(
Ŝn, tn

)
h

+

(
δ̂n
∂b

∂S
+
∂b

∂θ

)(
Ŝn, tn

)
∆Wn

+
1

2

[
δ̂n

(
∂b

∂S

)2

+ δ̂n b
∂2b

∂S2

+
∂b

∂θ

∂b

∂S
+ b

∂2b

∂θ∂S

](
Ŝn, tn

) (
∆W 2

n − h
)

(3.23)

Comparing it to (3.22), this proves that (3.3) holds for the Milstein scheme.
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3.1.3.5 Conclusion

We have checked that it is equivalent to consider the discretisation of the multi-

dimensional SDE describing the evolution of the underlying asset and its sensitivity

Ut =

(
St,

∂St
∂θ

)
or to consider the discretisation of the evolution SDE for St and to

then differentiate it with respect to the parameter θ.

This result confirms that the naive approach adopted in chapter 2 was valid and

did indeed yield estimators of
∂Ŝ0

∂θ
, . . . ,

∂ŜN
∂θ

that converged towards
∂S0

∂θ
, . . . ,

∂ST
∂θ

with convergence speeds determined by the usual convergence properties of the

schemes used.

As already mentioned at the beginning of section 3.1, the result is here written

and proved by considering only one sensitivity
∂St
∂θ

but it still holds when considering

any number of Greeks.

3.1.4 Note on Brownian Bridge midpoints

Until now we have dealt with points resulting from a standard discretisation

scheme (Euler or Milstein) applied to the evolution SDE. As explained in chapter

2, we also use Brownian Bridge interpolants to compute midpoint values within

each time step of the coarse level of discretisation (e.g. for the Lookback option

in section 2.5). We can also show that the midpoint values constructed this way

and their sensitivities also converge quickly towards the exact underlying values and

sensitivities.

To prove this result, we consider the Milstein discretisation Ŝ0, Ŝ2, . . . , ŜNf based

on the coarse time grid t0, t2, . . . , tNf−2, tNf of width hc = 2h. We consider a given

coarse step [t2k, t2k+2] and define the point ŜM2k+1 resulting from a Milstein discreti-

sation on the subinterval [t2k, t2k+1]. We show that the Brownian Bridge midpoint

ŜBB2k+1 and its sensitivity
∂ŜBB2k+1

∂θ
converge quickly towards ŜM2k+1 and

∂ŜM2k+1

∂θ
and

therefore towards S2k+1 and
∂S2k+1

∂θ
.

Using the notations ȧn =
∂an
∂Sn

, ḃn =
∂bn
∂Sn

, ãn =
∂an
∂θ

, b̃n =
∂bn
∂θ

, δ̂n =
∂Ŝn
∂θ

, this

Milstein midpoint is defined as

ŜM2k+1 = Ŝ2k + a2kh+ b2k∆W
f
2k +

1

2
bnḃn

((
∆W f

2k

)2
− h
)

δ̂M2k+1 = δ̂2k +
(
ã2k + ȧ2kδ̂2k

)
h+

(
b̃2k + ḃ2kδ̂2k

)
∆W f

2k

+
1

2

[(
b̃2k + ḃ2kδ̂2k

)
ḃ2k

+b2k

(
∂2b2k
∂S2k∂θ

+
∂2b2k
∂S2

2k

δ̂2k

)]((
∆W f

2k

)2
− h
)

(3.24)

This point corresponds to a Milstein discretisation with non-uniform time steps:

steps of width 2h between t0 and t2k, a step of width h between t2k and t2k+1. The
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largest time step is 2h, the convergence properties of the Milstein scheme prove that(
ŜM2k+1,

∂ŜM2k+1

∂θ

)
converges towards

(
St2k+1

,
∂St2k+1

∂θ

)
and the order of weak and

strong convergence are both 1 as h→ 0.

Now, the midpoint value based on the Brownian Bridge interpolant can be writ-

ten as

ŜBB2k+1 = Ŝ2k +
1

2

(
Ŝ2k+2 − Ŝ2k

)
+ b2k

(
W2k+1 −W2k −

1

2
(W2k+2 −W2k)

)
= Ŝ2k + a2kh+ b2k∆W

f
2k +

1

2
b2k ḃ2k

(
(∆W c

2k)
2 − hc

) (3.25)

Note that

(∆W c
2k)

2 − hc =
(

∆W f
2k + ∆W f

2k+1

)2
− 2h

=

((
∆W f

2k

)2
− h
)

+

((
∆W f

2k+1

)2
+ 2∆W f

2k∆W
f
2k+1 − h

) (3.26)

and the difference between the two midpoints can then be written

ŜBB2k+1 − ŜM2k+1 =
1

2
b2k ḃ2k

((
∆W f

2k+1

)2
+ 2∆W f

2k∆W
f
2k+1 − h

)
(3.27)

From there, assuming b (S, t) , ḃ (S, t) are Lipschitz and using the results of theorems

3.4.1 and 3.4.3 on the finiteness of moments of the solution of the SDE and its

Milstein discretisation, we see that

E
[
ŜBB2k+1 − ŜM2k+1

]
= 0

E
[(
ŜBB2k+1 − ŜM2k+1

)2
]

= O
(
h2
) (3.28)

The second line of (3.28) means the Brownian Bridge midpoint ŜBB2k+1 converges

strongly towards ŜM2k+1 with order 1. Now we look at the convergence of the sensi-

tivities. We write

δ̂BB2k+1 − δ̂M2k+1 =
∂ŜBB2k+1 − ŜM2k+1

∂θ

=
1

2

(
∂

∂θ
+ δ̂2k

∂

∂S2k

)(
b2k ḃ2k

)
[(

∆W f
2k+1

)2
+ 2∆W f

2k∆W
f
2k+1 − h

] (3.29)

and as before, this leads to

E
[
δ̂BB2k+1 − δ̂M2k+1

]
= 0

E
[(
δ̂BB2k+1 − δ̂M2k+1

)2
]

= O
(
h2
) (3.30)
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The second line means the Brownian Bridge midpoint δ̂BB2k+1 converges strongly to-

wards δ̂M2k+1 with order 1.

Putting all these results together, we have a proof that the midpoint values(
ŜBB2k+1,

∂ŜBB2k+1

∂θ

)
constructed using a Brownian Bridge interpolation also converge

towards the exact values

(
St2k+1

,
∂St2k+1

∂θ

)
with a strong convergence of order 1.

3.2 Applicability of pathwise sensitivity Greeks

As seen in section 1.3.1, for the pathwise sensitivity approach to give unbiased

estimators, it is essential that the following re-ordering of the expectation and the

partial differentiation holds
∂E (P )

∂θ
= E

(
∂P

∂θ

)
(3.31)

We first present a lemma that provides conditions ensuring this interchange is valid.

We then proceed to show those conditions are met in the Black & Scholes case and,

under certain conditions, in the general case of the exact solution of an Ito evolution

equation. Finally we prove that the interchange is also valid when dealing with a

discretised version of the underlying Ito process.

3.2.1 Conditions of unbiasedness of pathwise sensitivities

Let θ be a scalar parameter in an open interval Θ and X (θ) be a vector-valued

process. We write X̃ (θ) = (X1 (θ) , . . . , XN (θ)) its values at various discrete times

t1, . . . , tn. We consider a real-valued payoff function P
(
X̃ (θ)

)
. The following

lemma is derived from [Gla88] and [BG96].

Lemma 3.2.1. Assuming the following conditions

• A1: For each n, for all θ ∈ Θ,

X ′n (θ) := lim
∆θ→0

Xn (θ + ∆θ)−Xn (θ)

∆θ
(3.32)

exists with probability 1.

• A2: Let DP be the set of points where P is differentiable. For all θ ∈ Θ,

P
(
X̃ (θ) ∈ DP

)
= 1 (3.33)

then the discounted payoff has a pathwise derivative given by

dP

dθ

(
X̃ (θ)

)
=

N∑
n=1

([
∇xnP

(
X̃ (θ)

)]t
X ′n (θ)

)
(3.34)
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where ∇xnP denotes the vector of partial derivatives of P with respect to the com-

ponents of Xn.

If we also assume that

• A3: P is kP -Lipschitz, i.e. there exists a constant kP such that

|P (X)− P (Y ) | ≤ kP ‖X − Y ‖ (3.35)

for all X,Y in the domain of P .

• A4: there exist random variables (Kn)n=1,...,N such that

‖Xn (θ2)−Xn (θ1)‖ ≤ Kn| θ2 − θ1 | (3.36)

for all θ1, θ2 ∈ Θ with E (Kn) <∞ for all n.

• Ã4: Condition A4 is easy to check but slightly restrictive, it can be replaced by

the more general condition that for all n the family of functions

∆n (θ1, θ2) :=
Xn (θ2)−Xn (θ1)

θ2 − θ1
(3.37)

be uniformly integrable for all θ1, θ2 ∈ Θ.

Then for every θ ∈ Θ,
∂E (P (X))

∂θ
exists and

∂E (P (X))

∂θ
= E

(
∂P (X (θ))

∂θ

)
(3.38)

Proof. With condition A4, the validity of (3.38) is a direct consequence of the dom-

inated convergence theorem. The detailed proof can be found in appendix A of

[BG96].

With condition Ã4, the proof carries over verbatim using the Vitali convergence

theorem (see for example [Rud86]) instead of the dominated convergence theorem.

In practice conditions A1, A2 and A4 or Ã4 are usually satisfied and condition

A3 is the key requirement for making pathwise sensitivities applicable.

Note that for vanilla options, the payoff P only depends on the price of the

underlying asset at expiry ST . Then, N = 1 and ∇xP =
∂P

∂ST
.

Also note that obviously the case of a direct dependence of P on θ, i.e. the

case where we can write P (X) as P (θ,X1(θ), . . . , XN (θ)) is encompassed by for-

mula (3.34). It can be seen as a degenerate case where we have an additional
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variable XN+1 = θ. Then we have

dP

dθ
(X (θ)) =

N+1∑
n=1

([
∇xnP

(
X̃ (θ)

)]t
X ′n (θ)

)

=

N∑
n=1

([
∇xnP

(
X̃ (θ)

)]t
X ′n (θ)

)
+
∂P

∂θ
(X (θ))

(3.39)

3.2.2 Applicability of pathwise sensitivities in the Black & Scholes

model

Note that for any parameter θ (e.g. S0, r, σ), the set of realistic values Θ is clearly

bounded. We can legitimately assume there is a closed interval [θmin, θmax] ⊂ R
containing Θ.

In the Black & Scholes model, we know (see equation (2.3)) that the asset’s price

at time tn is

Stn = S0 exp

((
r − σ2

2

)
tn + σWtn

)
(3.40)

For any parameter θ we may consider, the function θ → Stn(θ) is smooth. Condition

A1 is verified.

The smooth density function of Stn (see equation (2.4)) ensures that if P is

almost everywhere differentiable (e.g. call option, digital call, Asian call, lookback

option, barrier option,. . . ), then condition A2 is verified.

Condition A3 means that the payoff function P must be Lipschitz. This clearly

eliminates the digital call or barrier options. Call options or Asian calls satisfy A3.

For θ = S0

|Stn(S0,2)− Stn(S0,1) | = |S0,2 − S0,1 | exp

((
r − σ2

2

)
tn + σWtn

)
(3.41)

and

E
[
exp

((
r − σ2

2

)
tn + σWtn

)]
= exp (rtn) <∞ (3.42)

therefore condition A4 is verified.

For θ = r, we have

|Stn(r2)− Stn(r1) | = S0 exp

(
−σ

2

2
tn + σWtn

)
| exp (r2tn)− exp (r1tn) |

(3.43)

and for a given time tn, r → exp (rtn) is Lipschitz on [rmin, rmax], which means there

is a constant cn such that for any r1, r2,

|Stn(r2)− Stn(r1) | ≤ S0 exp

(
−σ

2

2
tn + σWtn

)
cn | r2 − r1 | (3.44)
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and as before

E
[
S0 exp

(
−σ

2

2
tn + σWtn

)
cn

]
<∞ (3.45)

Condition A4 is satisfied.

For θ = σ, we can use the mean value theorem to write that for any σ1, σ2 and

any Wtn there exists some value σ3 ∈ [σ1, σ2] such that

(Stn(σ2)− Stn(σ1)) =
∂Stn
∂σ

(σ3) (σ2 − σ1) (3.46)

Therefore

|Stn(σ2)− Stn(σ1) | ≤ max
σ∈[σmin,σmax]

∣∣∣∣ ∂Stn∂σ
(σ)

∣∣∣∣ |σ2 − σ1 | (3.47)

We want the maximum value of∣∣∣∣ ∂Stn∂σ

∣∣∣∣ =

∣∣∣∣S0 (−σtn +Wtn) exp

((
r − σ2

2

)
tn + σWtn

) ∣∣∣∣ (3.48)

We show that for Wtn given, it is reached for σ− =
Wtn −

√
tn

tn
or σ+ =

Wtn +
√
tn

tn
if σ− or σ+ are in [σ1, σ2] or σ1 or σ2 if σ−, σ+ 6∈ [σ1, σ2]. Then,∣∣∣∣ ∂Stn∂σ

(σ−)

∣∣∣∣ =

∣∣∣∣ ∂Stn∂σ
(σ+)

∣∣∣∣ = S0

√
tn exp

(
rtn −

1

2
+
W 2
tn

2tn

)
∣∣∣∣ ∂Stn∂σ

(σi)

∣∣∣∣ = S0 | −σitn +Wtn | exp

((
r − σ2

i

2

)
tn + σiWtn

) (3.49)

which means that

|Stn(σ2)− Stn(σ1) | ≤ Kn (Wtn) |σ2 − σ1 | (3.50)

where Kn is the random variable defined as

Kn :=

∣∣∣∣ ∂Stn∂σ
(σ−)

∣∣∣∣ if Wtn ∈
[
σ1tn −

√
tn, σ2tn +

√
tn
]

Kn :=

∣∣∣∣ ∂Stn∂σ
(σ1)

∣∣∣∣+

∣∣∣∣ ∂Stn∂σ
(σ2)

∣∣∣∣ if Wtn 6∈
[
σ1tn −

√
tn, σ2tn +

√
tn
] (3.51)

which is clearly integrable, E (Kn) <∞, condition A4 is satisfied again.

We conclude that from lemma 3.2.1 that pathwise sensitivities can be applied

to the exact solutions of the evolution SDE in the Black & Scholes model with

almost-everywhere differentiable Lipschitz payoffs.

3.2.3 Applicability of pathwise sensitivities in the general Ito model

Now that we have proved that pathwise sensitivities were applicable for certain

payoffs in the case of the Black & Scholes model, let us consider the more general
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case of equation (1.2).

Assuming the SDE has Lipschitz coefficients with bounded locally Lipschitz first

order derivatives, theorem 3.1.2 ensures that the flow of the solution is differentiable

with respect to the parameter θ and conditions A1 is satisfied for the asset’s prices

St1 , St2 , . . . , ST .

Assuming the payoff function P is almost everywhere differentiable and that the

prices St1 , St2 , . . . , ST have smooth density functions (see section 3.3 for conditions

ensuring this, e.g. bθ(S0, t0) 6= 0), then A2 is also satisfied.

Condition A3 is still a condition meaning that P has to be Lipschitz; it is no

different from what we had in section 3.2.2.

Condition A4 is too restrictive here and we will prove that Ã4 is satisfied in-

stead. To do this, we now present a stochastic extension of the Gronwall inequality

introduced in [Ama05].

Theorem 3.2.2. We let M2
ω [0, T ] be the set of real-valued random variables f

parametrised by t ∈ [0, T ] such that

E
[∫ T

0
f2(ω, t)dt

]
<∞

Assume that ξ(ω, t) and η(ω, t) belong to M2
ω [0, T ]. If there exist functions a(ω, t)

and b(ω, t) belonging to M2
ω [0, T ] such that

| ξ(ω, t) | ≤
∣∣∣∣ ∫ t

0
a(ω, s)ds+

∫ t

0
b(ω, s)dWs

∣∣∣∣ (3.52)

and there are nonnegative constants α0, α1, β0, β1 such that

| a(ω, t) | ≤ α0 | η(ω, t) |+ α1 | ξ(ω, t) |

| b(ω, t) | ≤ β0 | η(ω, t) |+ β1 | ξ(ω, t) |
(3.53)

for 0 ≤ t ≤ T , then we have

E
[
ξ2(ω, t)

]
≤ 4

(
α0

√
t+ β0

)2
exp

(
4t
(
α1

√
t+ β1

)2
)∫ t

0
E
[
η2(ω, s)

]
ds (3.54)

Proof. See [Ama05]

Applying it to our problem, we can write that, for a solution of (1.2) with a, b

depending on some parameter θ,

|St (θ2)− St (θ1) | ≤

∣∣∣∣∣∣
t∫

0

(aθ2 (Ss(θ2), s)− aθ1 (Ss(θ1), s)) ds

+

t∫
0

(bθ2 (Ss(θ2), s)− bθ1 (Ss(θ1), s)) dWs

∣∣∣∣∣∣
(3.55)
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Assuming a and b are Lipschitz in their parameters, we have

| aθ2 (Ss(θ2), s)− aθ1 (Ss(θ1), s) | ≤ α1 |Ss(θ2)− Ss(θ1) |+ α0 | θ2 − θ1 |

| bθ2 (Ss(θ2), s)− bθ1 (Ss(θ1), s) | ≤ β1 |Ss(θ2)− Ss(θ1) |+ β0 | θ2 − θ1 |
(3.56)

and applying the previous theorem, we get for any t ∈ [0, T ],

E

[(
St(θ2)− St(θ1)

θ2 − θ1

)2
]
≤ 4

(
α0

√
t+ β0

)2
exp

(
4t
(
α1

√
t+ β1

)2
)
t (3.57)

Using Jensen’s inequality, we can therefore write that for any t fixed and for all

θ1, θ2 ∈ Θ,

E
(∣∣∣∣ (St (θ2)− St (θ1))

(θ2 − θ1)

∣∣∣∣) ≤
√√√√E

((
St (θ2)− St (θ1)

θ2 − θ1

)2
)
≤ K̃t (3.58)

where K̃t is a constant.

Using the Cauchy-Schwarz inequality, we can also write that for any set A such

that P (A) ≤ δ, then

E
(∣∣∣∣ (St (θ2)− St (θ1))

(θ2 − θ1)

∣∣∣∣1A) ≤√E
(
12
A

)√√√√E

((
(St (θ2)− St (θ1))

(θ2 − θ1)

)2
)

≤
√
δK̃t

(3.59)

Therefore for any ε > 0, picking δt =
(
ε/K̃t

)2
ensures that for any set A such that

P (A) ≤ δt,

E
(∣∣∣∣ (St (θ2)− St (θ1))

(θ2 − θ1)

∣∣∣∣1A) ≤ ε (3.60)

Together, (3.58) and (3.60) mean the family of functions ∆t (θ1, θ2) is uniformly

integrable and condition Ã4 is satisfied.

We have proved that we have all the conditions ensuring that pathwise sensitiv-

ities are applicable. We can summarise our result as follows:

Theorem 3.2.3. Let us consider an option with an almost-everywhere differentiable

Lipschitz payoff P depending on the values of an underlying asset St. Assuming that

St follows an Ito process as described by equation (1.2) on the interval [0, T ], that

the coefficients aθ(S, t), bθ(S, t) are Lipschitz, have bounded locally Lipschitz first

order derivatives and that bθ(S0, 0) 6= 0, then pathwise sensitivities can be applied to

compute the option’s sensitivities.

Proof. See above.
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3.2.4 Convergence of the payoff estimators’ sensitivities

The results of sections 3.2.2 and 3.2.3 guarantee that we can apply pathwise

sensitivities to the exact solution St of an Ito evolution SDE. Computing the exact

solution is possible in the Black & Scholes model (see section 2.1.2) but in most

cases it is impractical and we work with discretised solutions resulting from the

Milstein discretisation of the original SDE. We now present results guaranteeing

that Pathwise sensitivities are still applicable and that the derivatives of payoff

estimators actually result in estimators of the Greeks with a vanishing bias.

3.2.4.1 A simple case

We begin with a simple proof for Lipschitz payoffs P whose first order derivative

is Lipschitz in the underlying asset’s values and sensitivities at a set of given dis-

cretisation times (e.g. a smooth European payoff or a discretely sampled lookback

option).

From the results of section 3.2.3, we now know that

∂

∂θ
E (P (St0 , . . . , StK )) = E

(
∂P (St0 , . . . , StK )

∂θ

)
(3.61)

and then using the convergence properties of the Milstein discretisation presented

in section 3.1, we know that for k = 0, . . . ,K,

E
(∣∣∣ Ŝk − Stk ∣∣∣) = O (h)

E

(∣∣∣∣∣ ∂Ŝk∂θ − ∂Stk
∂θ

∣∣∣∣∣
)

= O (h)
(3.62)

using the fact that the first order derivative of the payoff is Lipschitz in Ŝk and
∂Ŝk
∂θ

,

we then get

E

∂P
(
Ŝ0, . . . , ŜtK

)
∂θ

 = E
(
∂P (St0 , . . . , StK )

∂θ

)
+O (h) (3.63)

Therefore we indeed have

E

∂P
(
Ŝ0, . . . , ŜtK

)
∂θ

 =
∂E (P (St0 , . . . , StK ))

∂θ
+O (h) (3.64)

i.e. the derivative of the payoff’s estimator is an estimator that converges towards

the exact value of the Greek as the time step h is refined.
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3.2.4.2 A more general result

The result of section 3.2.4 does not even apply to simple cases like that of the

European call (its derivative is not Lipschitz in ST ). We here present a more general

set of conditions ensuring that the payoff estimator’s derivative results in an unbiased

estimator of the sensitivity.

Lemma 3.2.4. If the following three conditions are satisfied:

• A1: There exist constants c, α > 0 such that for all θ in some interval Θ,∣∣∣E [P̂l − P] ∣∣∣ < c 2−αl, (3.65)

and ∣∣∣∣∣E
[
∂P̂l
∂θ
− ∂P̂l−1

∂θ

] ∣∣∣∣∣ < c 2−αl. (3.66)

• A2: E

[
∂P̂l
∂θ

]
is continuous in θ.

• A3:
∂

∂θ
E
[
P̂l

]
= E

[
∂P̂l
∂θ

]
(3.67)

then E [P ] is differentiable for all θ in Θ, and there is a second constant c2 such that∣∣∣∣∣E
[
∂P̂l
∂θ

]
− ∂

∂θ
E [P ]

∣∣∣∣∣ < c2 2−αl.

Proof. Due to (3.66), the sequence E

[
∂P̂l
∂θ

]
is a Cauchy sequence and so converges

pointwise to some function Q(θ) as l→∞.

Furthermore, due to the uniform bound in (3.66), plus condition A2, the uniform

convergence theorem proves that Q(θ) is continuous.

If θ1, θ2 lie within the interval Θ, then integrating (3.67) gives

E
[
P̂l(θ2)

]
− E

[
P̂l(θ1)

]
=

∫ θ2

θ1

E

[
∂P̂`
∂θ

]
dθ.

Taking the limit as l→∞, the dominated convergence theorem gives

E [P (θ2)]− E [P (θ1)] =

∫ θ2

θ1

Q(θ) dθ.

and hence, by the first fundamental theorem of calculus since Q(θ) is continuous,

E [P (θ)] is differentiable and its derivative is Q(θ), that is,

∂E (P (θ))

∂θ
= Q (θ) = lim

l→∞
E

[
∂P̂l
∂θ

]
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Finally, defining

c2 = c

∞∑
l=1

2−αl =
c 2−α

1− 2−α
,

summing (3.66) over l we obtain∣∣∣∣∣E
[
∂P̂l
∂θ

]
−Q

∣∣∣∣∣ < c2 2−αl,

which completes the proof.

Now let us prove that the conditions of theorem 3.2.4 are satisfied in the cases

we consider.

The first part of condition A1 corresponds to the weak convergence properties of

the option value’s estimators. The estimators we consider for the European call, the

digital call, the lookback option, the Asian option and the barrier option are those

presented in [Gil08a] where their experimental weak convergence properties are also

established.

In the analysis of the various options (chapters 4 to 8), we establish the conver-

gence properties of E

[
∂P̂l
∂θ
− ∂P̂l−1

∂θ

]
or E

[
∂P̂l
∂θ
− ∂P

∂θ

]
, i.e. we obtain the conver-

gence properties of the sensitivities of the estimators as required by the second part

of condition A1.

To check condition A2, i.e. that for any fixed l, E

[
∂P̂l
∂θ

]
(θ) is continuous on

Θ, we use Vitali’s convergence theorem: if
∂P̂l
∂θ

(θ) is almost surely continuous on a

neighborhood N(Θ) of the interval Θ and if the family of functions

(
∂P̂l
∂θ

)
θ∈N(Θ)

is uniformly integrable, then E

[
∂P̂l
∂θ

]
(θ) is indeed continuous on Θ.

We first check that
∂P̂l
∂θ

is continuous in θ: indeed, we can show by itera-

tion that under the usual regularity assumptions on a, b, the discretised values

Ŝ0, Ŝ1, . . . , ŜNf (l) and their sensitivities
∂Ŝ0

∂θ
, . . . ,

∂ŜNf (l)

∂θ
are almost surely contin-

uous in θ. Then, as will be seen in the numerical analysis of chapters 4 to 8, for

any given level l, the derivatives of the payoff estimators
∂P̂l
∂θ

are almost surely con-

tinuous functions of those values. Therefore
∂P̂l
∂θ

is indeed continuous in θ almost

surely.

Then, as in equations (3.58) and (3.60), we see that to prove the uniform inte-

grability of

(
∂P̂l
∂θ

)
θ∈Θ

, it is enough to prove that there exists a uniform bound K:

for any θ ∈ Θ, E

[
∂P̂l
∂θ

2

(θ)

]
< K. Provided Θ is bounded (which is a reasonable

83



hypothesis for all practical purposes), this will derive from the analysis in chapters

4 to 8.

Condition A3 means that at each level l, the interchange between expectation

and differentiation is valid, which we can prove using lemma 3.2.1. Indeed, under

the same conditions on a, b as before, we can prove by iteration that the simulated

values Ŝ0, . . . , ŜNf (l) are almost surely differentiable in θ. At a given level l, the

payoff estimators described in chapters 2 and 4 to 8 are Lipschitz functions of those

values. In the same way we can also show that for k = 0, . . . , Nf (l) and for any

(θ1, θ2) ∈ Θ2, we can write
∣∣∣ Ŝk(θ2)− Ŝk(θ1)

∣∣∣ ≤ Kk | θ2 − θ1 | where Kk is a family

of random variables with finite expectations. All the conditions of lemma 3.2.1 are

verified and therefore condition A3 holds.

Conditions A1, A2, A3 of lemma 3.2.4 are verified in the cases we study, therefore

the expectation of the derivatives of the payoffs’ estimators do converge towards the

Greeks. This proves the validity of our approach.

3.3 Assumptions on the volatility

The numerical analysis we perform relies on a few assumptions. One of the most

important ones is that the probability density function of the underlying price is

regular enough at various times in the inverval [0, T ].

Typically we want the density function to be bounded at expiry for European

options and also at the various discretisation times t1 = T/N, t2 = 2T/N, . . . , tN =

T . This hypothesis is crucial as it enables us to link in a simple way the likelihood of

a path St being at time tk in a given subinterval of a compact set I and the width of

these intervals. Indeed, if we assume that p (S), the probability density function of

Stk is continuous on R, then using Heine’s theorem (see [Zor04]), it is also uniformly

continuous and bounded on the compact set I. We write pmax
I = max

S∈I
p (S) and then

we can write for any subinterval [a, b] ⊂ I,

P (Stk ∈ [a, b]) =

b∫
a

p (Stk)dStk

≤ pmax
I | b− a |

(3.68)

We present here a few conditions ensuring that the probability density function for

the underlying asset is regular enough.
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3.3.1 Black and Scholes density

In the Black & Scholes setting, we recall equation (2.4) and for any times s < t,

with s, t ∈ [0, T ], we can write

p (St|Ss) =
1

σ
√

2π(t− s)
exp

−
(

log (St/Ss)−
(
r − σ2

2

)
(t− s)

)2

2σ2(t− s)


which is clearly a smooth function of St. This smoothness ensures the analysis of

chapters 4 to 8 can be applied to the Black & Scholes model used in chapter 2.

3.3.2 Hörmander’s condition

We now present conditions ensuring that the general process described by (1.2)

does also have regular density functions. For the sake of simplicity, we only consider

the process between the times 0 and t, studying the transition density function

between some time s > 0 and t is in all points similar.

The following theorem is a 1-dimensional version of a theorem first presented in

[BH86].

Theorem 3.3.1. We write

τ = min

inf

t > 0

∣∣∣∣∣∣
t∫

0

1b(Ss,s)6=0ds > 0

 , T


For t ∈ [0, T ], we let St be the solution of the stochastic differential equation (1.2)

where the coefficients a (S, t) and b (S, t) safisfy the two following conditions

• A1: the coefficients are globally Lipschitz, i.e. there exists a constant K > 0

such that for all t, x, y ∈ R+ × R2,

| a (y, t)− a (x, t) |+ | b (y, t)− b (x, t) | ≤ K | y − x |

• A2: the functions t→ a(0, t) and t→ b(0, t) are bounded on [0, T ].

Then, for any t ∈ [0, T ], the probability density function of S (t) conditional on

{t > τ} is absolutely continuous with respect to the Lebesgue measure on R.

Note that the previous theorem extends easily to the multidimensional case where

St is an m-dimensional process driven by a d-dimensional Brownian motion. The

multidimensional form of the theorem can be found in section 2.3 of [Nua05].

Note also that St is a sample-continuous process (noting a and b are globally

Lipschitz and using theorem 3.1.1). If b (S0, 0) > 0, using the sample-continuity of

b (St, t), for any tk > 0, there is almost surely a non-degenerate time interval [0, ε]

(for some ε ∈ [0, tk]) on which b (St, t) > b (S0, 0) /2 > 0 and then τ < ε < tk, which

85



then means that almost surely, Stk has an absolutely continuous density functions

for all tk > 0.

We now present an alternative condition, which is similar to the intuitive view of

theorem 3.3.1 and corresponds to a 1-dimensional version of Hörmander’s conditions,

as presented in section 2.3 of [Nua05].

Theorem 3.3.2. We here assume the coefficients a(S, t) and b(S, t) of (1.2) do not

depend on time, that is,

dSt = a(St) dt+ b(St) dWt

If we also assume they are infinitely differentiable with bounded derivatives of all

orders and b(S0) 6= 0, then for any t > 0, the solution St has a probability density

function that is absolutely continuous with respect to the Lebesgue measure and is

also infinitely differentiable.

The conditions of theorem 3.3.2 are slightly more restrictive than the ones pre-

sented in theorem 3.3.1, yet removing the possibility of a time dependency for a (St, t)

and b (St, t) is not an issue for models like Black & Scholes or Vasicek, in which case

this theorem’s simplicity is very striking.

3.3.3 A convenient hypothesis

In section 3.3.2 we presented conditions ensuring the solution St has sufficiently

regular distributions at various times. These conditions can be easily verified and

are fairly unrestrictive, yet we will voluntarily consider a slightly more restrictive

setting that makes the analysis “cleaner” and lets us focus on essential ideas instead

of having to pay too much attention to the detail of particular “ill-behaved” cases.

Several techniques presented in the simulations of chapter 2 rely on the use of

the diffusive properties of SDE (1.2). The “conditional expectations” smoothing

technique as presented in sections 2.2.2, 2.3.1 and 2.6.3, the vibrato Monte Carlo of

sections 2.2.4 and 2.3.2 and finally the treatment of the discontinuity at the barrier

in section 2.6.2 all require some diffusion to happen at various discretisation times

of [0, T ]. As is evident in formulas (2.49), (2.60), (2.79), (2.120), 2.122 or (2.124),

these methods work “as is” only if the volatility b (S, t) is non-zero.

The conditions of theorem 3.3.2 impose that the initial value of the volatility

should be strictly positive but they do not exclude situations where the volatility

vanishes at some point tkvanish of the discretisation (i.e. b(Ŝkvanish , tkvanish) = 0), in

which case the formulas mentioned above are not well defined. We can deal with

this situation in various ways: in the Black & Scholes model, we notice that if this

ever happens, that is if σŜkvanish = 0, then the discretised solution of the SDE is

Ŝk = 0 for all tk ≥ tvanish and conditional expecations are irrelevant. In the general

case, if we have b(Ŝkvanish , tkvanish) = 0 then the evolution of the discretisation on
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[tkvanish , tkvanish+1] is deterministic and there is no use for conditional expectation-

related techniques either.

The analysis of the convergence rates of multilevel Monte Carlo techniques in-

volves the quantification of all terms appearing in the aforementioned equations.

If we let the volatility be arbitrarily low, then the sensitivities of some of these

terms blow up and make the analysis difficult, even though extremely low volatility

situations also mean there is little use for smoothing using conditional expectations

(the diffusive action is very low). This sort of situation is not a practical issue: in the

Black & Scholes setting, low volatility only occurs when S ≈ 0, that is, far from the

discontinuities/kinks in the payoffs where smoothing is needed (around the strike

K or the barrier B). Dealing with these ill-behaved cases specifically (e.g. using

different estimators depending on the volatility level) would provide very little in

terms of benefits and make the analysis unnecessarily intricate.

Therefore for techniques using some form of conditional expectation smoothing,

we restrict the analysis to the case of elliptic SDEs, i.e. we make the assumption

that the volatility has a lower bound ε > 0.

∃ε > 0, s.t. ∀ (S, t) ∈
(
R× R+

)
, b (S, t) > ε (3.69)

As explained in [Avi09b] and [Fri64], this ellipticity condition, together with the

assumption that the coefficients a (S, t) and b (S, t) are infinitely differentiable with

bounded derivatives, also guarantees that the probability distribution function of

the solution is bounded (see [CFN98] for slightly less restrictive conditions giving

the same result).

Summing up previous remarks, these conditions ensure that the probability den-

sities of the solution St at different times t ∈ [0, T ] are smooth (as stated specifically

in [DM10] for example) and bounded, that all the aforementioned techniques based

on conditional expectations are relevant and that the corresponding formulas are

well-defined.

3.4 Essential theorems

In this section, we present a collection of useful lemmas and theorems inspired

by the analysis found in [GDR13].

3.4.1 Moments of an SDE’s solution

We begin by presenting important results on the moments of the solution of SDE

(1.2). They are found on p136 in [KP92].
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Theorem 3.4.1. Let Xt be a scalar process satisfying the following SDE on [0, T ],

X(0) given

dX(t) = a(X, t) dt+ b(X, t) dWt

(3.70)

Assuming that

• A1: a(X, t) and b(X, t) are jointly L × L measurable in R× [0, T ]

• A2: there exists a constant C1 > 0 such that for all t, x, y ∈ R+ × R2 ,

|a(y, t)− a(x, t)|+ |b(y, t)− b(x, t)| ≤ C1 |y − x|

• A3: there exists a constant C2 such that for all x ∈ R,

|a(x, t)|2 + |b(x, t)|2 ≤ C2
2

(
1 + |x|2

)
then the SDE (3.70) has a pathwise unique strong solution Xt on [0, T ] with

sup
0≤t≤T

E
(
|Xt|2

)
<∞ (3.71)

E
(
|Xt|2n

)
≤
(

1 + |X0|2n
)

exp (Ct) (3.72)

E
(
|Xt −X0|2n

)
≤ C̃

(
1 + |X0|2n

)
tn exp (Ct) (3.73)

E

(
sup

0≤t≤T
|Xt|2n

)
≤ C̃

(
|X0|2n +

(
1 + |X0|2n

)
Tn exp (CT )

)
(3.74)

E

(
sup

0≤t≤T
|Xt −X0|2n

)
≤ C̃

(
1 + |X0|2n

)
Tn exp (CT ) (3.75)

for t ∈ [0, T ] where T < ∞ and C = 2n (2n+ 1) max (C1, C2)2 and C̃ is a positive

constant depending only on n,max (C1, C2) and T .

Note that in practice, other important theorems like theorem 3.4.3 add Lipschitz-

like conditions for the evolution of the coefficients a and b on [0, T ] that make

condition A3 a direct consequence of condition A2.

Also note that the result can be extended to the case where X0 is a random

variable such that E
[
|X0 |2n

]
< ∞. The inequalities of theorem 3.4.1 still hold if

we replace |X0 |2n by E
[
|X0 |2n

]
(see p136 in [KP92]).

Corollary 3.4.2. Theorem 3.4.1 carries over verbatim to the multidimensional case

where Xt = (X1(t), . . . , Xd(t)) ∈ Rd and Wt is still a 1-dimensional Brownian mo-

tion, provided the absolute values are replaced by vector and matrix norms such as

the Euclidean norms.

Proof. See [KP92].

88



3.4.2 Milstein scheme and interpolants

We here present different continuous interpolants of the Milstein discretisation

of an Ito process. The first one, introduced in [KP92] has interesting convergence

properties. The second one, extensively used in [GDR13], is based on a simple

Brownian Bridge and is therefore particularly simple and convenient for certain

applications.

Theorem 3.4.3. We consider the case where Xt ∈ Rd and Wt is a 1-dimensional

Brownian motion. (ak)(k=1..d) and (bk)(k=1..d) are the different components of the

coefficients a and b in the same vector SDE as before: on [0, T ],

X(0) given

dX(t) = a(X, t) dt+ b(X, t) dWt

(3.76)

We let

L0 =
∂

∂t
+

d∑
k=1

ak
∂

∂Xk
+

1

2

d∑
k,l=1

bk bl
∂2

∂Xk∂Xl

L1 =
d∑

k=1

bk
∂

∂Xk

Assuming that

• A1: a(x, t) is C(1,1)
(
Rd × R+

)
and b(x, t) is C(2,1)

(
Rd × R+

)
• A2: (uniform Lipschitz condition): there exists a constant C1 > 0 such that

for all x, y ∈ Rd,
‖a(y, t)− a(x, t)‖+ ‖b(y, t)− b(x, t)‖+

∥∥L1b(y, t)− L1b(x, t)
∥∥ ≤ C1 ‖y − x‖

• A3: (linear growth bound): There exists a constant C2 such that for all x ∈ Rd,
‖a(x, t)‖ + ‖L0a(x, t)‖ + ‖L1a(x, t)‖ + ‖b(x, t)‖ + ‖L0b(x, t)‖ + ‖L1b(x, t)‖ +

‖L0L1b(x, t)‖+ ‖L1L1b(x, t)‖ ≤ C2 (1 + |x |)

• A4: (additional Lipschitz-like condition): there exists a constant C3 such that

for all x ∈ Rd and s, t ∈ R+, ‖b(x, t)− b(x, s)‖ ≤ C3 (1 + |x |)
√
| t− s |

Then for each m > 0,

E
(

sup
0<t<T

‖Xt‖m
)
<∞ (3.77)

Using the Milstein discretisation
(
X̂n

)
n=0,...,N

, we define the following continuous

time interpolant on each time step [tn, tn+1] (n = 0, . . . , N − 1) and each dimension

k = 1, . . . , d as

X̂KPk(t) =X̂nk + ak

(
X̂n, tn

)
(t− tn) + bk

(
X̂n, tn

)
(Wt −Wn)

+
1

2

(
k∑
l=1

bl
∂bk
∂Xl

(
X̂n, tn

))(
(Wt −Wn)2 − (t− tn)

) (3.78)
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then for each m > 0, there exists a constant Cm such that

E
(

sup
0<t<T

∥∥∥Xt − X̂KP (t)
∥∥∥m) < Cm h

m (3.79)

and

E
(

sup
0<t<T

∥∥∥X̂KP (t)
∥∥∥m) < Cm (3.80)

Proof. See theorem 10.6.3 and corollary 10.6.4 in [KP92].

Considering the joint evolution equation (3.16) for the asset’s price and its sensi-

tivity, we see that this theorem can be applied when the coefficients a (S, t), b (S, t),
∂a

∂θ
(S, t),

∂b

∂θ
(S, t) are linear in S and do not depend on t, which corresponds for

example to the case of the Black-Scholes model.

Lemma 3.4.4. Let Xt be the solution of equation (3.76). Given its Milstein discreti-

sation
(
X̂n

)
n=0,...,N

, we define on each time step [tn, tn+1] the continuous extension

X̂ (t) using the Brownian bridge interpolation

X̂t = X̂n +
t− tn
h

(
X̂n+1 − X̂n

)
+ bn

(
Wt −Wnh −

t− tn
h

∆Wn

)
(3.81)

Compared to the Kloeden-Platen interpolant X̂KP (t) defined in theorem 3.4.3, its

analytical properties (distribution of the local minima, conditional probability of hit-

ting a barrier) are easier to derive. For example, in the 1-dimensional case we have

•
tn+1∫
tn

X̂tdt =
h

2

(
X̂n + X̂n+1

)
+ bnIn

where In ∼ N
(

0,
h3

12

)
is independent of Wn+1 −Wn.

• Conditional on X̂n, X̂n+1, the minimum of X̂t on [tn, tn+1] is given by

X̂n,min =
1

2

(
X̂n + X̂n+1 −

√(
X̂n − X̂n+1

)2
− 2b2nh logUn

)
where Un ∼ U (0, 1).

• Conditional on X̂n, X̂n+1, the probability that the minimum of X̂t on [tn, tn+1]

is less than a certain value B is

P
(

inf
t∈[tn,tn+1]

X̂t < B
∣∣∣X̂n, X̂n+1

)
= exp

−2
(
X̂n −B

)+ (
X̂n+1 −B

)+

b2nh


Under the assumptions of theorem 3.4.3, the relative accuracy of the two estima-

tors is given by

E

(
sup
t∈[0,T ]

∥∥∥X̂ (t)− X̂KP (t)
∥∥∥m) = O ((h log h)m) (3.82)

sup
t∈[0,T ]

E
(∥∥∥X̂ (t)− X̂KP (t)

∥∥∥m) = O (hm) (3.83)
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E

(∥∥∥∥∫ T

0

(
X̂(t)− X̂KP (t)

)
dt

∥∥∥∥2
)

= O
(
h3
)

(3.84)

where we used the norm
∥∥∥X̂ (t)− X̂KP (t)

∥∥∥ = max
i=1,...,d

∣∣∣ X̂k (t)− X̂KPk (t)
∣∣∣.

Proof. See [GDR13].

3.4.3 Extreme paths

The so-called “extreme paths” analysis on which [GHM09] relies and which is

detailed in [GDR13] consists in separating events ω into two categories, the ones

for which the driving Brownian motion is well-behaved (reasonably small incre-

ments between consecutive discretisation times), which are most common, and the

“extreme/ill-behaved” ones, which may have large increments but are very rare.

Once we have established this dichotomy, the idea underlying the analysis is to first

analyse the behaviour of various quantities for non-extreme events for which we have

known bounds on Brownian increments or the error resulting from the discretisation.

To prove in lemma 3.4.8 that the contribution of rare extreme paths to the global

expectation of the quantities considered is negligible, we begin by presenting lemmas

3.4.5, 3.4.6 and 3.4.7 that are introduced in [GDR13].

Lemma 3.4.5. If Xl is a scalar random variable defined on level l of the multilevel

analysis, and for each positive integer m, E [|Xl |m] is uniformly bounded, then, for

any δ > 0,

P
(
|Xl | > h−δl

)
= O

(
hpl
)
, ∀p > 0 (3.85)

Proof. It follows immediately from Markov’s inequality

P
(
|Xl | ≥ h−δl

)
= P

(
|Xl |m ≥ h−mδl

)
≤ hmδl E [|Xl |m] (3.86)

by choosing m > p/δ

Lemma 3.4.6. If Yl is a scalar random variable on level l, E
[
Y 2
l

]
is uniformly

bounded, and for each p > 0, the indicator function 1El on level l (which takes value

1 or 0 depending whether or not a path lies within some set El) satisfies

E [1El ] = O
(
hpl
)

(3.87)

then for each p > 0,

E [|Yl |1El ] = O
(
h
p/2
l

)
(3.88)

Proof. Immediate consequence of Hölder inequality which gives

E [|Yl |1El ] ≤
(
E
[
Y 2
l

])1/2
(E [1El ])

1/2 (3.89)

91



In proofs, lemma 3.4.5 is used to establish the pre-conditions for lemma 3.4.6

from which it can be concluded by choosing p sufficiently large that the contribution

of the paths in El is negligible.

Lemma 3.4.7. If Wt is a Brownian motion with W0 = W1 = 0, then for x > 0,

P

(
sup
[0,1]

Wt > x

)
= P

(
inf
[0,1]

Wt < −x
)

= exp
(
−2x2

)
(3.90)

and therefore E

[
sup
[0,1]
|Wt |m

]
is finite for all integers m > 0.

Proof. Equation (3.90) is a corollary of equation (2.116).

Using this last lemma together with theorem 3.4.3 and lemmas 3.4.4, 3.4.5, 3.4.6,

we obtain the following important lemma

Lemma 3.4.8. Let γ > 0. We consider a Brownian motion W (t) and X(t), the

corresponding solution of SDE (3.76) on [0, T ]. With the usual conditions of theo-

rem 3.4.3, the probability that the increments ∆Wn = W ((n + 1)h) −W (nh), the

fine Milstein discretisation X̂f
n (step h) and coarse and X̂c

n (step 2h and midpoints

constructed with Brownian bridge) satisfy any of the following extreme conditions

max
n=0,...,N

(
max

(
‖X(nh)‖ ,

∥∥∥X̂f
n

∥∥∥ , ∥∥∥X̂c
n

∥∥∥)) > h−γ

max
n=0,...,N

(
max

(∥∥∥X(nh)− X̂c
n

∥∥∥ ,∥∥∥X(nh)− X̂f
n

∥∥∥ ,∥∥∥X̂f
n − X̂c

n

∥∥∥)) > h1−γ

max
n=0,...,N−1

(|∆Wn |) > h1/2−γ

is o (hp), for all p > 0. Furthermore there exist constants c1, c2, c3, c4 such that if

none of these conditions is satisfied and γ < 1/2, then

max
n=1,...,N

∥∥∥X̂f
n − X̂

f
n−1

∥∥∥ ≤ c1 h
1/2−2γ

max
n=1,...,N

∥∥∥bfn − bfn−1

∥∥∥ ≤ c2 h
1/2−2γ

max
n=0,...,N

(
max

(∥∥∥bfn∥∥∥ , ‖bcn‖)) ≤ c3 h
−γ

max
n=0,...,N

∥∥∥bfn − bcn∥∥∥ ≤ c4 h
1/2−2γ

where bcn is defined as bcn−1 if n is odd.

Proof. See [GDR13].
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3.5 Notes on O (. . .) notation

For the sake of convenience, we use the following abusive notations in chapters 4

to 8. They correspond to operations on the o (. . .) and O (. . .) notations and enable

us to describe more clearly the contributions of the different terms when analysing

the limiting behaviours of functions in the neighborhood of 0.

Let us consider the functions f1, f2, g1, g2 : [0, T ] → R, k ∈ R and p ∈ R+ and

assume

f1 = O (g1)

f2 = O (g2)
(3.91)

then we write

k f1 = k O (g1) = O (g1)

f1 + f2 = O (g1) +O (g2) = O (g1 + g2)

f1 f2 = O (g1) O (g2) = O (g1 g2)

fp1 = O (f1)p = O (fp1 )

(3.92)

If we consider f3, f4, g3, g4 : [0, T ]→ R and assume

f3 = o (g3)

f4 = o (g4)
(3.93)

we then write

k f3 = k o (g3) = o (g3)

f3 + f4 = o (g3) + o (g4) = o (g3 + g4)

f3 f4 = o (g3) o (g4) = o (g3 g4)

fp3 = o (f3)p = o (fp3 )

(3.94)

and also

f1 f3 = O (g1) o (g3) = o (g1 g3) (3.95)

In parts of the analysis, we also use the abusive notations f1 ≤ O (g1) and

f3 ≤ o (g3), for f1 = O (g1) and f3 = o (g3) when we want to highlight that these

result from an inequality. We can actually see it as a shortcut for f1 ≤ f̃1 and

f3 ≤ f̃3 for some quantities f̃1 = O (g1) and f̃3 = o (g3).
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Chapter 4

Analysis of Vanilla European

options via pathwise sensitivities

We analyse the efficiency of the multilevel Monte Carlo technique for the com-

putation of Greeks of a category of simple options: vanilla European options with

almost everywhere differentiable Lipschitz payoffs. To do this, we use the results of

chapter 3 to obtain analytical bounds on the coefficients α and β in theorem 1.2.1.

We begin with the easiest case, that of smooth Lipschitz payoffs before consider-

ing more realistic payoffs whose first order derivative may be discontinuous (e.g.

European call).

We always assume that the regularity and growth conditions found in chapter 3

for the coefficients of SDE 1.2 are satisfied, thereby ensuring we can use the results

of the corresponding theorems.

4.1 Smooth Lipschitz payoffs

We first consider a European option with a differentiable Lipschitz payoff with

a Lipschitz first derivative, i.e. the payoff is of the form P (ST ), where P is a

differentiable L1-Lipschitz function of ST .
∂P

∂S
is also assumed to be L2-Lipschitz.

To simplify the notations, we define L̃ = max (L1, L2) so that both P and
∂P

∂S
are

L̃-Lipschitz.

At level l, with a time step hl = T/Nl, the payoff estimator is P̂l = P (ŜNl) and

the multilevel estimator of the Greek as presented in equation (1.35) is written

Ŷl = M−1
l

Ml∑
i=1

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)(i)

= M−1
l

Ml∑
i=1

(
∂P̂l

∂ŜNl

∂ŜNl
∂θ
− ∂P̂l−1

∂ŜNl−1

∂ŜNl−1

∂θ

)(i)
(4.1)

As explained in section 2.1.4, to determine the efficiency of the multilevel approach,
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we determine the values of α and β in theorem 1.2.1.

4.1.1 Order of convergence β

To determine β, we analyse the convergence speed of V

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)
.

We can write

V

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)
= V

(
∂P̂l
∂θ
− ∂P

∂θ

)
+ V

(
∂P

∂θ
− ∂P̂l−1

∂θ

)

+ 2 Cov

(
∂P̂l
∂θ
− ∂P

∂θ
,
∂P

∂θ
− ∂P̂l−1

∂θ

)

≤ V

(
∂P̂l
∂θ
− ∂P

∂θ

)
+ V

(
∂P

∂θ
− ∂P̂l−1

∂θ

)

+ 2

√√√√V

(
∂P̂l
∂θ
− ∂P

∂θ

)
V

(
∂P

∂θ
− ∂P̂l−1

∂θ

)
(4.2)

Then, noting that if A and B are two random variables we have

0 ≤
(√

V (A)−
√
V (B)

)2
= V (A) + V (B)− 2

√
V (A)V (B) (4.3)

We get

V

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)
≤ 2

(
V

(
∂P̂l
∂θ
− ∂P

∂θ

)
+ V

(
∂P

∂θ
− ∂P̂l−1

∂θ

))
(4.4)

If we can show that V

(
∂P̂l
∂θ
− ∂P

∂θ

)
≤ C hβl for some C > 0, then we have

V

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)
≤ 2C hβl + 2C hβl−1

≤ 2C

(
1 +

(
hl−1

hl

)β)
hβl

≤ C̃ hβ

(4.5)

where C̃ is a positive constant. We therefore study the order of convergence of

V

(
∂P

∂θ
− ∂P̂l

∂θ

)
which is the same as that of V

(
Ŷl

)
.

To simplify the notation we now write P̂ = P
(
ŜNl

)
the payoff resulting from a

discretisation with time step h (instead of P̂l and hl respectively), S and Ŝ the values

of the underlying and its discretised path at T (instead of ST and ŜNl respectively).
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We have:

V

(
∂P

∂θ
− ∂P̂

∂θ

)
≤ E

(∂P
∂θ
− ∂P̂

∂θ

)2
 (4.6)

Then we write(
∂P

∂θ
− ∂P̂

∂θ

)
=
∂S

∂θ

(
∂P

∂S
− ∂P̂

∂S

)
+
∂P̂

∂S

(
∂S

∂θ
− ∂Ŝ

∂θ

)
(4.7)

We let A =
∂S

∂θ

(
∂P

∂S
− ∂P̂

∂S

)
, B =

∂P̂

∂S

(
∂S

∂θ
− ∂Ŝ

∂θ

)
.

E

(∂P
∂θ
− ∂P̂

∂θ

)2
 = E

(
A2
)

+ E
(
B2
)

+ 2E (AB)

≤ 2
(
E
(
A2
)

+ E
(
B2
)) (4.8)

We can restrict our analysis to that of E
(
A2
)

and E
(
B2
)
.

The payoff being L̃-Lipschitz, we have

B2 =

(
∂P̂

∂S

(
∂S

∂θ
− ∂Ŝ

∂θ

))2

≤ L̃2

(
∂S

∂θ
− ∂Ŝ

∂θ

)2

(4.9)

As explained in section 3.1, we let δt :=
∂St
∂θ

and consider the 2-dimensional

process Ut = (St, δt). The evolution SDE for Ut is given by equation (3.16). We

recall it is

dUt =

 a(St, t)

δt
∂a(St, t)

∂S
+
∂a(St, t)

∂θ

 dt+

 b(St, t)

δt
∂b(St, t)

∂S
+
∂b(St, t)

∂θ

 dWt

whose Milstein discretisation is, as described in section, 3.1.3.4:

Ŝn+1 = Ŝn + a
(
Ŝn, tn

)
h+ b

(
Ŝn, tn

)
∆Wn +

1

2
b
∂b

∂S

(
Ŝn, tn

) (
∆W 2

n − h
)

δ̂n+1 = δ̂n +

(
δ̂n
∂a

∂S
+
∂a

∂θ

)(
Ŝn, tn

)
h

+

(
δ̂n
∂b

∂S
+
∂b

∂θ

)(
Ŝn, tn

)
∆Wn

+
1

2

[
δ̂n

(
∂b

∂S

)2

+ δ̂n b
∂2b

∂S2

+
∂b

∂θ

∂b

∂S
+ b

∂2b

∂θ∂S

](
Ŝn, tn

) (
∆W 2

n − h
)

Theorem 3.4.3 guarantees the multidimensional Milstein scheme applied to U ’s evo-

96



lution SDE has a strong convergence of order 1, therefore

E

(∂S
∂θ
− ∂Ŝ

∂θ

)2
 = O

(
h2
)

(4.10)

This means E
(
B2
)

= O
(
h2
)
.

The derivative
∂P

∂S
being L̃-Lipschitz, we have

A2 =

(
∂S

∂θ

(
∂P

∂S
− ∂P̂

∂S

))2

≤
(
∂S

∂θ

)2

L̃2
(
S − Ŝ

)2
(4.11)

Using Hölder’s inequality,

E
(
A2
)
≤ K2

√√√√E

((
∂S

∂θ

)4
)√

E
((

S − Ŝ
)4
)

(4.12)

Corollary 3.4.2 guarantees that there is a constant K1 such that

E

((
∂S

∂θ

)4
)
< K1. Therefore,

E
(
A2
)

= O

(√
E
((

S − Ŝ
)4
))

(4.13)

Using theorem 3.4.3,

E
(
A2
)

= O
(
h2
)

(4.14)

We thus have E
(
A2
)

= O
(
h2
)

and E
(
B2
)

= O
(
h2
)

and finally β = 2

4.1.2 Order of convergence α

With the same notations as before, we now analyse the convergence rate

of E

(
∂P

∂θ
− ∂P̂

∂θ

)
.

We have just established that E

(∂P
∂θ
− ∂P̂

∂θ

)2
 = O

(
h2
)
. Using Hölder’s

inequality, we obtain

∣∣∣∣∣E
[(

∂P

∂θ
− ∂P̂

∂θ

)
1

] ∣∣∣∣∣ ≤
√√√√√E

(∂P
∂θ
− ∂P̂

∂θ

)2
E [1]

=
√
O (h2)O (1)

= O (h)

(4.15)
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We thus have E

[
∂P

∂θ
− ∂P̂

∂θ

]
= O (h) and finally α = 1.

4.2 Non-smooth Lipschitz payoffs

We can relax the hypothesis that the first derivative of the payoff has to be

Lipschitz. We extend the previous result to the case where

(
∂P

∂S

)
has a finite

number I of discontinuities at points (Ki)i=1..I and is L̃-Lipschitz between those

discontinuities. This broader category of payoffs includes the European call option

that has been used in the simulations of section 2.2.

The analysis now has to be a bit more complex than in the previous section.

While the analysis of 4.1 mostly relied on ideas already found in the analysis of

the multilevel Monte Carlo pricing of call options, we now have to introduce ideas

that will be used in all of the following chapters. The main idea is to study the

contributions of several categories of paths. We distinguish between “extreme” and

“non-extreme” paths. We also analyse separately the contributions of the paths that

arrive “far” from the discontinuities, for which the situation is essentially similar to

the analysis performed in section 4.1.1 and those that arrive “close” to them for

which the effect of the discontinuities is significant (“close” being here defined as

“within a distance h1−δ of a discontinuity”, for a certain δ > 0 determined later).

More precisely, we first use the results of section 3.4.3 to define the set of extreme

paths E as the set of paths satisfying any of the three conditions of lemma 3.4.8 for

a certain γ < 1/2. We then decompose the set of non-extreme paths Ec into D, the

non-extreme paths whose final value is “close” to one of the discontinuities and Dc

the non-extreme paths whose final value is “far” from all discontinuities (Ki)i=1..I .

We can therefore write

Ω = E t Ec = E t (D tDc) (4.16)

4.2.1 Order of convergence β

As before we can write:

V
(
Ŷl

)
= O

(
V

(
∂P

∂θ
− ∂P̂

∂θ

))

= O

E

(∂P
∂θ
− ∂P̂

∂θ

)2


= O
(
E
(
A2
)

+ E
(
B2
))

(4.17)

and using the partition of paths of equation (4.16),

E
(
A2
)

+ E
(
B2
)

= E
(
1EcA2

)
+ E

(
1EcB2

)
+ E

(
1EA2

)
+ E

(
1EB2

)
(4.18)
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Contribution of extreme paths

We first show that extreme paths have a negligible contribution to the global

expectation: using Hölder’s inequality, we have

E
(
1EA2

)
≤
√

E
[
12
E

]√√√√√E

∂S
∂θ

4
(
∂P

∂S
− ∂P̂

∂S

)4


≤
√

E [1E ]

(
E
[
∂S

∂θ

8])1/4
E

(∂P
∂S
− ∂P̂

∂S

)8
1/4

(4.19)

Lemma 3.4.8 means that
√
E (1E) = o (hp) for all p > 0. Corollary 3.4.2 guarantees

that

√
E
(
∂S

∂θ

8)
is finite. P (S) being Lipschitz, we also have

E

(∂P
∂S
− ∂P̂

∂S

)8
 ≤ E

(∣∣∣∣ ∂P∂S
∣∣∣∣+

∣∣∣∣∣ ∂P̂∂S
∣∣∣∣∣
)8
 ≤ 28L̃8 (4.20)

Therefore equation (4.19) means that for all p > 0, E
(
1EA2

)
= o (hp).

Similarly, we write

E
(
1EB2

)
≤
√
E
[
12
E

]√√√√√E

∂P̂
∂S

4(
∂S

∂θ
− ∂Ŝ

∂θ

)4


≤
√

E [1E ]

(
E

[
∂P̂

∂S

8])1/4
E

(∂S
∂θ
− ∂Ŝ

∂θ

)8
1/4

(4.21)

As in (4.20), we use

∣∣∣∣∣∂P̂∂S
∣∣∣∣∣ ≤ L̃ to show that E

[
∂P̂

∂S

8]
is finite. Applying theorem

3.4.3 proves that E

(∂S
∂θ
− ∂Ŝ

∂θ

)8
 is bounded. Therefore, equation (4.21) means

that for all p > 0, E
(
1EB2

)
= o (hp).

Rewriting equation (4.18), we have

E
(
A2
)

+ E
(
B2
)

= E
(
1EcA2

)
+ E

(
1EcB2

)
+ o (hp)

= O
(
E
(
1EcA2

)
+ E

(
1EcB2

)) (4.22)

This means the contribution of extreme paths is negligible and we can focus only on

non-extreme paths.
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Contribution of discontinuities

We have now established that

E
(
A2
)

+ E
(
B2
)

= O
(
E
(
1EcA2

)
+ E

(
1EcB2

))
= O

(
E
(
1DA2

)
+ E

(
1DcA2

)
+ E

(
1DB2

)
+ E

(
1DcB2

)) (4.23)

Let I be a closed non-degenerate interval such that all discontinuities

(Ki)i=1,...,I are contained in its interior. The probability density function of S,

p (S) is smooth on I, so it is therefore bounded by some constant MI on this same

interval.

Now let us define D as the set of non-extreme paths for which

min
i
|S −Ki| ≤ h1−δ, i.e. the set of paths arriving “close” to discontinuities.

For h < h0 for some h0, all paths of D arrive in I. In those conditions, p < MI for

all paths in D and the probability of a path being in D can be written as

P(D) =

∫
S∈D

p (S) dS

=

∫
S

∣∣∣∣ min
i=1,...,I

|S−Ki|<h1−δ

p (S) dS

≤ 2Ih1−δMI

(4.24)

therefore D represents a proportion O
(
h1−δ

)
of all paths. All other paths are in

Dc, which represents a proportion O (1) of all paths. Using equation (4.23), we can

write

E
(
A2
)

+ E
(
B2
)

= O
(
E (1Dc)

[
max

(
A21Dc

)
+ max

(
B21Dc

)]
+ E (1D)

[
max

(
A21D

)
+ max

(
B21D

)]) (4.25)

Therefore

E
(
A2
)

+ E
(
B2
)

= O
(
max

(
A21Dc

))
+O

(
max

(
B21Dc

))
+O

(
h1−δ

) (
O
(
max

(
A21D

))
+O

(
max

(
B21D

))) (4.26)

For paths in Dc, we know by definition of non-extreme paths that
∂S

∂θ

2

≤ h−2γ . Also, if we take δ = 2γ, the definition of Dc ensures that as h

tends to 0,

min
i=1..I

(|S −Ki|) ≥ h1−δ ≥ h1−γ ≥
∣∣∣S − Ŝ∣∣∣ (4.27)

Therefore S and Ŝ are not separated by a discontinuity and we can use the L̃-

Lipschitz continuity of

(
∂P

∂S

)
on the interval

[
min

(
S, Ŝ

)
,max

(
S, Ŝ

)]
and con-
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clude that

∣∣∣∣∣∂P∂S − ∂P̂

∂S

∣∣∣∣∣ ≤ L̃ ∣∣∣S − Ŝ∣∣∣ ≤ L̃ h1−γ . Thus

A2 1Dc =
∂S

∂θ

2
(
∂P

∂S
− ∂P̂

∂S

)2

1Dc ≤ L̃2 h2−4γ (4.28)

P being differentiable and L̃-Lipschitz away from the discontinuities, i.e. for

all final values S of paths belonging to Dc, we directly get
∂P̂

∂S

2

≤ L̃2 on Dc. By

definition of non-extreme paths, we also get

∣∣∣∣∣ ∂S∂θ − ∂Ŝ

∂θ

∣∣∣∣∣ ≤ h1−γ on this same set.

Therefore

B2 1Dc =
∂P̂

∂S

2(
∂S

∂θ
− ∂Ŝ

∂θ

)2

1Dc ≤ L̃2 h2−2γ (4.29)

On D, by definition of non-extreme paths, we still have

∣∣∣∣ ∂S∂θ
∣∣∣∣ ≤ h−γ . Let

Ji :=

∣∣∣∣ ∂P∂S (K+
i

)
− ∂P

∂S

(
K−i
) ∣∣∣∣ be the size of the discontinuity of

∂P

∂S
at Ki. The

“worst case scenario” for

∣∣∣∣∣∂P∂S − ∂P̂

∂S

∣∣∣∣∣ is when S and Ŝ are on different sides of

a discontinuity of
∂P

∂S
. In this case,

∣∣∣∣∣∂P∂S − ∂P̂

∂S

∣∣∣∣∣ ≤ max
i

(Ji) + L̃ h1−γ = O (1) .

Therefore

A2 1D =
∂S

∂θ

2
(
∂P

∂S
− ∂P̂

∂S

)2

1D ≤
(

max
i

(Ji) + L̃ h1−γ
)2

h−2γ (4.30)

On D, by definition of non-extreme paths, we also have

∣∣∣∣∣ ∂S∂θ − ∂Ŝ

∂θ

∣∣∣∣∣ ≤ h1−γ and

almost surely (i.e. at all points where the payoff is differentiable)
∂P̂

∂S

2

≤ L̃2 and

B2 1D =
∂P̂

∂S

2(
∂S

∂θ
− ∂Ŝ

∂θ

)2

1D ≤ L̃2 h2−2γ (4.31)

Finally, plugging those results into (4.26), we get

E
(
A2
)

+ E
(
B2
)

= O
(
h2−4γ

)
+O

(
h2−2γ

)
+O

(
h1−2γ

) (
O
(
h2−2γ

)
+O

(
h−2γ

))
= O

(
h1−4γ

) (4.32)

This means that in the case of a Lipschitz payoff whose first derivative is Lipschitz

by parts and has a finite number of discontinuities we get β = 1 − 4γ for any

0 < γ < 1/2.
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4.2.2 Order of convergence α

The analysis of the order of weak convergence α is in all points similar to what

we have done for the convergence rate β.

Contribution of extreme paths

We show that extreme paths have a negligible contribution to the global expec-

tation using

E (1EA) ≤

√√√√√E
(
12
E

)
E

∂S
∂θ

2
(
∂P

∂S
− ∂P̂

∂S

)2
 (4.33)

and

E (1EB) ≤

√√√√√E
(
12
E

)
E

∂P̂
∂S

2(
∂S

∂θ
− ∂Ŝ

∂θ

)2
 (4.34)

As before, both of those are o (hp) for all p > 0, and therefore we can focus on the

sole contribution of non-extreme paths

E (A) + E (B) = O (E (1EcA) + E (1EcB))

= O (E (1DA) + E (1DcA)

+ E (1DB) + E (1DcB))

(4.35)

Contribution of discontinuities

As before, we write

E (A) + E (B) =O (maxA1Dc) +O (maxB1Dc)

+O
(
h1−δ

)
(O (maxA1D) +O (maxB1D))

(4.36)

Using the same arguments as before,

|A1Dc | =

∣∣∣∣∣ ∂S∂θ
(
∂P

∂S
− ∂P̂

∂S

)
1Dc

∣∣∣∣∣ ≤ L̃ h1−2γ (4.37)

|B1Dc | =

∣∣∣∣∣ ∂P̂∂S
(
∂S

∂θ
− ∂Ŝ

∂θ

)
1Dc

∣∣∣∣∣ ≤ L̃ h1−γ (4.38)

|A1D | =

∣∣∣∣∣ ∂S∂θ
(
∂P

∂S
− ∂P̂

∂S

)
1D

∣∣∣∣∣ ≤
(

max
i

(Ji) + L̃ h1−γ
)
h−γ (4.39)

|B1D | =

∣∣∣∣∣ ∂P̂∂S
(
∂S

∂θ
− ∂Ŝ

∂θ

)
1D

∣∣∣∣∣ ≤ L̃ h1−γ (4.40)
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Taking δ = 2γ gives eventually E (A) + E (B) = O
(
h1−3γ

)
, i.e. α = 1 − 3γ for

any 0 < γ < 1/2.

4.2.3 Illustration: Case of the European call

We illustrate this kind of payoff with the case of the European call. We recall the

payoff is P (S) = (S−K)+ where K is the strike. It is 1-Lipschitz and differentiable

everywhere but at K. Its first derivative
∂P

∂S
= 1S>K is discontinuous at K and is

piecewise 0-Lipschitz everywhere else.

The analysis presented above applies.
∂P

∂S
being piecewise constant actually

makes it slightly simpler. We have

|B | =

∣∣∣∣∣ ∂P̂∂S
(
∂S

∂θ
− ∂Ŝ

∂θ

)∣∣∣∣∣ ≤
∣∣∣∣∣
(
∂S

∂θ
− ∂Ŝ

∂θ

)∣∣∣∣∣ (4.41)

For paths in Dc,

A1Dc =
∂S

∂θ

(
∂P

∂S
− ∂P̂

∂S

)
= 0 (4.42)

For paths in D,

|A1D | =

∣∣∣∣∣ ∂S∂θ
(
∂P

∂S
− ∂P̂

∂S

)∣∣∣∣∣ ≤
∣∣∣∣ ∂S∂θ

∣∣∣∣ (4.43)

This leads to the same convergence rates as before.

4.3 Conclusion

The numerical analysis gives α = 1, β = 2 for a Lipschitz payoff whose first

derivative is also Lipschitz.

The analysis is extended to payoffs for which these properties hold everywhere

except on a finite number of points where we permit the first derivative to be dis-

continuous. In this case, we derive α = (1− δ) , β = (1− δ) for δ as small as we

want.

This result corresponds to the numerical results obtained for a European call in

the Black Scholes model. In section 2.2 we observed: α ≈ 1 and β ≈ 1.

We can summarise the results we have proved in this chapter as follows:

Theorem 4.3.1. We consider an asset St on the time interval [0, T ] and a European

option with a payoff P (ST ). We assume that St follows an Ito process as described

by equation (1.2), that the coefficients of the diffusion a(S, t) and b(S, t) satisfy

conditions A1 to A4 of theorem 3.4.3 and that b(S0, 0) > 0.

If the payoff function P is Lipschitz and differentiable with a Lipschitz first

derivative
∂P

∂S
, then our multilevel estimators of the option’s Greeks have an ac-

curacy O (ε) at a cost O
(
ε−2
)
.
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If now we assume that
∂P

∂S
is discontinuous at a finite number of points (e.g.

European call), then our multilevel estimators of the Greeks (see section 2.2.1) have

an accuracy O (ε) at a cost O
(
ε−2 (log ε)2

)
.

Proof. See above.
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Chapter 5

Analysis of Vanilla European

options via pathwise sensitivities

and conditional expectations

We analyse the convergence rates of the multilevel algorithms proposed in sec-

tions 2.2.2 and 2.3.1 for the computation of the Greeks of European and digital

calls.

Again we assume that the regularity and growth conditions found in

chapter 3 for the coefficients of SDE 1.2 are satisfied, thereby ensuring we can

use the results of the corresponding theorems to obtain analytical bounds on the

coefficients α and β in theorem 1.2.1.

5.1 Discontinuous payoffs: the digital call

5.1.1 Payoff computation

We recall the conditional expectation formula obtained in equation (2.81) for the

digital call,

P̂f := E
(
P
(
ŜfNf

) ∣∣∣ŜfNf−1

)
= Φ

µfNf−1 −K

σfNf−1

 (5.1)

where

µfNf−1 = ŜfNf−1 + a
(
ŜfNf−1, tNf−1

)
hf := ŜfNf−1 + afNf−1 hf

σfNf−1 = b
(
ŜfNf−1, tNf−1

)√
hf := bfNf−1

√
hf

(5.2)

For the sake of brevity, we now write µf and σf instead of µfNf−1 and σfNf−1, i.e.

P̂f = Φ

(
µf −K
σf

)
.

This is infinitely differentiable with respect to the input parameters. The partial
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derivatives are

∂P̂f

∂ŜfNf−1

=

(
µ̇fσf − (µf −K)σ̇f

σ2
f

)
φ

(
µf −K
σf

)
∂P̂f
∂θ

=

(
µ̃fσf − (µf −K)σ̃f

σ2
f

)
φ

(
µf −K
σf

) (5.3)

where we have used the notations ẋ :=
∂x

∂ŜfNf−1

and x̃ :=
∂x

∂θ
, i.e.

µ̇f :=
∂µf

∂ŜfNf−1

= 1 +
∂a
(
ŜfNf−1, t

f
Nf−1

)
∂ŜfNf−1

hf := 1 + ȧfNf−1hf

σ̇f :=
∂σf

∂ŜfNf−1

=
∂b
(
ŜfNf−1, t

f
Nf−1

)
∂ŜfNf−1

√
hf := ḃfNf−1

√
hf

and as usual, assuming hf does not depend on θ,

µ̃f :=
∂µf
∂θ

=
∂a
(
ŜfNf−1, t

f
Nf−1

)
∂θ

hf := ãfNf−1 hf

σ̃f :=
∂σf
∂θ

=
∂b
(
ŜfNf−1, t

f
Nf−1

)
∂θ

√
hf := b̃fNf−1

√
hf

At the coarse level, as seen in equation (2.82), we get an expression similar to

the one at the fine level:

P̂c := E
(
P
(
ŜcNc

) ∣∣∣ŜcNc−1,∆W
f
Nf−2

)
= Φ

(
µcNc−1 −K
σcNc−1

)
(5.4)

where

µcNc−1 = ŜcNc−1 + a
(
ŜcNc−1, t

c
Nc−1

)
hc + b

(
ŜcNc−1, t

c
Nc−1

)
∆W f

Nf−2

:= ŜcNc−1 + acNc−1 hc + bcNc−1∆W f
Nf−2

σcNc−1 = b
(
ŜNc−1, t

c
N−1

) √hc
2

:= bcNc−1

√
hc
2

For the sake of brevity, we now write µc and σc instead of µcNc−1 and σcNc−1, i.e.

P̂c = Φ

(
µc −K
σc

)
. We then obtain the partial derivatives

∂P̂c
∂ScN−1

=

(
µ̇cσc − (µc −K)σ̇c

σ2
c

)
φ

(
µc −K
σc

)
∂P̂c
∂θ

=

(
µ̃cσc − (µc −K)σ̃c

σ2
c

)
φ

(
µc −K
σc

) (5.5)
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where

µ̇c :=
∂µc

∂ScN−1

= 1 +
∂a
(
ŜcNc−1, t

c
Nc−1

)
∂ŜcNc−1

hc +
∂b
(
ŜcNc−1, t

c
Nc−1

)
∂ŜcNc−1

∆W f
Nf−2

:= 1 + ȧcNc−1hc + ḃcNc−1∆W f
Nf−2

σ̇c :=
∂σc

∂ScN−1

=
∂b
(
ŜcNc−1, t

c
Nc−1

)
∂ŜcNc−1

√
hc
2

:= ḃcNc−1

√
hc
2

and

µ̃c =
∂µc
∂θ

=
∂a
(
ŜcNc−1, t

c
Nc−1

)
∂θ

hc +
∂b
(
ŜcNc−1, t

c
Nc−1

)
∂θ

∆W f
Nf−2

:= ãcNc−1hc + b̃cNc−1∆W f
Nf−2

σ̃c =
∂σc
∂θ

=
∂b
(
ŜcNc−1, t

c
Nc−1

)
∂θ

√
hc
2

:= b̃cNc−1

√
hc
2

5.1.2 Order of convergence β

As before, we note that to analyse the convergence speed of V

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
,

it is sufficient to simply study E

(∂P̂f
∂θ
− ∂P̂c

∂θ

)2
 .

Contribution of extreme paths

As in section 4.2, we consider the following partition of all paths:

Ω = E t Ec = E t (D tDc) (5.6)

with E of the set of extreme paths (paths not satisfying one of the three conditions

of lemma 3.4.8 for a certain γ < 1/2), D the set of non-extreme paths for which ST

is “close” to the discontinuity at K and Dc the set of non-extreme paths for which

ST is “far” from it. We define later what “close” and “far” precisely mean.

We have

E

(∂P̂f
∂θ
− ∂P̂c

∂θ

)2
 = E

1Ec

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)2


+ E

1E

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)2
 (5.7)
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We now prove that the influence of extreme paths is negligible. Using lemma 3.4.8,

we get that for all p > 0,

E (1E) = O (hp) (5.8)

We then use Hölder’s inequality

E

1E

(
dP̂f
dθ
− dP̂c

dθ

)2
 ≤

√√√√√E (1E)E

(dP̂f
dθ
− dP̂c

dθ

)4
 (5.9)

Then, we write

(
dP̂f
dθ
− dP̂c

dθ

)4

=

∂ŜfNf−1

∂θ

∂P̂f

∂SfNf−1

+
∂P̂f
∂θ
−
∂ŜcNc−1

∂θ

∂P̂c
∂ScNc−1

− ∂P̂c
∂θ

4

(5.10)

that is,

(
dP̂f
dθ
− dP̂c

dθ

)4

= P

∂ŜNf−1

∂θ
,

∂P̂f

∂SfNf−1

,
∂P̂f
∂θ

,
∂ŜcNc−1

∂θ
,

∂P̂c
∂ScNc−1

,
∂P̂c
∂θ

 (5.11)

where P is a polynomial of order 4. Hölder’s inequality then guarantees that if we

can prove that for a finite range of k = 0, . . . , kmax there is some fixed value q ≥ 0

such that

E

(∂ŜNf−1

∂θ

)k = O
(
h−q

)

E


 ∂P̂f

∂SfNf−1

k
 = O

(
h−q

)

E

(∂P̂f
∂θ

)k = O
(
h−q

)

E

(∂ŜcNc−1

∂θ

)k = O
(
h−q

)

E

( ∂P̂c
∂ScNc−1

)k = O
(
h−q

)

E

(∂P̂c
∂θ

)k = O
(
h−q

)

(5.12)

then we also have E

(dP̂f
dθ
− dP̂c

dθ

)4
 <∞ and eventually using inequality (5.9)
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that for all p̃ > 0, E

1E

(
dP̂f
dθ
− dP̂c

dθ

)2
 = O

(
hp̃
)

.

We now prove the inequalities of (5.12).

From (3.80) of theorem 3.4.3, we have for k = 0, . . . , kmax the existence of con-

stants Ck such that

E


∂ŜfNf−1

∂θ

k
 < Ck (5.13)

E

(∂ŜcNc−1

∂θ

)k < Ck (5.14)

We also have∣∣∣∣∣∣ ∂P̂f

∂ŜfNf−1

∣∣∣∣∣∣ =

∣∣∣∣∣ µ̇fσf − (µf −K)σ̇f
σ2
f

∣∣∣∣∣φ
(
µf −K
σf

)

≤

∣∣∣∣∣ µ̇fσf − (µf −K)σ̇f
σ2
f

∣∣∣∣∣
≤

∣∣∣∣∣∣∣
(

1 + ȧfNf−1hf

)
bfNf−1 −

(
ŜfNf−1 + afNf−1 hf −K

)
ḃfNf−1(

bfNf−1

)2 √
hf

∣∣∣∣∣∣∣

(5.15)

With the assumption we made in section 3.3.3 that b (S, t) > ε > 0, we get∣∣∣∣∣∣ ∂P̂f

∂ŜfNf−1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
(

1 + ȧfNf−1hf

)
bfNf−1 −

(
ŜfNf−1 + afNf−1 hf −K

)
ḃfNf−1

ε2
√
hf

∣∣∣∣∣∣ (5.16)

Considering the linear growth assumption A2 of theorem 3.4.3 applied to the coef-

ficients of the evolution equation for Ut, we get∣∣∣∣∣∣ ∂P̂f

∂ŜfNf−1

∣∣∣∣∣∣
k

≤
∣∣∣∣Qk (ŜfNf−1

) ∣∣∣∣h−k/2f (5.17)

where Q is a polynomial of order 2.

A similar reasoning gives

∣∣∣∣∣ ∂P̂f∂θ
∣∣∣∣∣ ≤

∣∣∣∣∣∣
(
ãfNf−1hf

)
bfNf−1 −

(
ŜfNf−1 + afNf−1 hf −K

)
b̃fNf−1

ε2
√
hf

∣∣∣∣∣∣ (5.18)

∣∣∣∣∣ ∂P̂f∂θ
∣∣∣∣∣
k

≤

∣∣∣∣∣ Q̃k (ŜfNf−1

) ∣∣∣∣∣h−k/2f (5.19)

where Q̃ is also a polynomial of order 2.
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From (3.80) of theorem 3.4.3, we have for k = 0, . . . , kmax the existence of con-

stants C̃k such that

E
((

ŜfNf−1

)k)
< C̃k

E
((

ŜcNc−1

)k)
< C̃k

(5.20)

Therefore, Hölder’s inequality guarantees that there are constants CQk , CQ̃k such

that

E
(∣∣∣∣Qk (ŜfNf−1

) ∣∣∣∣) < CQk

E

(∣∣∣∣∣ Q̃k (ŜfNf−1

) ∣∣∣∣∣
)
< C

Q̃k

(5.21)

and finally

E


∣∣∣∣∣∣ ∂P̂f

∂ŜfNf−1

∣∣∣∣∣∣
k
 = O

(
h
−k/2
f

)

E

∣∣∣∣∣ ∂P̂f∂θ
∣∣∣∣∣
k
 = O

(
h
−k/2
f

) (5.22)

Similarly, we write∣∣∣∣∣ ∂P̂c

∂ŜcNc−1

∣∣∣∣∣ =

∣∣∣∣ µ̇cσc − (µc −K)σ̇c
σ2
c

∣∣∣∣φ(µc −Kσc

)
≤
∣∣∣∣ µ̇cσc − (µc −K)σ̇c

σ2
c

∣∣∣∣
≤

∣∣∣∣∣∣
(

1 + ȧcNc−1hc + ḃcNc−1∆W f
Nf−2

)
bcNc−1(

bcNc−1

)2 √
hf

−

(
ŜcNc−1 + acNc−1 hc + bcNc−1∆W f

Nf−2 −K
)
ḃcNc−1(

bcNc−1

)2 √
hf

∣∣∣∣∣∣

(5.23)

With our assumption that b (S, t) > ε > 0, we get

∣∣∣∣∣ ∂P̂c

∂ŜcNc−1

∣∣∣∣∣ ≤
∣∣∣∣∣∣
(

1 + ȧcNc−1hc + ḃcNc−1∆W f
Nf−2

)
bcNc−1

ε2
√
hf

−

(
ŜcNc−1 + acNc−1 hc + bcNc−1∆W f

Nf−2 −K
)
ḃcNc−1

ε2
√
hf

∣∣∣∣∣∣
(5.24)

Considering the linear growth assumption A2 of theorem 3.4.3 applied to the
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coefficients of the evolution equation for Ut, we get∣∣∣∣∣ ∂P̂c

∂ŜcNc−1

∣∣∣∣∣
k

≤
∣∣∣∣Rk (

ŜcNc−1,∆W
f
Nf−2

) ∣∣∣∣h−k/2f (5.25)

where R is a polynomial of order 2.

A similar reasoning gives that

∣∣∣∣∣ ∂P̂c∂θ

∣∣∣∣∣ ≤
∣∣∣∣∣∣
(
ãcNc−1hc + b̃cNc−1∆W f

Nf−2

)
bcNc−1

ε2
√
hf

−

(
ŜcNc−1 + acNc−1 hc + bcNc−1∆W f

Nf−2 −K
)
b̃cNc−1

ε2
√
hf

∣∣∣∣∣∣
(5.26)

∣∣∣∣∣ ∂P̂c∂θ

∣∣∣∣∣
k

≤

∣∣∣∣∣ R̃k (
ŜcNc−1,∆W

f
Nf−2

) ∣∣∣∣∣h−k/2f (5.27)

where R̃ is also a polynomial of order 2.

We recall that for k = 0, . . . , kmax we have

E
((

ŜcNc−1

)k)
< C̃k (5.28)

There is a fixed value Mk for each k = 0, . . . , kmax such that

E
((

∆W f
Nf−2

)k)
< Mk (5.29)

Therefore, Hölder’s inequality guarantees that there are constants CRk , CR̃k such

that

E
(∣∣∣∣Rk (

ŜfNc−1, ,∆W
f
Nf−2

) ∣∣∣∣) < CRk

E

(∣∣∣∣∣ R̃k (
ŜcNc−1,∆W

f
Nf−2

) ∣∣∣∣∣
)
< C

R̃k

(5.30)

and finally

E

∣∣∣∣∣ ∂P̂c

∂ŜcNc−1

∣∣∣∣∣
k
 = O

(
h
−k/2
f

)

E

∣∣∣∣∣ ∂P̂c∂θ

∣∣∣∣∣
k
 = O

(
h
−k/2
f

) (5.31)

111



By taking q = kmax/2, we have the proof that for all p̃ > 0,

E

1E

(
dP̂f
dθ
− dP̂c

dθ

)2
 = O

(
hp̃
)

(5.32)

i.e. the contribution of extreme paths E is negligible. The rest of the analysis

therefore focuses on Ec.

Contribution of non-extreme paths

Using again the notation δ̂ =
∂Ŝ

∂θ
, we write

dP̂f
dθ
− dP̂c

dθ
=
∂ŜfNf−1

∂θ

∂P̂f

∂SfNf−1

+
∂P̂f
∂θ
−
∂ŜcNc−1

∂θ

∂P̂c
∂ScNc−1

− ∂P̂c
∂θ

=

∂ŜfNf−1

∂θ

(
µ̇fσf − (µf −K)σ̇f

σ2
f

)
+

(
µ̃fσf − (µf −K)σ̃f

σ2
f

)φ(µf −K
σf

)

−

[
∂ŜcNc−1

∂θ

(
µ̇cσc − (µc −K)σ̇c

σ2
c

)
+

(
µ̃cσc − (µc −K)σ̃c

σ2
c

)]
φ

(
µc −K
σc

)

=

(δ̂fNf−1µ̇f + µ̃f

) 1

σf
− (µf −K)

δfNf−1σ̇f + σ̃f

σ2
f

φ(µf −K
σf

)

−
[(
δ̂cNc−1µ̇c + µ̃c

) 1

σc
− (µc −K)

(
δcNc−1σ̇c + σ̃c

σ2
c

)]
φ

(
µc −K
σc

)
(5.33)

We then rewrite it as

dP̂f
dθ
− dP̂c

dθ
:=
[
ṀfLf +Mf L̇f

]
φ (MfLf )−

[
ṀcLc +McL̇c

]
φ (McLc) (5.34)
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where we define

Mf := (µf −K)

Ṁf :=
(
δ̂fNf−1µ̇f + µ̃f

)
Lf :=

1

σf

L̇f := −

δfNf−1σ̇f + σ̃f

σ2
f


Mc := (µc −K)

Ṁc :=
(
δ̂cNc−1µ̇c + µ̃c

)
Lc :=

1

σc

L̇c := −
(
δcNc−1σ̇c + σ̃c

σ2
c

)

(5.35)

Note that Ṁf , L̇f , Ṁc and L̇c correspond to total derivatives of Mf , Lf ,Mc and Lc

with respect to θ.

We rewrite the previous equation as

dP̂f
dθ
− dP̂c

dθ
=
(
ṀfLfφ (MfLf )− ṀcLcφ (McLc)

)
+
(
Mf L̇fφ (MfLf )−McL̇cφ (McLc)

) (5.36)

Defining the notation ∆X = Xf−Xc (for any value X defined at the fine and coarse

level), we use the following decomposition:

∆
dP̂

dθ
= ∆

(
ṀLφ (ML)

)
+ ∆

(
ML̇φ (ML)

)
= ∆

(
Ṁ
)
Lfφ (MfLf ) + Ṁc∆ (L)φ (MfLf ) + ṀcLc∆ (φ (ML))

+
(

∆ (M) L̇fφ (MfLf ) +Mc∆
(
L̇
)
φ (MfLf ) +McL̇c∆ (φ (ML))

)
(5.37)

We then note that for any finite family of square integrable random variables Xi,

we have

E

( I∑
i=1

Xi

)2
 ≤ I I∑

i=1

E
[
X2
i

]
(5.38)

We can therefore restrict our analysis to the convergence of the expected squares of

Lfφ (MfLf ) ∆
(
Ṁ
)

, Ṁcφ (MfLf ) ∆ (L), L̇fφ (MfLf ) ∆ (M), Mcφ (MfLf ) ∆
(
L̇
)

,

ṀcLc∆ (φ (ML)) and McL̇c∆ (φ (ML)).
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Writing the terms of (5.35) in an expanded form gives

Mf =
(
ŜfNf−1 + afNf−1 hf −K

)
Ṁf = δ̂fNf−1

(
1 + ȧfNf−1hf

)
+
(
ãfNf−1 hf

)
Lf =

1

bfNf−1

√
hf

L̇f =

 δ̂fNf−1ḃ
f
Nf−1 + b̃fNf−1(

bfNf−1

)2√
hf


Mc =

(
ŜcNc−1 + acNc−1 hc + bcNc−1∆W f

Nf−2 −K
)

Ṁc = δ̂cNc−1

(
1 + ȧcNc−1 hc + ḃcNc−1∆W f

Nf−2

)
+
(
ãcNc−1hc + b̃cNc−1∆W f

Nf−2

)
Lc =

1

bcNc−1

√
hc
2

L̇c =

 δ̂cNc−1ḃ
c
Nc−1 + b̃cNc−1(

bcNc−1

)2 √hc
2


(5.39)

Contribution of the paths “far” from the discontinuity

Here we define D as the set of non-extreme paths “close” to the strike, i.e. for

which |ST −K | ≤ h1/2−3γ and Dc the non-extreme paths that do not satisfy this

condition, i.e. “far” from the strike.

As shown in section 3.3, the probability density function of ST is smooth. Using

arguments similar to those presented in chapter 4, we can show that a proportion

O
(
h1/2−3γ

)
of all paths is in D, and a proportion O (1) of all paths is in Dc, i.e.

P (D) = O
(
h1/2−3γ

)
(5.40)

Using the law of total expectation,

E

(dP̂f
dθ
− dP̂c

dθ

)2
 = O

E

(dP̂f
dθ
− dP̂c

dθ

)2

1Ec


= P (Dc)O

E

(dP̂f
dθ
− dP̂c

dθ

)2
∣∣∣∣∣∣Dc


+ P (D) O

E

(dP̂f
dθ
− dP̂c

dθ

)2
∣∣∣∣∣∣D


(5.41)
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On Dc, we have

|Mf | =
∣∣∣ ŜfNf−1 + afNf−1 hf −K

∣∣∣
≥
∣∣∣ ∣∣∣ ŜfNf−1 −K

∣∣∣− ∣∣∣ afNf−1 hf

∣∣∣ ∣∣∣
≥
∣∣∣ ∣∣∣ ∣∣∣ ŜfNf−1 − ST

∣∣∣− |ST −K | ∣∣∣− ∣∣∣ afNf−1 hf

∣∣∣ ∣∣∣
(5.42)

note that using the linear growth of the coefficient a(S, t) and the bounds imposed

on paths of Dc,

|ST −K | ≥ h1/2−3γ
f∣∣∣ ŜfNf−1 − ST

∣∣∣ = O
(
h

1/2−2γ
f

)
= o

(
h

1/2−3γ
f

)
∣∣∣ afNf−1 hf

∣∣∣ = O
(
h1−γ
f

)
= o

(
h

1/2−3γ
f

) (5.43)

so that there is a constant CMf
> 0 such that

|Mf | ≥ CMf
h

1/2−3γ
f

(5.44)

Using the linear growth of b(S, t), there is a constant CLf > 0 such that

|Lf | ≥ CLfh
−1/2+γ
f (5.45)

Therefore

|MfLf | ≥ CMf
h

1/2−3γ
f CLfh

−1/2+γ
f

≥ CMf
CLfO

(
h−2γ
f

) (5.46)

and finally due to the behaviour of φ in its tails, for all p > 0 we have

φ (MfLf ) = O
(
hpf

)
(5.47)

Very similarly we can show that on Dc, we also have constants CMc > 0 and CLc > 0

such that

|Mc | ≥ CMch
1/2−3γ
f

|Lc | ≥ CLch
−1/2+γ
f

|McLc | ≥ CMcCLch
−2γ
f

(5.48)

and finally due to the behaviour of φ in its tails, for all p > 0 we have

φ (McLc) = O
(
hpf

)
(5.49)

This means that unless the path is in D, all the terms we have to analyse are O
(
hpf

)
,

i.e. only the paths of D have a significant contribution to the global variance.
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Analysis of Lfφ (MfLf ) ∆
(
Ṁ
)

We have

Ṁc = δ̂cNc−1

(
1 + ȧcNc−1 hc + ḃcNc−1∆W f

Nf−2

)
+
(
ãcNc−1hc + b̃cNc−1∆W f

Nf−2

) (5.50)

Noting that at the fine level we used the Milstein scheme on
[
tfNf−2, t

f
Nf−1

]
, we can

write that

δ̂fNf−1 = δ̂fNf−2 +
(
ãfNf−2 + ȧfNf−2δ̂

f
Nf−2

)
hf +

(
b̃fNf−2 + ḃfNf−2δ̂

f
Nf−2

)
∆W f

Nf−2

+
1

2

[
δ̂fNf−2

(
ḃfNf−2

)2
+ δ̂fNf−2b

f
Nf−2

b̈fNf−2

+ b̃fNf−2ḃ
f
Nf−2 + ḃfNf−2

˜̇
b
f

Nf−2

]((
∆W f

Nf−2

)2
− hf

)
(5.51)

We let

∆Mil :=
1

2

[
δ̂fNf−2

(
ḃfNf−2

)2
+ δ̂fNf−2b

f
Nf−2

b̈fNf−2

+ b̃fNf−2ḃ
f
Nf−2 + ḃfNf−2

˜̇
b
f

Nf−2

]((
∆W f

Nf−2

)2
− hf

) (5.52)

Therefore

δ̂fNf−1 = δ̂fNf−2

(
1 + ȧfNf−2hf + ḃfNf−2∆W f

Nf−2

)
+ ãfNf−2hf + b̃fNf−2∆W f

Nf−2 + ∆Mil

(5.53)

and

Ṁf =
[
δ̂fNf−2

(
1 + ȧfNf−2hf + ḃfNf−2∆W f

Nf−2

)
+ãfNf−2hf + b̃fNf−2∆W f

Nf−2 + ∆Mil

] (
1 + ȧfNf−1hf

)
+
(
ãfNf−1 hf

)
= δ̂fNf−2

1 +
ȧfNf−1 + ȧfNf−2

2
hc + ḃfNf−2∆W f

Nf−2


+

 ãfNf−2 + ãfNf−1

2
hc + b̃fNf−2∆W f

Nf−2


+ ȧfNf−1hf

(
ȧfNf−2hf + ḃfNf−2∆W f

Nf−2

+ ãfNf−2hf + b̃fNf−2∆W f
Nf−2

)
+ ∆Mil

(
1 + ȧfNf−1hf

)
(5.54)
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As we are only considering the paths in Ec, and recalling that a(S, t) and b(S, t)

obey the linear growth and Lipschitz conditions of theorem 3.4.3, we have

ȧfNf−1hf

[
ȧfNf−2hf + ḃfNf−2∆W f

Nf−2 + ãfNf−2hf + b̃fNf−2∆W f
Nf−2

]
= O

(
h−γf

)
O (hf )

[
O
(
h−γf

)
O (hf ) +O

(
h−γf

)
O
(
h

1/2−γ
f

)
+O

(
h−γf

)
O (hf ) +O

(
h−γf

)
O
(
h

1/2−γ
f

)]
= O

(
h1−γ
f

)
O
(
h

1/2−γ
f

)
= O

(
h

3/2−2γ
f

)
(5.55)

and

∆Mil

(
1 + ȧfNf−1hf

)
=

1

2

(
δ̂fNf−2

(
ḃfNf−2

)2
+ δ̂fNf−2b

f
Nf−2

b̈fNf−2

+b̃fNf−2ḃ
f
Nf−2 + ḃfNf−2

˜̇
b
f

Nf−2

)
((

∆W f
Nf−2

)2
− hf

)(
1 + ȧfNf−1hf

)
=
(
O
(
h−γf

)
O
(
h−2γ
f

)
+O

(
h−γf

)
O
(
h−γf

)
O
(
h−γf

)
+O

(
h−γf

)
O
(
h−γf

)
+O

(
h−γf

)
O
(
h−γf

))
(
O
(
h1−2γ
f

)
+O (hf )

)(
1 +O

(
h−γf

)
hf

)
= O

(
h−3γ
f

)
O
(
h1−2γ
f

)
O (1)

= O
(
h1−5γ
f

)

(5.56)

We write

∆Ṁ = Ṁf − Ṁc

= δ̂fNf−1

(
1 + ȧfNf−1hf

)
+
(
ãfNf−1 hf

)
−
[
δ̂cNc−1

(
1 + ȧcNc−1 hc + ḃcNc−1∆W f

Nf−2

)
+
(
ãcNc−1hc + b̃cNc−1∆W f

Nf−2

)]
(5.57)
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Using the previous expansion

∆Ṁ = δ̂fNf−2

1 +
ȧfNf−1 + ȧfNf−2

2
hc + ḃfNf−2∆W f

Nf−2


+

 ãfNf−2 + ãfNf−1

2
hc + b̃fNf−2∆W f

Nf−2


+O

(
h

3/2−2γ
f

)
+O

(
h1−5γ
f

)
− δ̂cNc−1

(
1 + ȧcNc−1 hc + ḃcNc−1∆W f

Nf−2

)
−
(
ãcNc−1hc + b̃cNc−1∆W f

Nf−2

)
= δ̂fNf−2

1 +
ȧfNf−1 + ȧfNf−2

2
hc + ḃfNf−2∆W f

Nf−2


− δ̂cNc−1

(
1 + ȧcNc−1 hc + ḃcNc−1∆W f

Nf−2

)
+

 ãfNf−2 + ãfNf−1

2
hc + b̃fNf−2∆W f

Nf−2


−
(
ãcNc−1hc + b̃cNc−1∆W f

Nf−2

)
+O

(
h1−5γ
f

)
= δ̂fNf−2

1 +
ȧfNf−1 + ȧfNf−2

2
hc + ḃfNf−2∆W f

Nf−2


−
(

1 + ȧcNc−1 hc + ḃcNc−1∆W f
Nf−2

) ]
+
(
δ̂fNf−2 − δ̂

c
Nc−1

)(
1 + ȧcNc−1 hc + ḃcNc−1∆W f

Nf−2

)
+

 ãfNf−2 + ãfNf−1

2
− ãcNc−1

hc

+
(
b̃fNf−2 − b̃

c
Nc−1

)
∆W f

Nf−2

+O
(
h1−5γ
f

)

(5.58)

118



∆Ṁ = δ̂fNf−2

 ȧfNf−1 + ȧfNf−2

2
− ȧcNc−1

O (hf ) +
(
ḃfNf−2 − ḃ

c
Nc−1

)
O
(
h

1/2−γ
f

)
+
(
δ̂fNf−2 − δ̂

c
Nc−1

)(
1 +O

(
h−γf

)
O (hf ) +O

(
h−γf

)
O
(
h

1/2−γ
f

))
+

 ãfNf−2 + ãfNf−1

2
− ãcNc−1

O (hf )

+
(
b̃fNf−2 − b̃

c
Nc−1

)
O
(
h

1/2−γ
f

)
+O

(
h1−5γ
f

)
(5.59)

Using once again the fact that a(S, t) and b(S, t) obey the Lipschitz conditions of

theorem 3.4.3 and the bounds of lemma (3.4.8) on non-extreme paths, we have

∆Ṁ = O
(
h−γf

)(
O
(
h

1/2−2γ
f

)
O (hf ) +O

(
h1−γ
f

)
O
(
h

1/2−γ
f

))
+O

(
h1−γ
f

)(
1 +O

(
h−γf

)
O (hf ) +O

(
h−γf

)
O
(
h

1/2−γ
f

))
+O

(
h

1/2−2γ
f

)
O (hf )

+O
(
h1−γ
f

)
O
(
h

1/2−γ
f

)
+O

(
h1−5γ
f

)
= O

(
h1−5γ
f

)
(5.60)

Then as we have assumed b(S, t) > ε in section 3.3.3, we have

Lf = O
(
h
−1/2
f

)
(5.61)

We also note that φ (MfLf ) ≤ 1. Therefore on D we have

Lfφ (MfLf ) ∆
(
Ṁ
)

= O
(
h

1/2−5γ
f

)
(5.62)

Analysis of Ṁcφ (MfLf ) ∆ (L)

Using arguments similar to the ones used before, we have

Ṁc = δ̂cNc−1

(
1 + ȧcNc−1 hc + ḃcNc−1∆W f

Nf−2

)
+
(
ãcNc−1hc + b̃cNc−1∆W f

Nf−2

)
= O

(
h−γf

)(
1 +O

(
h−γf

)
O (hf ) +O

(
h−γf

)
O
(
h

1/2−γ
f

))
+
(
O
(
h−γf

)
O (hf ) +O

(
h−γf

)
O
(
h

1/2−γ
f

))
= O

(
h−γf

)
+O

(
h

1/2−2γ
f

)
= O

(
h−γf

)
(5.63)
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Once again on D, φ (MfLf ) ≤ 1 and

∆ (L) =

 1

bfNf−1

√
hf
− 1

bcNc−1

√
hc
2


=

bcNc−1 − b
f
Nf−1

bcNc−1b
f
Nf−1

√
hf

=
O
(
h

1/2−2γ
f

)
ε2
√
hf

= O
(
h−2γ
f

)

(5.64)

and finally we obtin that on D,

Ṁcφ (MfLf ) ∆ (L) = O
(
h−3γ
f

)
(5.65)

Analysis of L̇fφ (MfLf ) ∆ (M)

We have (
bfNf−1

)2√
hf ≥ ε2

√
hf (5.66)

and

δ̂fNf−1ḃ
f
Nf−1 + b̃fNf−1 = O

(
h−γf

)
O
(
h−γf

)
+O

(
h−γf

)
(5.67)

therefore

L̇f =
δ̂fNf−1ḃ

f
Nf−1 + b̃fNf−1(

bfNf−1

)2√
hf

= O
(
h
−1/2−2γ
f

) (5.68)

and φ (MfLf ) ≤ 1 and

∆ (M) = Mf −Mc

=
(
ŜfNf−1 + afNf−1 hf −K

)
−
(
ŜcNc−1 + acNc−1 hc + bcNc−1∆W f

Nf−2 −K
) (5.69)

We once again write the Milstein scheme on
[
tfNf−2, t

f
Nf−1

]
,

ŜfNf−1 = ŜfNf−2 + afNf−2hf + bfNf−2∆W f
Nf−2

+
1

2
bfNf−2ḃ

f
Nf−2

((
∆W f

Nf−2

)2
− hf

) (5.70)
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and the previous equation becomes

∆ (M) =
(
ŜfNf−2 + afNf−2hf + bfNf−2∆W f

Nf−2

+
1

2
bfNf−2ḃ

f
Nf−2

((
∆W f

Nf−2

)2
− hf

)
+ afNf−1 hf −K

)
−
(
ŜcNc−1 + acNc−1 hc + bcNc−1∆W f

Nf−2 −K
)

= ŜfNf−2 − Ŝ
c
Nc−1 +

(
afNf−2 + afNf−1 − 2acNc−1

)
hf

+
(
bfNf−2 − b

c
Nc−1

)
∆W f

Nf−2

+
1

2
bfNf−2ḃ

f
Nf−2

((
∆W f

Nf−2

)2
− hf

)
(5.71)

As before, being in Ec and the coefficients having a linear growth, we get

∆ (M) = O
(
h1−γ
f

)
+O

(
h

1/2−2γ
f

)
O (hf ) +O

(
h1−γ
f

)
O
(
h

1/2−γ
f

)
+O

(
h−γf

)
O
(
h−γf

)(
O
(
h1−2γ
f

)
+O (hf )

)
= O

(
h1−γ
f

)
+O

(
h

3/2−2γ
f

)
+O

(
h

3/2−2γ
f

)
+O

(
h1−4γ
f

)
= O

(
h1−4γ
f

)
(5.72)

Finally we get on D

L̇fφ (MfLf ) ∆ (M) = O
(
h

1/2−6γ
f

)
(5.73)

Analysis of Mcφ (MfLf ) ∆
(
L̇
)

In general on Ec,

Mc =
(
ŜcNc−1 + acNc−1 hc + bcNc−1∆W f

Nf−2 −K
)

= O
(
h−γf

)
(5.74)

and in particular on D,

Mc = O
(
h

1/2−3γ
f

)
(5.75)

and φ (MfLf ) ≤ 1. Then,

∆
(
L̇
)

=

 δ̂fNf−1ḃ
f
Nf−1 + b̃fNf−1(

bfNf−1

)2√
hf

−
 δ̂cNc−1ḃ

c
Nc−1 + b̃cNc−1(

bcNc−1

)2 √hc
2


= ∆

(
δ̂N−1ḃN−1 + b̃Nf−1

) 1(
bfNf−1

)2√
hf

+
(
δ̂cNc−1ḃ

c
Nc−1 + b̃cNc−1

)
∆

(
1

(bN−1)2√hf
)

(5.76)
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∣∣∣∆(L̇) ∣∣∣ ≤ ∆
(
δ̂N−1ḃN−1 + b̃Nf−1

) 1

ε2
√
hf

+
(
h−γf h−γf + h−γf

)
∆

(
1

(bN−1)2√hf
) (5.77)

that is

∆
(
L̇
)

= ∆
(
δ̂N−1ḃN−1 + b̃Nf−1

)
O
(
h
−1/2+γ
f

)
+O

(
h−2γ
f

)
∆

(
1

(bN−1)2√hf
)

(5.78)

we then have

∆

(
1

(bN−1)2√hf
)

=

(
bcNc−1

)2 − (bfNf−1

)2

(
bcNc−1

)2 (
bfNf−1

)2√
hf

=

(
bcNc−1 − b

f
Nf−1

)(
bcNc−1 + bfNf−1

)
(
bcNc−1

)2 (
bfNf−1

)2√
hf

(5.79)

and

∆

(
1

(bN−1)2√hf
)
≤
O
(
h

1/2−2γ
f

)
O
(
h−γf

)
ε4
√
hf

= O
(
h−3γ
f

) (5.80)

and

∆
(
δ̂N−1ḃN−1 + b̃Nf−1

)
= δ̂fNf−1ḃ

f
Nf−1 + b̃fNf−1 −

(
δ̂cNc−1ḃ

c
Nc−1 + b̃cNc−1

)
=
(
δ̂fNf−1 − δ̂

c
Nc−1

)
ḃfNf−1 + δ̂cNc−1

(
ḃfNf−1 − ḃ

c
Nc−1

)
+ b̃fNf−1 − b̃

c
Nc−1

(5.81)

therefore

∆
(
δ̂N−1ḃN−1 + b̃Nf−1

)
= O

(
h

1/2−2γ
f

)
O
(
h−γf

)
+O

(
h−γf

)
O
(
h

1/2−2γ
f

)
+O

(
h

1/2−2γ
f

)
= O

(
h

1/2−3γ
f

) (5.82)
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and finally

∆
(
L̇
)

= O
(
h

1/2−3γ
f

)
O
(
h
−1/2+γ
f

)
+O

(
h−2γ
f

)
O
(
h−3γ
f

)
= O

(
h−5γ
f

) (5.83)

Those results finally yield on D

Mcφ (MfLf ) ∆
(
L̇
)

= O
(
h

1/2−8γ
f

)
(5.84)

Analysis of ṀcLc∆φ (ML)

We have from above

Ṁc = O
(
h−γf

)
(5.85)

and as before

|Lc | =

∣∣∣∣∣∣ 1

bcNc−1

√
hc
2

∣∣∣∣∣∣
≤ 1

ε
√
hf

(5.86)

Thus

Lc = O
(
h
−1/2
f

)
(5.87)

Let us now analyse ∆φ (ML).

∆φ (ML) = φ (MfLf )− φ (McLc)

= φ

(ŜfNf−1 + afNf−1 hf −K
) 1

bfNf−1

√
hf


− φ

(ŜcNc−1 + acNc−1 hc + bcNc−1∆W f
Nf−2 −K

) 1

bcNc−1

√
hc
2


(5.88)

We first study ∆ (ML). This will be useful in conjunction with the mean value

theorem. We write

∆ (ML) = Lf∆M +Mc∆L (5.89)
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From above, we get

∆M = O
(
h1−4γ
f

)
∆L = O

(
h−2γ
f

)
Lf = O

(
h
−1/2
f

) (5.90)

and

Mc =
(
ŜcNc−1 −K + acNc−1 hc + bcNc−1∆W f

Nf−2

)
= O

(
h

1/2−3γ
f

)
+O

(
h1−γ
f

)
+O

(
h

1/2−2γ
f

)
= O

(
h

1/2−3γ
f

) (5.91)

therefore

∆ (ML) = O
(
h1−4γ
f

)
O
(
h
−1/2
f

)
+O

(
h

1/2−3γ
f

)
O
(
h−2γ
f

)
= O

(
h

1/2−5γ
f

) (5.92)

Then the mean value theorem guarantees there is a certain value C ∈ (McLc,MfLf )

such that

∆φ (ML) = ∆ (ML)φ′ (C) (5.93)

and φ′ is bounded, therefore we finally get

∆φ (ML) = O
(
h

1/2−5γ
f

)
(5.94)

on D. And hence

ṀcLc∆φ (ML) = O
(
h

1/2−5γ
f

)
(5.95)

Analysis of McL̇c∆ (φ (ML))

As before on Dc,

Mc = O
(
h

1/2−3γ
f

)
on D

Mc = O
(
h−γf

)
on Dc

(5.96)
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and

L̇c =
δ̂cNc−1ḃ

c
Nc−1 + b̃cNc−1(

bcNc−1

)2 √hc
2

=
O
(
h−γf

)
O
(
h−γf

)
+O

(
h−γf

)
ε2O

(
h

1/2
f

)
= O

(
h
−1/2−2γ
f

)
(5.97)

and as before on D we have

∆φ (ML) = O
(
h

1/2−5γ
f

)
(5.98)

Therefore

McL̇c∆ (φ (ML)) = O
(
h

1/2−10γ
f

)
(5.99)

Putting things together

Putting these results together using equation (5.41) and the analysis of the terms

listed in (5.39), we have

V

(
∆
∂P̂

∂θ

)
= O

(
E

[
∆
∂P̂

∂θ

2])

= P (Dc)O

E

(∆
∂P̂

∂θ

)2
∣∣∣∣∣∣Dc


+ P (D) O

E

(∆
∂P̂

∂θ

)2
∣∣∣∣∣∣D


(5.100)

and from equation (5.37) and the pertaining remarks,

E

(∆
∂P̂

∂θ

)2
 = O

(
6∑
i=1

E
(
A2
i

))
(5.101)

with

A1 = Lfφ (MfLf ) ∆
(
Ṁ
)

A2 = Ṁcφ (MfLf ) ∆ (L)

A3 = L̇fφ (MfLf ) ∆ (M)

A4 = Mcφ (MfLf ) ∆
(
L̇
)

A5 = ṀcLc∆ (φ (ML))

A6 = McL̇c∆ (φ (ML))

(5.102)
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The analysis above reveals that A2 is the largest term and using (5.100),

V

(
∆
∂P̂

∂θ

)
= O (1)O

(
h2p
f

)
+O

(
h

1/2−3γ
f

)
O
(
h−6γ
f

)
= O

(
h

1/2−9γ
f

) (5.103)

This means that the order of convergence for the Digital Call using Conditional

Expectations is β =
1

2
− 9γ for any γ > 0 (and γ < 1/2).

5.1.3 Order of convergence α

In lemma 3.2.4, we have established that to study the rate of weak convergence

of the Greeks’ estimators E

(
∂P̂

∂θ
− ∂P

∂θ

)
, we can equivalently study the rate of

convergence of E

(
∆
∂P̂

∂θ

)
. The analysis of the weak convergence rate α is then

similar to the analysis of β.

E

(
∆
∂P̂

∂θ

)
= P (Dc)O

(
E

[
∆
∂P̂

∂θ

∣∣∣∣∣Dc

])

+ P (D) O

(
E

[
∆
∂P̂

∂θ

∣∣∣∣∣D
]) (5.104)

and using the results of section 5.1.2, we have

E

[
∆
∂P̂

∂θ

]
=

6∑
i=1

E (Ai) (5.105)

We see from our previous results that A2 is again the limiting factor and we have

finally

E

(
∆
∂P̂

∂θ

)
= O

(
h1/2−6γ

)
(5.106)

This means that the order of weak convergence for the Digital Call using Conditional

Expectations is α =
1

2
− 6γ for any γ > 0 (and γ < 1/2).

5.2 Continuous payoffs with discontinuous first deriva-

tive: the European call

We now analyse the computation of Greeks for the European call using pathwise

sensitivities and conditional expectations as presented in section 2.2.2.

126



5.2.1 Payoff computation

We recall that for the European call, with the notations of section 5.1.1, the

conditional expectation technique gives the fine payoff estimator

P̂f = E
[
P
(
ŜfNf

) ∣∣∣ŜfNf−1

]
= σf φ

(
µf −K
σf

)
+ (µf −K) Φ

(
µf −K
σf

)
(5.107)

where we reuse the notations of sections 2.2.2 and 5.1.1

µf := µfNf−1 = ŜfNf−1 + a
(
ŜfNf−1, tNf−1

)
hf := ŜfNf−1 + afNf−1hf

σf := σfNf−1 = b
(
ŜfNf−1, tNf−1

)√
hf = bfNf−1

√
hf

(5.108)

When differentiating this expression, some terms cancel out and we get

∂P̂f

∂ŜfNf−1

= µ̇fΦ

(
µf −K
σf

)
+ σ̇fφ

(
µf −K
σf

)
∂P̂f
∂θ

= µ̃fΦ

(
µf −K
σf

)
+ σ̃fφ

(
µf −K
σf

) (5.109)

with

µ̇f :=
∂µf

∂ŜfNf−1

= 1 + ȧfNf−1hf

σ̇f :=
∂σf

∂ŜfNf−1

= ḃfNf−1

√
hf

µ̃f :=
∂µf
∂θ

= ãfNf−1 hf

σ̃f :=
∂σf
∂θ

= b̃fNf−1

√
hf

(5.110)

At the coarse level,

P̂c = E
[
P
(
ŜcNc

) ∣∣∣ŜcNc−1,∆W
f
Nf−2

]
= σc φ

(
µc −K
σc

)
+ (µc −K) Φ

(
µc −K
σc

)
(5.111)

with the usual notations

µc := µcNc−1 = ŜcNc−1 + a
(
ŜcNc−1, t

c
Nc−1

)
hc + b

(
ŜcNc−1, t

c
Nc−1

)
∆W f

Nf−2

:= ŜcNc−1 + acNc−1 hc + bcNc−1∆W f
Nf−2

σc := σcNc−1 = b
(
ŜNc−1, t

c
N−1

) √hc
2

:= bcNc−1

√
hc
2
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and differentiation gives

∂P̂c

∂ŜcNc−1

= µ̇cΦ

(
µc −K
σc

)
+ σ̇cφ

(
µc −K
σc

)
∂P̂c
∂θ

= µ̃cΦ

(
µc −K
σc

)
+ σ̃cφ

(
µc −K
σc

) (5.112)

with

µ̇c =
∂µc

∂ŜcNc−1

= 1 + ȧfNf−1hf = 1 + ȧcNc−1hc + ḃcNc−1∆W f
Nf−2

σ̇c =
∂σc

∂ŜcNc−1

= ḃfNf−1

√
hf = ḃcNc−1

√
hc
2

µ̃c =
∂µc
∂θ

= ãfNf−1 hf = ãcNc−1hc + b̃cNc−1∆W f
Nf−2

σ̃c =
∂σc
∂θ

= b̃fNf−1

√
hf = b̃cNc−1

√
hc
2

(5.113)

5.2.2 Order of convergence β

As in section 5.1.2, to analyse the variance of the multilevel estimator, we study

the expectation of its square, that is, we study

E

(∂P̂f
∂θ
− ∂P̂c

∂θ

)2
 (5.114)

with

∂P̂f
∂θ
− ∂P̂c

∂θ
= ∆

(
∂ŜN−1

∂θ

∂P̂

∂SN−1
+
∂P̂

∂θ

)
(5.115)

and a reasoning similar to the one found in section 5.1.2 proves that extreme paths

have a negligible contribution to the total variance.

From the results of section 5.2.1, we derive

∆

(
∂ŜN−1

∂θ

∂P̂

∂SN−1
+
∂P̂

∂θ

)
= ∆

(
(δN−1σ̇ + σ̃)φ

(
µ−K
σ

))
+ ∆

(
(δN−1µ̇+ µ̃) Φ

(
µ−K
σ

)) (5.116)

where as before δN−1 =
∂ŜN−1

∂θ
.

128



Reusing the notations introduced before,

∆

(
∂ŜN−1

∂θ

∂P̂

∂SN−1
+
∂P̂

∂θ

)
= ∆

(
σ2L̇φ (ML)

)
+ ∆

(
ṀΦ (ML)

)
= ∆σ2 L̇f φ (MfLf )

+ σ2
c ∆L̇ φ (MfLf )

+ σ2
c L̇c ∆φ (ML)

+ ∆Ṁ Φ (MfLf )

+ Ṁc ∆Φ (ML)

(5.117)

We study the expectation of the square of this difference, whose order of convergence

is known thanks to Hölder’s inequality to be the same as that of the sum of the

squares of the terms appearing in equation (5.117). As before we decompose non-

extreme paths Ec into D and Dc, the paths whose final value are “close to” and “far

from” the strike K. From the computations of section 5.1.2, for all p > 0 and any

γ > 0, we get

σ2
c = O

(
h1−2γ
f

)
∆σ2 = O

(
h1−3γ
f

)
L̇f = O

(
h
−1/2−2γ
f

)
L̇c = O

(
h
−1/2−2γ
f

)
∆L̇ = O

(
h−5γ
f

)
∆Ṁ = O

(
h1−5γ
f

)
Ṁc = O

(
h−γf

)
φ (MfLf ) = O

(
hpf

)
on Dc

φ (MfLf ) = O (1) on D

∆φ (ML) = O
(
hpf

)
on Dc

∆φ (ML) = O
(
h

1/2−5γ
f

)
on D

Φ (MfLf ) = O (1)

∆Φ (ML) = O
(
hpf

)
on Dc

∆Φ (ML) = O
(
h

1/2−5γ
f

)
on D

(5.118)
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Hence

∆ṀΦ (MfLf ) = O
(
h1−5γ
f

)
∆σ2L̇fφ (MfLf ) = O

(
hpf

)
on Dc

∆σ2L̇fφ (MfLf ) = O
(
h

1/2−5γ
f

)
on D

σ2
c∆L̇φ (MfLf ) = O

(
hpf

)
on Dc

σ2
c∆L̇φ (MfLf ) = O

(
h1−7γ
f

)
on D

σ2
c L̇c∆φ (ML) = O

(
hpf

)
on Dc

σ2
c L̇c∆φ (ML) = O

(
h1−9γ
f

)
on D

Ṁc∆Φ (ML) = O
(
hpf

)
on Dc

Ṁc∆Φ (ML) = O
(
h

1/2−6γ
f

)
on D

(5.119)

The third and last terms are clearly the limiting ones.

The law of total expectation finally gives

E

(∂P̂f
∂θ
− ∂P̂c

∂θ

)2
 = P (D)E

(∂P̂f
∂θ
− ∂P̂c

∂θ

)2
∣∣∣∣∣∣D
+ P (Dc)E

(∂P̂f
∂θ
− ∂P̂c

∂θ

)2
∣∣∣∣∣∣Dc


= O (1)O

(
h2−10γ
f

)
+O

(
h

1/2−3γ
f

) [
O
(
h2−10γ
f

)
+O

(
h1−10γ
f

)
+O

(
h2−14γ
f

)
+O

(
h2−18γ
f

)
+O

(
h1−12γ
f

)]
= O

(
h

3/2−15γ
f

)
(5.120)

This means that the order of convergence for the European Call using Conditional

Expectations is β =
3

2
− 15γ for any γ > 0 (and γ < 1/2).

5.2.3 Order of convergence α

Very similarly, we write

E

[
∂P̂f
∂θ
− ∂P̂c

∂θ

]
= E

[(
∂P̂f
∂θ
− ∂P̂c

∂θ

)∣∣∣∣∣D
]
P (D)

+ E

[(
∂P̂f
∂θ
− ∂P̂c

∂θ

)∣∣∣∣∣Dc

]
P (Dc)

+ E

[(
∂P̂f
∂θ
− ∂P̂c

∂θ

)∣∣∣∣∣E
]
P (E)

(5.121)
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We once again show that extreme paths have no significant contribution to this

value. Therefore,

E

[
∂P̂f
∂θ
− ∂P̂c

∂θ

]
= O

(
E

[(
∂P̂f
∂θ
− ∂P̂c

∂θ

)∣∣∣∣∣D
]
P (D)

+E

[(
∂P̂f
∂θ
− ∂P̂c

∂θ

)∣∣∣∣∣Dc

]
P (Dc)

) (5.122)

and finally, using previous results,

E

[
∂P̂f
∂θ
− ∂P̂c

∂θ

]
= O

(
E

[(
∂P̂f
∂θ
− ∂P̂c

∂θ

)∣∣∣∣∣D
]
P (D)

+E

[(
∂P̂f
∂θ
− ∂P̂c

∂θ

)∣∣∣∣∣Dc

]
P (Dc)

)
= O (1)O

(
h1−5γ
f

)
+O

(
h

1/2−3γ
f

) [
O
(
h1−5γ
f

)
+O

(
h

1/2−5γ
f

)
+O

(
h1−7γ
f

)
+O

(
h1−9γ
f

)
+O

(
h

1/2−6γ
f

)]
= O

(
h1−9γ
f

)
(5.123)

This means that the order of weak convergence for the European Call using Condi-

tional Expectations is α = 1− 9γ for any γ > 0 (and γ < 1/2).

5.3 Conclusion

The Conditional Expectations technique enables us to perform pathwise sensi-

tivities computations with non-Lipschitz payoffs. For the digital call it yields the

following convergence rates: β =
1

2
−9γ and α =

1

2
−6γ for any γ > 0 (and γ < 1/2).

For Lipschitz yet non-smooth payoffs it is also useful: it offers improved con-

vergence rates over simple Pathwise Sensitivities as described in chapter 4. For the

European call those are: β =
3

2
− 15γ and α = 1− 9γ for any γ > 0 (and γ < 1/2).
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We can summarise the results of this chapter as follows:

Theorem 5.3.1. We consider an asset St on the time interval [0, T ] and a European

option with a payoff P (ST ). We assume that St follows an Ito process as described

by equation (1.2), that the coefficients of the diffusion a(S, t) and b(S, t) satisfy

conditions A1 to A4 of theorem 3.4.3 and that there exists a constant ε > 0 such

that b(S, t) ≥ ε.
Multilevel pathwise sensitivities can be used jointly with the so-called “conditional

expectation technique” to construct the estimators of digital options’ Greeks described

in section 2.3.1. Those have an accuracy O (ε) at a cost O
(
ε−3
)
.

This multilevel technique can also be applied to construct the estimators of Greeks

of options with Lipschitz yet non-smooth payoffs. In the case of the European call,

our estimators (see section 2.2.2) have an accuracy O (ε) at a cost O
(
ε−2
)
.

Proof. See above.
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Chapter 6

Analysis of Asian call options

Here we analyse the efficiency of the multilevel Monte Carlo technique for the

computation of Greeks of Asian options. As in previous chapters, we do this by

using the results of chapter 3 to obtain analytical bounds on the coefficients α and

β of theorem 1.2.1 in this setting.

We refer to section 2.4 for the definition of the Asian call’s payoff, its multilevel

estimators and the use of pathwise sensitivities to compute its Greeks.

6.1 Analysis

For the analysis of Asian options, we use index convention (2.103), i.e. we use

indexes based on the fine discretisation for both the fine and coarse discretisations,

that is for any quantity X̂ defined at the fine and coarse level,

X̂f
n := X̂f

(
tfn

)
= X̂f (nhf )

X̂c
n := X̂c

(
tfn

)
= X̂c (nhf )

(6.1)

We also reuse the notation of equation (2.88), i.e. we define

X =
1

T

T∫
0

Xtdt (6.2)

for any quantity Xt.

6.1.1 Order of convergence β

We analyse the convergence speed of V

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)
and write as before that

V

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)
≤ 2

(
V

(
∂P̂l
∂θ
− ∂P

∂θ

)
+ V

(
∂P

∂θ
− ∂P̂l−1

∂θ

))
(6.3)
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which shows it is sufficient to study E

(∂P
∂θ
− ∂P̂

∂θ

)2
 for

∂P̂

∂θ
resulting either from

the fine or from the coarse discretisation of the path. We note that the fine and

coarse estimators corresponding to a given level of discretisation are here identical

and do not requisite a separate analysis.

Redefinition of extreme paths

Reusing the notation of chapters 2 and 3, we write Ut =

(
St,

∂St
∂θ

)
and ÛKP,t, ÛBB,t, Ût

the approximations based on the Kloeden-Platen, the Brownian Bridge and the

piecewise interpolants respectively.

We first prove that E
[∥∥∥U − Û∥∥∥2

]
= O

(
h2
)
. We write

Ut − Ût = Ut − ÛKP,t + ÛKP,t − ÛBB,t + ÛBB,t − Ût (6.4)

and therefore

U − Û = U − ÛKP + ÛKP − ÛBB + ÛBB − Û (6.5)

Then, ∥∥∥U − Û∥∥∥2
≤ 3

[∥∥∥U − ÛKP∥∥∥2
+
∥∥∥ÛKP − ÛBB∥∥∥2

+
∥∥∥ÛBB − Û∥∥∥2

]
(6.6)

and

E
[∥∥∥U − Û∥∥∥2

]
≤ 3

[
E
[∥∥∥U − ÛKP∥∥∥2

]
+E

[∥∥∥ÛKP − ÛBB∥∥∥2
]

+ E
[∥∥∥ÛBB − Û∥∥∥2

]] (6.7)

From theorem 3.4.3, we get that for each m > 0, there exists a constant Cm such

that

E
(

sup
0<t<T

∥∥∥Ut − ÛKP (t)
∥∥∥m) < Cm h

m (6.8)

and writing

∥∥∥U − ÛKP∥∥∥2
=

∥∥∥∥∥∥ 1

T

T∫
0

(
Ut − ÛKP,t

)
dt

∥∥∥∥∥∥
2

≤ sup
0<t<T

∥∥∥Ut − ÛKP (t)
∥∥∥2

(6.9)

we get E
[∥∥∥U − ÛKP∥∥∥2

]
= O

(
h2
)
.
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Lemma (3.4.4) gives

E


∥∥∥∥∥∥
T∫

0

(
ÛKP (t)− ÛBB(t)

)
dt

∥∥∥∥∥∥
2
 = O

(
h3
)

(6.10)

that is, E
[∥∥∥ÛKP − ÛBB∥∥∥2

]
= O

(
h3
)
.

For the analysis of E
[∥∥∥ÛBB − Û∥∥∥2

]
, we let N = T/h and note that using lemma

(3.4.4) and its notations, we have

1

T

T∫
0

(
ÛBB(t)− Û(t)

)
dt =

1

T

N−1∑
n=0

bnIn (6.11)

where In are i.i.d. N
(
0, h3/12

)
variables independent from the variables bn, which

leads to

E
[∥∥∥ÛBB − Û∥∥∥2

]
=

h3

12T 2

N−1∑
n=0

E
(
‖bn‖2

)
= O

(
h2
) (6.12)

where the second equality comes from the fact that the results of section 3.4 together

with the linear growth properties of b (U, t) mean that E
[
max
n
‖bn‖2

]
is bounded.

Putting back those results into equation (6.6), we finally obtain

E
[∥∥∥U − Û∥∥∥2

]
= O

(
h2
)
.

We can extend this result to prove that E
[∥∥∥U − Û∥∥∥p] = O

(
hp−γ

)
for any p > 2

and for γ > 0 as small as we want.

We again use decomposition (6.5) and study the behaviours of E
[∥∥∥U − ÛKP∥∥∥p],

E
[∥∥∥ÛKP − ÛBB∥∥∥p] and E

[∥∥∥ÛBB − Û∥∥∥p].
As before we use theorem 3.4.3 and immediately obtain E

[∥∥∥U − ÛKP∥∥∥p] =

O (hp).

Lemma (3.4.4) gives

E

(
sup
t∈[0,T ]

∥∥∥ÛKP (t)− ÛBB (t)
∥∥∥p) = O ((h log h)p) (6.13)

We write

∥∥∥ÛKP − ÛBB∥∥∥p ≤
∥∥∥∥∥∥ 1

T

T∫
0

(
ÛKP (t)− ÛBB(t)

)
dt

∥∥∥∥∥∥
p

≤ sup
t∈[0,T ]

∥∥∥ÛKP (t)− ÛBB (t)
∥∥∥p

(6.14)
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and conclude that E
[∥∥∥ÛKP − ÛBB∥∥∥p] = O ((h log h)p) = O

(
hp−γ

)
for any γ > 0.

To study E
[∥∥∥ÛBB − Û∥∥∥p], we consider the discrete martingale

Mn =
1

T

tn∫
0

(
ÛBB(t)− Û(t)

)
dt (6.15)

and note that
(
ÛBB − Û

)
= MN . As in (6.11), we write

Mn =
1

T

n−1∑
k=0

tk+1∫
tk

(
ÛBB(t)− Û(t)

)
dt

=
1

T

n−1∑
k=0

bkIk

(6.16)

where for k = 0, . . . , N − 1, Ik ∼ N
(

0,
h3

12

)
is independent of bk. We apply the

discrete Burkholder-Davis-Gundy inequality (see [Kal02]) and obtain

E
[∥∥∥ÛBB − Û∥∥∥p] ≤ E

[
sup

n=0,...,N
‖Mn‖p

]

= O

E

(N−1∑
n=0

‖Mn+1 −Mn‖2
)p/2

= O

E

(N−1∑
n=0

‖bnIn‖2
)p/2

= O

E

 max
n=0,...,N−1

‖bn‖p
(
N−1∑
n=0

I2
n

)p/2
= O

E
[

max
n=0,...,N−1

‖bn‖p
]
E

(N−1∑
n=0

I2
n

)p/2

(6.17)

using as before the boundedness of the moments of bn, then Jensen’s inequality and

finally writing In =
(
h3/12

)1/2
Jn (where Jn ∼ N (0, 1)), we obtain

E
[∥∥∥ÛBB − Û∥∥∥p] = O

E

(N−1∑
n=0

I2
n

)p/2
= O

(
Np/2−1E

[
N−1∑
n=0

Ipn

])
= O

(
Np/2E [Ip0 ]

)
= O

(
Np/2

(
h3/12

)p/2 E [Jp0 ]
)

(6.18)

136



and using the boundedness of moments of the unit standard distribution,

E
[∥∥∥ÛBB − Û∥∥∥p] = O

(
Np/2

(
h3/12

)p/2)
= O (hp)

(6.19)

We have thus proved that E
[∥∥∥U − Û∥∥∥p] = O

(
hp−γ

)
for any p > 2 and for γ > 0

as small as we want. Therefore we have E

[∥∥∥∥∥U − Ûh
∥∥∥∥∥
p]

= O
(
h−γ

)
.

As in lemma 3.4.5, we can now write that for all δ > 0, m > 0,

P
(∥∥∥U − Û∥∥∥ ≥ h1−δ

)
= P

(∥∥∥∥∥U − Ûh
∥∥∥∥∥ ≥ h−δ

)

= P

(∥∥∥∥∥U − Ûh
∥∥∥∥∥
m

≥ h−mδ
)

≤ hmδE

[∥∥∥∥∥U − Ûh
∥∥∥∥∥
m]

= O
(
hmδ−γ

)
(6.20)

and by picking m sufficiently large this proves that for any δ > 0,

P
(∥∥∥U − Û∥∥∥ ≥ h1−δ

)
= o (hp) for all p > 0.

We can therefore extend lemma 3.4.8 by redefining extreme paths E as the paths

satsifying any of the extreme conditions of lemma 3.4.8 or satisfying
∥∥∥U − Û∥∥∥ > h1−γ .

Those still have a likelihood o (hp) for all p > 0. From there, the analysis of Asian

options is similar to the analysis of European options in chapter 4.

Contribution of extreme paths

Letting A =
∂S

∂θ

(
∂P

∂S
− ∂P̂

∂Ŝ

)
and B =

∂P̂

∂Ŝ

(
∂S

∂θ
− ∂Ŝ

∂θ

)
, we can write that

V

(
∂P

∂θ
− ∂P̂

∂θ

)
≤ E

(∂P
∂θ
− ∂P̂

∂θ

)2
 = O

(
E
(
A2
)

+ E
(
B2
))

(6.21)

and using the usual decomposition between extreme and non-extreme paths (with

the above redefinition of E and Ec), we write

E

(∂P
∂θ
− ∂P̂

∂θ

)2
 = O

(
E
(
A21E

)
+ E

(
A21Ec

)
+ E

(
B21E

)
+ E

(
B21Ec

))
(6.22)
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As before we show that extreme paths have a negligible contribution to the global

variance. Indeed, using Hölder’s inequality, we have

E
(
A21E

)
≤
√

E (1E)

(
E

[
∂S

∂θ

8
])1/4

E

(∂P
∂S
− ∂P̂

∂Ŝ

)8
1/4

(6.23)

Lemma 3.4.8 shows that
√
E (1E) = o (hp) for all p > 0.

To show that E

[
∂S

∂θ

8
]

is finite, we note that

∣∣∣∣ ∂S∂θ
∣∣∣∣ ≤ sup

t

∣∣∣∣ ∂St∂θ

∣∣∣∣ (6.24)

Then applying theorem 3.4.3 to Ut =

(
St,

∂St
∂θ

)
, we get that for all k ≥ 0,

E

[
sup
t

∣∣∣∣ ∂St∂θ

∣∣∣∣k
]
<∞ (6.25)

therefore we get the result we want: for any k ≥ 0 (in particular k = 8),

E

[
∂S

∂θ

k
]
<∞ (6.26)

Exploiting the fact that 0 ≤ ∂P

∂S
≤ 1 and 0 ≤ ∂P̂

∂Ŝ
≤ 1 for the Asian call, we

get that

E

(∂P
∂S
− ∂P̂

∂Ŝ

)8
 ≤ 1 (6.27)

Plugging the previous results back into the equation gives that for all p > 0,

E
(
1EA2

)
= o (hp)O (1)O (1) = o (hp).

Similarly, we can prove that

E
(
B21E

)
≤
√

E (1E)

(
E

[
∂P̂

∂Ŝ

8])1/4
E

(∂S
∂θ
− ∂Ŝ

∂θ

)8
1/4

= o (hp)O (1)O (1)

(6.28)

Indeed, lemma 3.4.8 gives that
√
E (1E) = o (hp) for all p > 0. Using the fact that

∂P̂

∂Ŝ
≤ 1 , we obtain that E

[
∂P̂

∂Ŝ

8]
is finite. Finally, to prove that E

(∂S
∂θ
− ∂Ŝ

∂θ

)8

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is finite, we write

E

(∂S
∂θ
− ∂Ŝ

∂θ

)8
 = E

[
P

(
∂S

∂θ
,
∂Ŝ

∂θ

)]
(6.29)

where P is a polynomial of degree 8. Then, using Hölder’s inequality, it can be

bounded by a function of E

[
∂S

∂θ

k
]

, E

∂Ŝ
∂θ

k
, which, as explained before, are finite.

We then conclude that E

(∂S
∂θ
− ∂Ŝ

∂θ

)8
 <∞.

Plugging the previous results back into the previous equation gives that for all

p > 0,

E
(
1EB2

)
= o (hp) (6.30)

This means that the contributions of extreme paths are negligible. Therefore we

have

E
(
1EcA2

)
= O

(
E
(
A2
))

E
(
1EcB2

)
= O

(
E
(
B2
)) (6.31)

V

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
≤ E

(
A2
)

+ E
(
B2
)

= O
(
E
(
1EcA2

)
+ E

(
1EcB2

))
(6.32)

Contribution of discontinuities

We have now established that only paths of Ec contribute to the variance. There-

fore we now restrict our analysis to non-extreme paths.

We define D the set of non-extreme paths such that
∣∣∣ Ŝ −K ∣∣∣ < h1−δ for

some δ > 0 (i.e. close to the strike). Dc is then the set of non-extreme paths

that do not verify this condition. We now write

V

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
= O

(
E
(
1EcA2

)
+ E

(
1EcB2

))
= O

(
E
(
1DcA2

)
+ E

(
1DA2

))
+O

(
E
(
1EcB2

)) (6.33)

Under the assumptions of section 3.3.3, the SDE is elliptic and the increments(
Ŝn+1 − Ŝn

)
n=0,...,N−1

have smooth density functions p
Ŝn+1−Ŝn . We can then prove

that the probability density function of Ŝ is also smooth. Indeeed Ŝ can be seen as
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a weighted sum of the independent increments
(
Ŝn+1 − Ŝn

)
.

Ŝ =
1

2N

(
Ŝ0 + ŜN

)
+

1

N

N−1∑
n=1

Ŝn

= S0 +
1

N

N∑
n=1

((
N − n+

1

2

)(
Ŝn − Ŝn−1

)) (6.34)

The probability density function for Ŝ is then derived from the convolution product

p
Ŝ

(x) =
(
p(N−N+ 1

2)(ŜN−ŜN−1) ∗ . . . ∗ p(N−1+ 1
2)(Ŝ1−Ŝ0)

)
(x) (6.35)

therefore Ŝ also has a smooth probability density function. As in chapter 4, we can

therefore conclude that the paths of D represent a proportion O
(
h1−δ

)
of all paths.

Using (6.33), we write

V

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
= O

(
E
(
1EcB2

))
+O

(
h1−δ

)
O
(
max

(
A21D

))
+O

(
max

(
A21Dc

)) (6.36)

Paths in D and Dc are non extreme and therefore

(
∂S

∂θ

)2

≤ h−2γ . Taking δ = 2γ,

we can write ∣∣∣S − Ŝ ∣∣∣ ≤ h1−γ ≤ h1−δ ≤
∣∣∣ Ŝ −K ∣∣∣ (6.37)

For paths in Dc, there can therefore be no payoff discontinuity between Ŝ and S. The

payoff being piecewise linear away from the discontinuity, we thus have A21Dc = 0.

For paths in D, we use the fact that

∣∣∣∣∣ ∂P∂S − ∂P̂

∂Ŝ

∣∣∣∣∣ ≤ 1 to conclude

that max
(
A21D

)
= O

(
h−2γ

)
.

Then, noting that

∣∣∣∣∣ ∂P̂∂Ŝ
∣∣∣∣∣ ≤ 1, we can write

E

∂P̂
∂Ŝ

2(
∂S

∂θ
− ∂Ŝ

∂θ

)2

1Ec

 ≤ E

(∂S
∂θ
− ∂Ŝ

∂θ

)2
 = O

(
h2
)

(6.38)

where the last equality corresponds to what we proved earlier in this chapter.
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Putting all those results together, we finally obtain

V

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
= O

(
E
[
A2 + B2

])
= O

(
h1−δ−2γ

)
+O

(
h2
)

= O
(
h1−δ−2γ

)
= O

(
h1−4γ

)
(6.39)

that is, β = 1− 4γ for any γ > 0.

6.1.2 Order of convergence α

Similarly, we write

E

[
∂P

∂θ
− ∂P̂

∂θ

]
= E [A] + E [B] (6.40)

and using the results of section 6.1.1, we obtain

E

[
∂P

∂θ
− ∂P̂

∂θ

]
= E [A] + E [B]

= O (E [A1Ec ]) +O (E [B1Ec ])

= O (E [A1D]) +O (E [A1Dc ]) +O (E [B1Ec ])

= O
(
h1−δ−γ

)
+ 0 +O (h)

= O
(
h1−3γ

)
(6.41)

This means that α = 1− 3γ for any γ > 0.

6.2 Conclusion

We have proved that for the convergence rates for Asian call options are α =

1− 3γ and β = 1− 4γ for γ ∈ ]0, 1/2[ as small as we want.

This corresponds to the convergence rates observed experimentally in section

2.4.2: α ≈ 1 and β ≈ 1.
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We can summarise the results we have proved in this chapter as follows:

Theorem 6.2.1. Let us consider an asset St on the time interval [0, T ]. We assume

that the underlying asset’s price St follows an Ito process as described by equation

(1.2), that the coefficients of the diffusion a(S, t) and b(S, t) satisfy conditions A1 to

A4 of theorem 3.4.3 and that there exists a constant ε > 0 such that b(S, t) ≥ ε.
Our multilevel estimators of the Greeks of Asian call options (see section 2.4)

have an accuracy O (ε) at a cost O
(
ε−2 (log ε)2

)
.

Proof. See above.
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Chapter 7

Analysis of Barrier options

In this chapter we use the results of chapter 3 to obtain analytical bounds on the

coefficients α and β of theorem 1.2.1 for barrier options. This allows us to determine

the efficiency of the multilevel Monte Carlo technique in this setting.

7.1 Setting

We once again use index convention (2.103), i.e. we use indexes based on the fine

discretisation for both the fine and coarse discretisations, that is for any quantity X̂

defined at the fine and coarse level,

X̂f
n := X̂f

(
tfn

)
= X̂f (nhf )

X̂c
n := X̂c

(
tfn

)
= X̂c (nhf )

(7.1)

We recall from section 2.6.1 that the payoff of the down-and-out barrier call

option is of the form

P = (ST −K)+ 1 min
t∈[0,T ]

(St) > B (7.2)

As explained before, the payoff estimator at the fine level is

P̂ f = (ŜfNf −K)+

Nf−1∏
n=0

(
1− pfn

)
(7.3)

with

pfn = exp

(
−2(Ŝfn −B)+(Ŝfn+1 −B)+

(bfn)2 hf

)
At the coarse level, the payoff estimator is

P̂ c = (ŜcNf −K)+

Nf/2−1∏
k=0

(
(1− pc2k)(1− pc2k+1)

)
(7.4)
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with

pc2k = exp

(
−2(Ŝc2k −B)+(Ŝc2k+1 −B)+

(bc2k)
2 hf

)

pc2k+1 = exp

(
−2(Ŝc2k+1 −B)+(Ŝc2k+2 −B)+

(bc2k)
2 hf

) (7.5)

Note that we keep the same volatility on the whole coarse interval [t2k, t2k+2]: for

k = 0 . . . Nf/2− 1, we define bc2k+1 := bc2k to write (7.5) as

pcn = exp

(
−2(Ŝcn −B)+(Ŝcn+1 −B)+

(bcn)2 hf

)
(7.6)

7.2 Analysis

7.2.1 Order of convergence β

As usual, we let ∆X =
(
Xf −Xc

)
for corresponding quantities Xf and Xc

defined at the fine and coarse levels.

We now analyse the convergence speed of V

(
∂P̂l
∂θ
− ∂P̂l−1

∂θ

)
= V

(
∆
∂P̂

∂θ

)
.

We have

∂P̂ f

∂θ
= 1

ŜfNf
>K

∂ŜfNf
∂θ

Nf−1∏
n=0

(
1− pfn

)
−
(
ŜfNf −K

)+
Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ


(7.7)

with (writing ḃ :=
∂b

∂S
and b̃ :=

∂b

∂θ
)

∂pfn
∂θ

= 1(
Ŝfn,Ŝ

f
n+1>B

)pfn
δ̂fn

−2
(
Ŝfn+1 −B

)
bfn

2
hf

+
4
(
Ŝfn −B

)(
Ŝfn+1 −B

)
ḃn
f

bfn
3
hf


+ δ̂fn+1

−2
(
Ŝfn −B

)
bfn

2
hf

+
4
(
Ŝfn −B

)(
Ŝfn+1 −B

)
b̃n
f

bfn
3
hf


(7.8)

and

∂P̂ c

∂θ
= 1

ŜcNf
>K

∂ŜcNf
∂θ

Nf−1∏
n=0

(1− pcn)−
(
ŜcNf −K

)+
Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(1− pck)
∂pcn
∂θ


(7.9)
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with

∂pcn
∂θ

= 1(Ŝcn,Ŝcn+1>B)p
c
n

δ̂cn
−2

(
Ŝcn+1 −B

)
bcn

2hf
+

4
(
Ŝcn −B

)(
Ŝcn+1 −B

)
ḃn
c

bcn
3hf


+ δ̂c(n+1)

−2
(
Ŝcn −B

)
bcn

2hf
+

4
(
Ŝcn −B

)(
Ŝcn+1 −B

)
b̃n
c

bcn
3hf


(7.10)

Then we write

∆
∂P̂

∂θ
= ∆

1
ŜN>K

∂ŜN
∂θ

Nf−1∏
n=0

(1− pn)

−∆

(ŜN −K)+
Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ


(7.11)

and define

A = ∆

1
ŜN>K

∂ŜN
∂θ

Nf−1∏
n=0

(1− pn)


B = ∆

(ŜN −K)+
Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ

 (7.12)

that is,

∆
∂P̂

∂θ
= A + B (7.13)

and as usual we have

V

(
∆
∂P̂

∂θ

)
≤ E

(∆
∂P̂

∂θ

)2
 ∼ E

(
A2
)

+ E
(
B2
)

(7.14)

We define the set E of extreme paths as in section 4.2. It is the set of paths

satisfying any of the three conditions of lemma 3.4.8 for a certain γ < 1/2. As

before, the idea is to first show those have a negligible contribution to the vari-

ances/expectations considered. This will then enable us to focus only the set Ec of

“non-extreme” paths, which we split between the set of paths D for which
(

min
n
Ŝn

)
is “close” to the barrier and Dc the set of paths for which

(
min
n
Ŝn

)
is “far” from it

(a notion we will more precisely define later). We therefore write as before

Ω = E t Ec = E t (D tDc) (7.15)
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Contribution of extreme paths

We first write

E

(∆
∂P̂

∂θ

)2
 = E

1Ec

(
∆
∂P̂

∂θ

)2
+ E

1E

(
∆
∂P̂

∂θ

)2
 (7.16)

We now prove that the influence of extreme paths is negligible. Using lemma 3.4.8,

we get that for all p > 0,

E (1E) = O (hp) (7.17)

We then use Hölder’s inequality

E

1E

(
∆
∂P̂

∂θ

)2
 ≤

√√√√√E (1E)E

(∆
∂P̂

∂θ

)4


= O (hp)

√√√√√E

(∆
∂P̂

∂θ

)4


(7.18)

Therefore it is sufficient to prove that E

(∆
∂P̂

∂θ

)4
 does not explode “too quickly”

as h→ 0. We write ∣∣∣∣∣∆∂P̂

∂θ

∣∣∣∣∣ ≤ |A |+ |B | (7.19)

thus,

E

(∆
∂P̂

∂θ

)4
 ≤ E

(
(|A |+ |B |)4

)
∼ E

(
|A |4

)
+ E

(
|B |4

) (7.20)

We thus study E
(
|A |4

)
and E

(
|B |4

)
.

We have

|A | ≤ 1
ŜfNf

>K

∣∣∣∣∣∣
∂ŜfNf
∂θ

∣∣∣∣∣∣
Nf−1∏
n=0

(
1− pfn

)
+ 1

ŜcNc>K

∣∣∣∣∣ ∂ŜcNc∂θ

∣∣∣∣∣
Nf−1∏
n=0

(1− pcn)

≤

∣∣∣∣∣∣
∂ŜfNf
∂θ

∣∣∣∣∣∣+

∣∣∣∣∣ ∂ŜcNc∂θ

∣∣∣∣∣
(7.21)

As in previous chapters, from (3.80) of theorem 3.4.3 we know that for all k > 0
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there is some constant (CA,k) s.t.

E


∂ŜfNf−1

∂θ

k
 < CA,k <∞

E

(∂ŜcNc−1

∂θ

)k < CA,k <∞

(7.22)

Therefore Hölder’s inequality guarantees there exists some constant CA < ∞ such

that

E
(
|A |4

)
< CA (7.23)

We also have

|B | ≤
∣∣∣ ŜfNf −K ∣∣∣Nf−1∑

n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣


+
∣∣∣ ŜcNc −K ∣∣∣Nf−1∑

n=0

 Nf−1∏
k=0,k 6=n

(1− pck)
∣∣∣∣ ∂pcn∂θ

∣∣∣∣
 (7.24)

Therefore

|B |4 ≤ P
((
ŜfNf −K

)
,
(
ŜcNc −K

)
,

Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣
 ,

Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(1− pck)
∣∣∣∣ ∂pcn∂θ

∣∣∣∣


(7.25)

where P is a polynomial of order 4.

From our previous computations,

∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣ ≤ pfn 2

bfn
2
hf

∣∣∣∣∣∣δ̂fn
−(Ŝfn+1 −B

)
+

2
(
Ŝfn −B

)(
Ŝfn+1 −B

)
ḃn
f

bfn


− δ̂fn+1

(
Ŝfn −B

)
+

2
(
Ŝfn −B

)(
Ŝfn+1 −B

)
b̃n
f

bfn

∣∣∣∣∣∣∣∣∣∣ ∂pcn∂θ
∣∣∣∣ ≤ pcn 2

bcn
2hf

∣∣∣∣∣∣δ̂cn
−(Ŝcn+1 −B

)
+

2
(
Ŝcn −B

)(
Ŝc(n+1) −B

)
ḃn
c

bcn


− δ̂cn+1

(
Ŝfn −B

)
+

2
(
Ŝcn −B

)(
Ŝcn+1 −B

)
b̃cn

bcn

∣∣∣∣∣∣
(7.26)
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As before, from (3.80) of theorem 3.4.3: for all k > 0, there are constants (CB,k),

s.t. for n = 0, . . . , Nf ,

E
((

Ŝfn −K
)k)

< CB,k <∞

E
((

Ŝcn −K
)k)

< CB,k <∞

E
((

δ̂fn

)k)
= E

(∂Ŝfn
∂θ

)k < CB,k <∞

E
((

δ̂cn

)k)
= E

(∂Ŝcn
∂θ

)k < CB,k <∞

(7.27)

Assumption A2 of theorem 3.4.3 applied to Ut as before implies that ḃ and b̃ sat-

isfy linear growth conditions. Therefore, for any k >= 0 and for

n = 0, . . . , Nf − 1,

E
[(
ḃfn

)k]
<∞

E
[(
b̃fn

)k]
<∞

E
[(
ḃcn

)k]
<∞

E
[(
b̃cn

)k]
<∞

(7.28)

We also use the hypothesis that our SDE is elliptic (see section 3.3.3)

∃ ε > 0 s.t. ∀ (S, t) ∈ R+2
, b (S, t) > ε (7.29)

We apply Hölder’s inequality repeatedly and get the existence of constants
(
C̃B,k

)
such that for n = 0, . . . , Nf

E

(∂pfn
∂θ

)k ≤ C̃B,kh
−k
f

E

(∂pcn/2
∂θ

)k ≤ C̃B,kh
−k
f

(7.30)
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Then

E


Nf−1∑

n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣
k

 ≤ E


Nf−1∑

n=0

∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣
k


≤ E

(Nf max
n=0..Nf−1

∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣
)k

≤ Nk
f E

( max
n=0..Nf−1

∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣
)k

= O
(
h−kf

)
O
(
h−kf

)
= O

(
h−2k
f

)
(7.31)

Similarly

E

Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(1− pck)
∣∣∣∣ ∂pcn∂θ

∣∣∣∣
 = O

(
h−2k
f

)
(7.32)

Finally, we recall that from equation (7.25),

E
(
B4
)
≤ E

[
P
((
ŜfNf −K

)
,
(
ŜcNc −K

)
,

Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣
 ,

Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(1− pck)
∣∣∣∣ ∂pcn∂θ

∣∣∣∣


(7.33)

and we have proved that for all k ≥ 0,

E
((

ŜfNf −K
)k)

< Ck

E
((

ŜcNc −K
)k)

< Ck

E


Nf−1∑

n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣
k

 = O
(
h−2k
f

)

E


Nf−1∑

n=0

 Nf−1∏
k=0,k 6=n

(1− pck)
∣∣∣∣ ∂pcn∂θ

∣∣∣∣
k

 = O
(
h−2k
f

)
(7.34)

Hölder’s inequality applied to E
[
P (. . .)

]
then guarantees the existence of some
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value KB <∞ such that

E
[
P (. . .)

]
= O

(
h−KB

)
(7.35)

and thus

E
(
B4
)

= O
(
h−KB

)
(7.36)

Combining all the results since equation (7.20),

E

(∆
∂P̂

∂θ

)4
 = O

(
h−KB

)
(7.37)

and from (7.16) and (7.18), we finally get for all p > 0

E

(∆
∂P̂

∂θ

)2
 = E

1Ec

(
∆
∂P̂

∂θ

)2
+O (hp) (7.38)

This means extreme paths only have a negligible contribution to the global variance

and we can now focus solely on the analysis of the variance for non-extreme paths.

Contribution of non-extreme paths

Using the previous results, we write as in (7.20) that for all p > 0,

E

(∆
∂P̂

∂θ

)2
 ≤ E

(
(|A |+ |B |)2

)
∼ E

(
1Ec (|A |+ |B |)2

)
+O (hp)

∼ E
(
1EcA2

)
+ E

(
1EcB2

)
+O (hp)

(7.39)

We have established that only paths of Ec contribute significantly to the variance:

we now study E
(
1EcA2

)
and E

(
1EcB2

)
. In the following computations, we restrict

our study to non-extreme paths as defined by lemma 3.4.8 for some γ > 0.

E
(
A21Ec

)
: We begin with E

(
A2
)

on Ec and write

A = ∆

1
ŜN>K

∂ŜN
∂θ

Nf−1∏
n=0

(1− pn)


= ∆

[
1
ŜN>K

∂ŜN
∂θ

]Nf−1∏
n=0

(
1− pfn

)

+ 1
ŜcN>K

∂ŜcN
∂θ

∆

Nf−1∏
n=0

(1− pn)


:= A1 + A2

(7.40)
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with

A1 := ∆

[
1
ŜN>K

∂ŜN
∂θ

]Nf−1∏
n=0

(
1− pfn

)

A2 := 1
ŜcN>K

∂ŜcN
∂θ

∆

Nf−1∏
n=0

(1− pn)

 (7.41)

Note that

E
(
A21Ec

)
∼ E

(
(A1)2 1Ec

)
+ E

(
(A2)2 1Ec

)
(7.42)

We have

Nf−1∏
n=0

(1− pn) ≤ 1, therefore

E
[
(A1)2 1Ec

]
= O

E

(∆

[
1
ŜN>K

∂ŜN
∂θ

])2

1Ec

 (7.43)

This actually corresponds to the case of the European call, which was dealt with in

chapter 4. Therefore we can conclude that there is a certain KA1 such that

E
(

(A1)2 1Ec
)

= O
(
h2−KA1γ
f

)
(7.44)

For the study of E
(

(A2)2 1Ec
)

, we note that

A2 ≤
∂ŜcN
∂θ

∆

Nf−1∏
n=0

(1− pn)

 (7.45)

By definition of non-extreme paths,

∂ŜcN
∂θ
≤ h−γf (7.46)

From the analysis of the pricing of barrier options in [GDR13], we get

∆

Nf−1∏
n=0

(1− pn)

 = O
(
h

1/2−5γ
f

)
(7.47)

Therefore there is some KA2 <∞ such that

E
(

(A2)2 1Ec
)

= O
(
h1−KA2γ
f

)
(7.48)

Finally putting things together, we get from (7.42)

E
(
A21Ec

)
= O

(
h2−KA1γ
f

)
+O

(
h1−KA2γ
f

)
= O

(
h1−KA2γ
f

) (7.49)
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E
(
B21Ec

)
: We then study E

(
B2
)

on Ec. We write

B = ∆

(ŜN −K)+
Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ


= ∆

[(
ŜN −K

)+
]Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ


+
(
ŜcN −K

)+
Nf−1∑
n=0

∆

 Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ


:= B1 + B2

(7.50)

with

B1 := ∆

[(
ŜN −K

)+
]Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ


B2 :=

(
ŜcN −K

)+
Nf−1∑
n=0

∆

 Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ

 (7.51)

We define D the set of paths for which the minimum is “close” to B as the set of

paths for which

∣∣∣∣min
[0,T ]

St −B
∣∣∣∣ ≤ 2h

1/2−δ
f for some δ > 3γ. Using (7.15) and (7.39),

we get for all p > 0

E

(∆
∂P̂

∂θ

)2
 ∼ E

(
1EcA2

)
+ E

(
1EcB2

)
+O

(
hpf

)
∼ E

(
1EcA2

)
+ E

(
1DB2

)
+ E

(
1DcB2

)
+O

(
hpf

) (7.52)

We now prove that paths in Dc have a negligible contribution to the global

variance.

On Dc, we have two possible cases:

• If Stmin := min
[0,T ]

St ≤ B − 2h
1/2−δ
f and tmin ∈ [tnmin , tnmin+1], we write

∣∣∣ Ŝfnmin
− Stmin

∣∣∣ ≤ ∣∣∣ Ŝfnmin
− Ŝf (tmin)

∣∣∣+
∣∣∣ Ŝf (tmin)− Stmin

∣∣∣ (7.53)

where the first term corresponds to the evolution of the interpolant (as defined

in lemma 3.4.4) and the second one to the error between the exact solution

and the interpolant at tmin. We have

Ŝfnmin
− Ŝf (tmin) =

tmin − tnmin

hf

(
Ŝfnmin+1 − Ŝ

f
nmin

)
+ bfnmin

(Wtmin −Wnmin)

(7.54)
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We apply the bounds of lemma 3.4.8 and get for non-extreme paths∣∣∣ Ŝfnmin
− Stmin

∣∣∣ = O
(
h

1/2−2γ
f

)
= o

(
h

1/2−δ
f

)
(7.55)

and therefore Ŝfnmin
< B, the barrier is hit by the fine path and pfnmin

= 1,

∂pfnmin

∂θ
= 0.

We also note that max
n

(
Ŝfn − Ŝcn

)
≤ h1−γ

f which leads to Ŝcnmin
< B, the

barrier is hit by the coarse path.

Therefore in this first case, B = 0.

• If Stmin := min
[0,T ]

St ≥ B + 2h
1/2−δ
f

min
k

(
Ŝfk , Ŝ

c
k

)
≥ B + 2h

1/2−δ
f − h1−γ

f ≥ B + h
1/2−δ
f (7.56)

Then we note that with the inequalities of lemma 3.4.8 for non-extreme paths,(
Ŝfn −B

)+ (
Ŝfn+1 −B

)+

bfn
2
hf

≥ O

(
h1−2δ
f

h1−2γ
f

)
≥ O

(
h
−2(δ−γ)
f

)
(7.57)

and as δ − γ > γ > 0 we therefore have for all p > 0

pfn = O
(

exp
(
−h−2(δ−γ)

f

))
= O (hp) (7.58)

which we use again with (7.26) and the bounds of lemma 3.4.8 to write

∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣ ≤ pfn 2

bfn
2
hf

∣∣∣∣∣∣δ̂fn
−(Ŝfn+1 −B

)
+

2
(
Ŝfn −B

)(
Ŝfn+1 −B

)
ḃn
f

bfn


+ δ̂fn+1

(
Ŝfn −B

)
+

2
(
Ŝfn −B

)(
Ŝfn+1 −B

)
b̃n
f

bfn

∣∣∣∣∣∣
≤ pfn

2

ε2hf

[
h−γf

(
h−γf +

2h−γf h−γf C1h
−γ
f

ε

)

+ h−γf h−γf +
2h−γf h−γf C1h

−γ
f

ε

]
= O

(
hp−1−4γ

)
(7.59)

Similarly we get pcn = O (hp) and
∂pcn
∂θ

= O
(
hp−1−4γ

)
. Noting that

153



Nf = O
(
h−1
f

)
, we can then write for all p > 0

|B1 | =

∣∣∣∣∣∣∆
[(
ŜN −K

)+
]Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ

 ∣∣∣∣∣∣
≤
∣∣∣∆ŜN ∣∣∣Nf−1∑

n=0

∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣

≤ O
(
h1−γ
f

)
O
(
h−1
f

)
o
(
hp−1−4γ
f

)
= O

(
hp−1−5γ
f

)
(7.60)

and

|B2 | ≤
∣∣∣ ŜN ∣∣∣Nf−1∑

n=0

∣∣∣∣∣∣
Nf−1∏

k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ

∣∣∣∣∣∣+

∣∣∣∣∣∣
Nf−1∏

k=0,k 6=n
(1− pck)

∂pcn
∂θ

∣∣∣∣∣∣


≤
∣∣∣ ŜN ∣∣∣Nf−1∑

n=0

[∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣+

∣∣∣∣ ∂pcn∂θ
∣∣∣∣
]

≤ O
(
h−γf

)
O
(
h−1
f

)
o
(
hp−1−4γ
f

)
= O

(
hp−2−5γ
f

)
(7.61)

Thus in this second case B = B1 + B2 = O
(
hp̃f

)
for all p̃ > 0.

The analysis of those two cases finally gives for all p > 0,

E
(
1DcB2

)
= O

(
hpf

)
(7.62)

and from (7.52),

E

(∆
∂P̂

∂θ

)2
 ∼ E

(
1EcA2

)
+ E

(
1DB2

)
+O

(
hpf

)
(7.63)

E
(
1DB2

)
: We now analyse E

(
B2
)

for paths of D, i.e. non-extreme paths for which∣∣∣∣min
[0,T ]

St −B
∣∣∣∣ ≤ 2h

1/2−δ
f for some δ > 3γ. Assuming min

[0,T ]
(St) has a bounded density

around B means a proportion O
(
h

1/2−δ
f

)
of all paths are

in D.

As in (7.55), we have
∣∣∣ Ŝfnmin

− Stmin

∣∣∣ = O
(
h

1/2−2γ
f

)
= o

(
h

1/2−δ
f

)
and max

n

(
Ŝfn − Ŝcn

)
≤

h1−γ
f therefore on D, ∣∣∣min

n
Ŝfn −B

∣∣∣ = O
(
h

1/2−2γ
f

)
∣∣∣min

n
Ŝcn −B

∣∣∣ = O
(
h

1/2−2γ
f

) (7.64)
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and we define the set R of indices n such that B < Ŝfn , Ŝ
c
n, Ŝ

f
n+1, Ŝ

c
n+1 < B+h

1/2−3γ
f

.

E
(
1DB2

)
∼ E

(
1D (B1)2

)
+ E

(
1D (B2)2

)
(7.65)

We first study the contribution of D’s paths to B1. We let

|B1 | = |B11 | |B12 | (7.66)

with

B11 = ∆

[(
ŜN −K

)+
]

B12 =

Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ

 (7.67)

We have

|B11 | =
∣∣∣∣∆ [(ŜN −K)+

] ∣∣∣∣ ≤ ∣∣∣∆ŜN ∣∣∣ = O
(
h1−γ
f

)
(7.68)

then, we note that (7.59) still holds in general and that for indices in R, we have

∣∣∣∣∣ ∂pfn∂θ
∣∣∣∣∣ ≤ pfn 2

bfn
2
hf

∣∣∣∣∣∣δ̂fn
−(Ŝfn+1 −B

)
+

2
(
Ŝfn −B

)(
Ŝfn+1 −B

)
ḃn
f

bfn


+ δ̂fn+1

(
Ŝfn −B

)
+

2
(
Ŝfn −B

)(
Ŝfn+1 −B

)
b̃n
f

bfn

∣∣∣∣∣∣
≤ pfn

2

ε2hf

h−γf
h1/2−3γ

f +
2h

1/2−3γ
f h

1/2−3γ
f C1h

−γ
f

ε


+ h−γf h

1/2−3γ
f +

2h
1/2−3γ
f h

1/2−3γ
f C1h

−γ
f

ε


≤ pfnK7h

−1/2−4γ
f

(7.69)

for some constant K7. Then, using a reasoning similar to (7.60) on indices in Rc,
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for all p > 0,

|B12 | ≤
∑
n∈R

∣∣∣∣∣∣
Nf−1∏

k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ

∣∣∣∣∣∣+
∑
n∈Rc

∣∣∣∣∣∣
Nf−1∏

k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ

∣∣∣∣∣∣
≤
∑
n∈R

Nf−1∏
k=0,k 6=n

∣∣∣∣∣ (1− pfk
) ∂pfn
∂θ

∣∣∣∣∣+O
(
hpf

)

≤
∑
n∈R

Nf−1∏
k=0,k 6=n

∣∣∣ (1− pfk
)
pfnK7h

−1/2−4γ
f

∣∣∣+O
(
hpf

)
(7.70)

where the last inequality comes directly from (7.69). Then we use

∑
n

Nf−1∏
k=0,k 6=n

(
1− pfk

)
pfn ≤

Nf−1∏
k=0

(
(1− pfk) + pfk

)
= 1 (7.71)

to derive

|B12 | ≤ K7h
−1/2−4γ
f

∑
n∈R

Nf−1∏
k=0,k 6=n

(
1− pfk

)
pfn +O

(
hpf

)
= O

(
h
−1/2−4γ
f

) (7.72)

Therefore,

E
(
1DB12

)
= E

(
1DB112B122

)
= E

(
B112B122|D

)
P (D)

≤ O
(
h2−2γ
f

)
O
(
h−1−8γ
f

)
O
(
h

1/2−δ
f

)
= O

(
h

3/2−10γ−δ
f

) (7.73)

We then study the contribution of D’s paths to B2. We let

|B2 | = |B21 | |B22 | (7.74)

with

B21 =
(
ŜcN −K

)+

B22 = ∆

Nf−1∑
n=0

Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ

 (7.75)

We are always dealing with non-extreme paths, thus we directly get

|B21 | = O
(
h−γf

)
(7.76)
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The analysis of |B22 | is slightly more intricate. Reasoning as before, we have for all

p > 0

|B22 | ≤

∣∣∣∣∣∣∣∆
Nf−1∑
n=0
n∈R

Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ


∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∆
Nf−1∑
n=0
n∈Rc

Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ


∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∆
Nf−1∑
n=0
n∈R

Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ


∣∣∣∣∣∣∣+O

(
hpf

)
(7.77)

We let pn(z) = pcn + z
(
pfn − pcn

)
,
∂pn(z)

∂θ
=
∂pcn
∂θ

+ z

(
∂pfn
∂θ
− ∂pcn

∂θ

)
and f(z) =

Nf−1∑
n=0
n∈R

Nf−1∏
k=0
k 6=n

(1− pk(z))
∂pn(z)

∂θ

. Then

B22 = ∆

Nf−1∑
n=0
n∈R

Nf−1∏
k=0
k 6=n

(1− pk)
∂pn
∂θ

+O
(
hpf

)

= f(1)− f(0) +O
(
hpf

)
≤ 1 · sup

z∈[0,1]

∣∣∣∣ ∂f∂z
∣∣∣∣+O

(
hpf

)
(7.78)

where for z ∈ [0, 1]

∂f

∂z
=
∑
n=0
n∈R

∑
l 6=n

 ∏
k 6=n,l

− (1− pk)
∂pl
∂z

∂pn
∂θ

+
∏
k 6=n

(1− pk)
∂2pn
∂z∂θ


=
∑
n=0
n∈R

∑
l 6=n

 ∏
k 6=n,l

− (1− pk) ∆pl
∂pn
∂θ

+
∏
k 6=n

(1− pk) ∆
∂pn
∂θ

 (7.79)

We recall that on R,

∣∣∣∣ ∂pn∂θ
∣∣∣∣ ≤ K6h

−1/2
f pn for some constant K6.

Therefore,

∣∣∣∣ ∂f∂z
∣∣∣∣ ≤ K6h

−1/2
f

∑
n=0
n∈R

∑
l 6=n

 ∏
k 6=n,l

(1− pk) |∆pl | pn

+
∏
k 6=n

(1− pk)
∣∣∣∣∆∂pn

∂θ

∣∣∣∣


(7.80)
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Then if we let

pn = exp (Xn) (7.81)

with

Xf
n =

−2(Ŝfn −B)+(Ŝfn+1 −B)+

(bfn)2 hf

Xc
n =
−2(Ŝcn −B)+(Ŝcn+1/2 −B)+

(bcn)2 hf

(7.82)

it can be shown as in the analysis of the pricing of barrier options in [GDR13] that∣∣∣Xf
n −Xc

n

∣∣∣ ≤ K8h
1/2−4γ
f (7.83)

for some constant K8. We can then write

|∆pn | =
∣∣∣ pfn − pcn ∣∣∣ = pcn

∣∣∣ exp
(
Xc
n −Xf

n

)
− 1

∣∣∣ ≤ pcn∆h

|∆pn | =
∣∣∣ pfn − pcn ∣∣∣ = pfn

∣∣∣ 1− exp
(
Xf
n −Xc

n

) ∣∣∣ ≤ pfn∆̃h

(7.84)

where

∆h = exp
(
K8h

1/2−4γ
f − 1

)
∆̃h = 1− exp

(
−K8h

1/2−4γ
f

) (7.85)

and as hf → 0, we have via a Taylor expansion

∆h ∼ K8h
1/2−4γ
f

∆̃h ∼ K8h
1/2−4γ
f

(7.86)

Therefore there is some constant K9 such that

|∆pn | ≤ pfnK9h
1/2−4γ
f

|∆pn | ≤ pcnK9h
1/2−4γ
f

(7.87)

and for z ∈ [0, 1],

|∆pn(z) | ≤ pn(z)K9h
1/2−4γ
f (7.88)

Using the same notation,∣∣∣∣∆∂pn
∂θ

∣∣∣∣ ≤ pfn ∣∣∣∣∆∂Xn

∂θ

∣∣∣∣+

∣∣∣∣ ∂Xc
n

∂θ

∣∣∣∣ |∆pn |∣∣∣∣∆∂pn
∂θ

∣∣∣∣ ≤ pcn ∣∣∣∣∆∂Xn

∂θ

∣∣∣∣+

∣∣∣∣∣ ∂Xf
n

∂θ

∣∣∣∣∣ |∆pn |
(7.89)
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as before, we can show that on R,

∣∣∣∣∆∂Xn

∂θ

∣∣∣∣ = O
(
h−7γ
f

)
and

∂Xn

∂θ
= O

(
h
−1/2−4γ
f

)
.

Then, using equation (7.88), we get∣∣∣∣∆∂pn
∂θ

(z)

∣∣∣∣ ≤ pn(z)K10h
−8γ
f (7.90)

We use this in (7.80) and letting K11 = max (K9,K10), we get

∣∣∣∣ ∂f∂z
∣∣∣∣ ≤ K6h

−1/2
f K11h

1/2−4γ
f

∑
n=0
n∈R

∑
l 6=n

 ∏
k 6=n,l

(1− pk) pl pn

+
∏
k 6=n

(1− pk) pn


≤ K6K11h

−4γ
f

∑
n=0
n∈R

∑
l 6=n

 ∏
k 6=n,l

(1− pk) pl pn

+
∏
k 6=n

(1− pk) pn


(7.91)

and using the same idea as in (7.71),

∑
n

∑
l 6=n

 ∏
k 6=n,l

(1− pk) pl pn

+
∏
k 6=n

(1− pk) pn


≤

Nf−1∏
k=0

(
(1− pfk) + pfk

)
= 1

(7.92)

and ∣∣∣∣ ∂f∂z
∣∣∣∣ ≤ K6K11h

−4γ
f (7.93)

from (7.78), we thus get

|B22 | ≤ sup
z∈[0,1]

∣∣∣∣ ∂f∂z
∣∣∣∣+O

(
hpf

)
= O

(
h−4γ
f

)
(7.94)

Putting things together, we get from (7.74)

|B2 | = O
(
h−5γ
f

)
(7.95)

and we can write

E
(
1DB22

)
= E

(
B22|D

)
P (D)

≤ O
(
h−10γ
f

)
O
(
h

1/2−δ
f

)
= O

(
h

1/2−10γ−δ
f

) (7.96)
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Finally from the previous equation, (7.65) and (7.73), we get as in (7.65)

E
(
1DB2

)
∼ O

(
h

3/2−10γ−δ
f

)
+O

(
h

1/2−10γ−δ
f

)
∼ O

(
h

1/2−10γ−δ
f

)
(7.97)

and using it with (7.63) and (7.49)

E

(∆
∂P̂

∂θ

)2
 ∼ E

(
1EcA2

)
+ E

(
1DB2

)
+O

(
hpf

)
= O

(
h1−KA2γ
f

)
+O

(
h

1/2−10γ−δ
f

)
+O

(
hpf

)
= O

(
h

1/2−10γ−δ
f

)
(7.98)

This means we have β = 1/2− γ̃ for γ̃ > 0 as small as we want.

7.2.2 Order of convergence α

The analysis of α is very similar to the analysis of β. As in previous chapters,

we analyse the convergence speed of E

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
. With the same notation as

before,

E

(
∂P̂f
∂θ
− ∂P̂c

∂θ

)
∼ E (A) + E (B) (7.99)

Contribution of extreme paths

As before, we can write

E

(
∆
∂P̂

∂θ

)
= E

(
1Ec∆

∂P̂

∂θ

)
+ E

(
1E∆

∂P̂

∂θ

)
(7.100)

As before

E (1E) = O (hp) (7.101)

and using Hölder’s inequality we show it is sufficient to prove that E

(∆
∂P̂

∂θ

)2


does not explode “too quickly” as h → 0 to conclude that extreme paths have a

negligible contribution to E

(
∆
∂P̂

∂θ

)
.

We note that E

(∆
∂P̂

∂θ

)2
 ∼ E

(
|A |2

)
+ E

(
|B |2

)
and study E

(
|A |2

)
and

E
(
|B |2

)
.

As before we can prove there exists some constant C̃A <∞ such that

E
(
|A |2

)
< C̃A (7.102)
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As before we can also prove the existence of some K̃B <∞ such that

E
(
B2
)

= O
(
h−K̃B

)
(7.103)

Combining the previous results,

E

(∆
∂P̂

∂θ

)2
 = O

(
h−K̃B

)
(7.104)

and as before we finally get for all p > 0

E

(
∆
∂P̂

∂θ

)
= E

(
1Ec ∆

∂P̂

∂θ

)
+O (hp) (7.105)

This means extreme paths only have a negligible contribution and we can now focus

solely on the analysis of the variance for non-extreme paths.

Contribution of non-extreme paths

Using the previous results, we write as before that for all p > 0,

E

(
∆
∂P̂

∂θ

)
= E (1Ec A) + E (1EcB) +O (hp) (7.106)

We now study E (1Ec A) and E (1Ec B), that is we now restrict our study to non-

extreme paths only. With a slight abuse of notation, we write E (...) instead of

E (...|Ec) when no ambiguity arises.

E (1EcA) : We study E (A) on Ec. We recall

A1 := ∆

[
1
ŜN>K

∂ŜN
∂θ

]Nf−1∏
n=0

(
1− pfn

)

A2 := 1
ŜcN>K

∂ŜcN
∂θ

∆

Nf−1∏
n=0

(1− pn)

 (7.107)

and

E (1Ec A) = E (1EcA1) + E (1EcA2) (7.108)

As before, we can show there is a certain K̃A1 such that

E (1Ec A1) = O
(
h1−K̃A1γ
f

)
(7.109)
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For E (1Ec A2), note that

A2 ≤
∂ŜcN
∂θ

∆

Nf−1∏
n=0

(1− pn)

 (7.110)

and there is some K̃A2 <∞ such that

E (1Ec A2) = O
(
h

1/2−K̃A2γ
f

)
(7.111)

Finally putting things together, we get

E (1Ec A) = O
(
h1−K̃A1γ
f

)
+O

(
h

1/2−K̃A2γ
f

)
= O

(
h

1/2−K̃A2γ
f

) (7.112)

E (B1Ec) : We then study E (B) on Ec. We recall

B := B1 + B2 (7.113)

with

B1 := ∆

[(
ŜN −K

)+
]Nf−1∑
n=0

 Nf−1∏
k=0,k 6=n

(
1− pfk

) ∂pfn
∂θ


B2 :=

(
ŜcN −K

)+
Nf−1∑
n=0

∆

 Nf−1∏
k=0,k 6=n

(1− pk)
∂pn
∂θ

 (7.114)

We use again D, the set of paths for which the minimum is “close” to B as the

set of paths for which

∣∣∣∣min
[0,T ]

St −B
∣∣∣∣ ≤ 2h

1/2−δ
f for some δ > 3γ. Using (7.15) and

(7.39), as in (7.52), we get for all p > 0

E

(
∆
∂P̂

∂θ

)
∼ E (1EcA) + E (1EcB) +O

(
hpf

)
∼ E (1EcA) + E (1DB) + E (1DcB) +O

(
hpf

) (7.115)

As before, we prove that paths in Dc have a negligible contribution to the global

expectation.

On Dc, we have two possibile cases:

• If Stmin := min
[0,T ]

St ≤ B − 2h
1/2−δ
f and tmin ∈ [tnmin , tnmin+1], we have as before

that Ŝfnmin
< B, the barrier is hit by the fine path and pfnmin

= 1,
∂pfnmin

∂θ
= 0.

Similarly we also get that Ŝcnmin
< B, the barrier is hit by the coarse path.

Therefore B = 0.
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• If Stmin := min
[0,T ]

St ≥ B + 2h
1/2−δ
f we have as before that for all p > 0,

pfn = O (hp)

∂pfn
∂θ

= O
(
hp−1−4γ

) (7.116)

and

pcn = O (hp)

∂pcn
∂θ

= O
(
hp−1−4γ

) (7.117)

Then we conclude that

|B1 | = O
(
hp−1−5γ
f

)
|B2 | = O

(
hp−2−5γ
f

) (7.118)

Thus in this case B = B1 + B2 = O
(
hp̃f

)
for all p̃ > 0.

The analysis of those two cases finally gives for all p > 0,

E (1DcB) = O
(
hpf

)
(7.119)

and from (7.52),

E

(
∆
∂P̂

∂θ

)
∼ E (1EcA) + E (1DB) +O

(
hpf

)
(7.120)

E (1D B) : We now analyse E (B) for paths of D, i.e. non-extreme paths for

which

∣∣∣∣min
[0,T ]

St −B
∣∣∣∣ ≤ 2h

1/2−δ
f for some δ > 3γ.

As in (7.65),

E (1D B) ∼ E (1D B1) + E (1D B2) (7.121)

We first study the contribution of D’s paths to B1. As before we write

|B1 | = |B11 | |B12 | (7.122)

and use the fact established earlier that on D,

|B11 | =
∣∣∣∣∆ [(ŜN −K)+

] ∣∣∣∣ ≤ ∣∣∣∆ŜN ∣∣∣ = O
(
h1−γ
f

)
(7.123)

and

|B12 | = O
(
h
−1/2−4γ
f

)
(7.124)
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thus

E (1D B1) = E (1D B11B12)

= E (B11B12|D)P (D)

≤ O
(
h1−γ
f

)
O
(
h
−1/2−4γ
f

)
O
(
h

1/2−δ
f

)
= O

(
h1−5γ−δ
f

) (7.125)

We then study the contribution of D’s paths to B2. We write as before

|B2 | = |B21 | |B22 | (7.126)

and as before we have on D that

|B21 | = O
(
h−γf

)
(7.127)

|B22 | = O
(
h−4γ
f

)
(7.128)

Putting things together, we get as before

|B2 | = O
(
h−5γ
f

)
(7.129)

and we can write

E (1D B2) = E (B2|D)P (D)

≤ O
(
h−5γ
f

)
O
(
h

1/2−δ
f

)
= O

(
h

1/2−5γ−δ
f

) (7.130)

Finally we get

E (1D B) = O
(
h1−5γ−δ
f

)
+O

(
h

1/2−5γ−δ
f

)
= O

(
h

1/2−5γ−δ
f

)
(7.131)

and plugging all the results into (7.120),

E

(
∆
∂P̂

∂θ

)
∼ E (1EcA) + E (1DB) +O

(
hpf

)
= O

(
h

1/2−K̃A2γ
f

)
+O

(
h

1/2−5γ−δ
f

)
+O

(
hpf

) (7.132)

This means there is a constant Kγ such that we have α = 1/2−Kγ γ̃ for any γ̃ > 0.

7.3 Conclusion

We have proved β = (1/2− γ̃) , α = (1/2−Kγ γ̃) for γ̃ as small as we want.
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We can summarise the results of this chapter as follows:

Theorem 7.3.1. Let us consider a barrier option on an underlying asset St. We

assume that the underlying asset’s price St follows an Ito process as described by

equation (1.2), that the coefficients of the diffusion a(S, t) and b(S, t) satisfy con-

ditions A1 to A4 of theorem 3.4.3 and that there exists a constant ε > 0 such that

b(S, t) ≥ ε.
Our multilevel estimators of the Greeks of Barrier call options (see section 2.6)

have an accuracy O (ε) at a cost O
(
ε−3
)
.

Proof. See above.
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Chapter 8

Lookback options

We analyse the efficiency of multilevel Monte Carlo for the Greeks of lookback

options. For doing so, we determine analytical bounds for the coefficients α and β

of theorem 1.2.1 in this setting.

We begin by examining the case of continuously sampled lookback options. We

highlight what makes the corresponding analysis surprisingly difficult compared to

that of other payoffs’ sensitivities and to that of the pricing of the option itself.

While most closed-form expressions available for pricing were historically based

on continuous-time models (see [GSG79], [CV91], [HK95]), it is important to note

that many (if not most) traded options are based on discrete price fixings. As

explained in [BGK97], [GKB98] or [Kou07] the prices of all those options are actually

closely related.

Thus, instead of considering the original problem (continuously sampled mini-

mum) as described in chapter 2, we then analyse the case of lookback options with

a discretely sampled minimum. We begin with the the case where the minimum

is sampled at only two points of the time interval [0, T ] and use this analysis to

generalise to the case where the minimum is sampled at any finite number of points.

8.1 Lookback options with continuously sampled mini-

mum

We reuse the notations of section 2.5 and write Ŝf
tfmin

:= min
k=0,...,Nf−1

Ŝfk,min with

tfmin corresponding to the time at which Ŝft reaches its simulated minimum and

Ŝctcmin
:= min

k=0,...,Nf/2−1
Ŝc2k,min with tcmin corresponding to the time at which Ŝct reaches

its simulated minimum.

We recall that the analysis of the multilevel pricing of continuously sampled look-

back options (see [GDR13]) involves the analysis of E
[(
ŜfT − Ŝ

c
T

)2
]

and E

[(
Ŝf
tfmin

− Ŝctcmin

)2
]

. Under the usual assumptions of chapter 3, the strong
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convergence of the Milstein scheme gives directly E
[(
ŜfT − Ŝ

c
T

)2
]

= O
(
h2
)

and

in section 3.5 of [GDR13], it is shown that E

[(
Ŝf
tfmin

− Ŝctcmin

)2
]

= O
(
h2 log h2

)
,

which concludes the analysis.

Now let us consider the Greeks and see how their analysis differs from that of

the pricing.

8.1.1 Analysis of the convergence rate β

As usual we start by using

V

(
∂P̂ f

∂θ
− ∂P̂ c

∂θ

)
≤ E

(∂P̂ f
∂θ
− ∂P̂ c

∂θ

)2
 (8.1)

With the notation introduced above, we have

V

(
∂P̂ f

∂θ
− ∂P̂ c

∂θ

)
≤ E


∂ŜfT

∂θ
−
∂Ŝf

tfmin

∂θ
−
∂ŜcT
∂θ

+
∂Ŝctcmin

∂θ

2
 (8.2)

and using the fact that cross-terms cannot determine the order of convergence of

the variance (see section 4.1.1),

V

(
∂P̂ f

∂θ
− ∂P̂ c

∂θ

)
= O

E

(∂ŜfT
∂θ
−
∂ŜcT
∂θ

)2


+O

E


∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

2



(8.3)

which is reminiscent of the terms involved in the analysis of the pricing.

With the same assumptions as before, the strong convergence properties of the

Milstein scheme guarantee that

E

(∂ŜfT
∂θ
−
∂ŜcT
∂θ

)2
 = O

(
h2
l

)
(8.4)

Now studying E


∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

2
 is less obvious as there is a priori nothing

linking the values of
∂Ŝf

tfmin

∂θ
and

∂Ŝctcmin

∂θ
directly when tcmin 6= tfmin. Indeed we can
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write

E


∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

2
 = E

∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ
+
∂S

tfmin

∂θ

−
∂Stcmin

∂θ
+
∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

)2


= O

E


∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ

2

+

O

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
+

O

E

(∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

)2


(8.5)

We can write

E


∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ

2
 = E


∂Ŝftfmin

∂θ
−
∂Ŝf

KP,tfmin

∂θ
+
∂Ŝf

KP,tfmin

∂θ
−
∂S

tfmin

∂θ

2


E

(∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

)2
 = E

(∂Stcmin

∂θ
−
∂ŜcKP,tcmin

∂θ
+
∂ŜcKP,tcmin

∂θ
−
∂Ŝctcmin

∂θ

)2


(8.6)

and thus

E


∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ

2
 = O

E


∂Ŝftfmin

∂θ
−
∂Ŝf

KP,tfmin

∂θ

2



+O

E


∂ŜfKP,tfmin

∂θ
−
∂S

tfmin

∂θ

2



E

(∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

)2
 = O

E

(∂Stcmin

∂θ
−
∂ŜcKP,tcmin

∂θ

)2


+O

E

(∂ŜcKP,tcmin

∂θ
−
∂Ŝctcmin

∂θ

)2


(8.7)

Equation (3.82) in lemma 3.4.4 and equation (3.79) in theorem 3.4.3 then give that
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for any
(
tfmin, t

c
min

)
∈ [0, T ]2

E


∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ

2
 = O

(
(hl log hl)

2
)

E

(∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

)2
 = O

(
(hl log hl)

2
) (8.8)

Therefore

E


∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

2
 = O

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
+O

(
(hl log hl)

2
)

(8.9)

To study E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
, we assume wlog that tfmin < tcmin. We let

∆tmin = tfmin − t
c
min. Under the usual assumptions, theorem 3.4.1 then yields

E

(∂Stcmin

∂θ
−
∂S

tfmin

∂θ

)2
∣∣∣∣∣∣ tfmin, t

c
min fixed


≤ D

1 + E

∣∣∣∣∣ ∂Stfmin

∂θ

∣∣∣∣∣
2
∣∣∣∣∣∣ tfmin, t

c
min fixed

 |∆tmin | exp (C |∆tmin |)

(8.10)

where C and D are constants that depend on T , not on
(
tcmin, t

f
min

)
. As we consider a

finite time interval [0, T ], this same theorem also guarantees that

E

∣∣∣∣∣ ∂Stfmin

∂θ

∣∣∣∣∣
2
∣∣∣∣∣∣ tfmin, t

c
min fixed

 is bounded uniformly. More precisely for any tfmin,

we have

E

∣∣∣∣∣ ∂Stfmin

∂θ

∣∣∣∣∣
2
∣∣∣∣∣∣ tfmin, t

c
min fixed

 ≤ (1 +
∂S0

∂θ

2)
exp (CT ) (8.11)

and

1 ≤ exp (C |∆tmin |) ≤ exp (CT ) (8.12)

therefore for T fixed, there exists a constant D̃ such that

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
∣∣∣∣∣∣ tfmin, t

c
min fixed

 ≤ D̃ ∣∣∣ tcmin − t
f
min

∣∣∣ (8.13)
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And finally, using the tower property,

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
 = E

tfmin,t
c
min

E

(∂Sctfmin

∂θ
−
∂Sctcmin

∂θ

)2
∣∣∣∣∣∣ tfmin, t

c
min


≤ D̃E

(∣∣∣ tcmin − t
f
min

∣∣∣)
(8.14)

and combining it with (8.9) and (8.2), we get

V

(
∂P̂ f

∂θ
− ∂P̂ c

∂θ

)
= O (E [|∆tmin |]) +O

(
(hl log hl)

2
)

(8.15)

This highlights the fact that the values of
∂Ŝf

tfmin

∂θ
and

∂Ŝctcmin

∂θ
may diverge when

tcmin 6= tfmin and may contribute significantly to the global variance. The order of

convergence β ≈ 1 observed in section 2.5 actually suggests it is the limiting factor.

8.1.2 Experimental behaviour of ∆tmin

Unfortunately the analysis of the order of convergence of E [|∆tmin |] is tricky

and prevents us from concluding the analysis we started. To have a general idea of

how E [|∆tmin |] behaves, we perform the following simulation: we simulate Ŝfn for

n = 0, . . . , Nf and compute the local minimum on each fine time step [tn, tn+1] as

described in section 2.5.1. Similarly we compute Ŝcn for n = 0, . . . , Nf and compute

the local minima on the coarse time steps [t2k, t2k+2] for k = 0, . . . , Nf/2− 1.

Our method does not enable us to know precisely where tfmin and tcmin would be.

Nevertheless, to have a rough idea of the behaviour of E [|∆tmin |], we arbitrarily

place tfmin in the middle of the fine interval where the global minimum of the fine

path is reached and, similarly, we place tcmin in the middle of the coarse interval

where the global minimum of the coarse path is reached.

Simulations in the Black & Scholes setting as in section 2.5 suggest the following
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convergence rates (see figure 8.1)

E (∆tmin) = O
(
h1.2
l

)
E (|∆tmin |) = O

(
h1.0
l

)
E
[
(∆tmin)2

]
= O

(
h1.0
l

)
E
[
(∆tmin)3

]
= O

(
h1.2
l

)
E
[
(∆tmin)4

]
= O

(
h1.0
l

)
E
[
(∆tmin)5

]
= O

(
h1.0
l

)
E
[
(∆tmin)6

]
= O

(
h1.0
l

)
E
[
(∆tmin)7

]
= O

(
h0.9
l

)
. . .

(8.16)

Figure 8.1: E (|∆tmin |), l = 2..10

Finally, using these numerical results in (8.15),

V

(
∂P̂ f

∂θ
− ∂P̂ c

∂θ

)
= O (E (|∆tmin |)) +O

(
(hl log hl)

2
)

= O
(
h1.0
l

) (8.17)
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This corresponds to what we observed in chapter 2 and suggests the simulation

gives us a reasonable insight into the behaviour of the terms that contribute to the

estimators’ variance.

Our attempted analysis still ends up relying on a numerical simulation and it is

arguable that it does not represent a major improvement over a purely numerical

estimation of β as in section 2.5. Nevertheless, as explained earlier, we can legiti-

mately focus on the related case of discretely sampled lookback options for which

we now provide a complete analysis.

8.2 Analysis of a similar payoff: discretely sampled look-

back option

Discretely sampled lookback options are lookback options where the minimum

of the path is tracked on a fixed set of points T = (T0, T1, . . . , TM−1 = T ) and the

payoff is defined as

P = ST − min
k∈0,...,M−1

(STk) (8.18)

For the sake of simplicity, we assume there is a certain level l0 such that the points of

T are all located on the multilevel discretisation grids

(t0 = 0, t1 = hl, . . . , tNl = T ) for l > l0, e.g. taking M = Nl0 + 1 and the uniformly

spaced sampling points T = (0, hl0 , 2hl0 , . . . , (Nl0 − 1)hl0 , Nl0hl0).

Results in [GKB98] and [Kou07] show that in the Black & Scholes case, the price

of the discretely sampled lookback call converges towards the price of a continuously

sampled lookback call with a small continuity correction term that depends on M .

The price of the discretely sampled option converges towards that of the continuous

one as we increase the sampling frequency, i.e. M →∞.

We now analyse the multilevel Greeks of such options.

8.2.1 Case where M = 2

To introduce the methods used for the analysis, we start with the simple case

where M = 2, i.e. the minimum of the path is sampled at only two points in time:

expiry T and some intermediate time U ∈ [0, T ]. The payoff can thus be written as

P = ST −min (SU , ST ) (8.19)

We write with a slight abuse of notation tfmin the point of {U, T} where the fine path

Ŝf is minimum (respectively tcmin the point of {U, T} where the coarse path Ŝc is

minimum).
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8.2.1.1 Order of convergence β

As in section 8.1.1, we write for some parameter θ

V
(
∂P f

∂θ
− ∂P c

∂θ

)
≤ E

[(
∂P f

∂θ
− ∂P c

∂θ

)2
]

≤ E


∂ŜfT

∂θ
−
∂Ŝf

tfmin

∂θ
−
∂ŜcT
∂θ

+
∂Ŝctcmin

∂θ

2


= O

E

(∂ŜfT
∂θ
−
∂ŜcT
∂θ

)2
+O

E


∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

2



(8.20)

As before, the convergence properties of the Milstein scheme give

E

(∂ŜfT
∂θ
−
∂ŜcT
∂θ

)2
 = O

(
h2
l

)
(8.21)

Again, we use the decomposition

E


∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

2
 = E


∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ
+
∂S

tfmin

∂θ
−
∂Stcmin

∂θ
+
∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

2


= O

E


∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ

2

+

O

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
+

O

E

(∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

)2


(8.22)

Using theorem 3.4.3 for the properties of the Milstein scheme and lemma 3.4.4 for

the properties of the Brownian Bridge used for the coarse path interpolation,

E


∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ

2
 = O

(
h2
l

)

E

(∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

)2
 = O

(
(hl log hl)

2
) (8.23)
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and thus, as in (8.9),

V
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

(
h2
l

)
+O

E


∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

2



= O
(

(hl log hl)
2
)

+O

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2


(8.24)

We now study

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
 (8.25)

Contribution of extreme paths As before, we define the set of extreme paths

E satisfying any of the three conditions of lemma 3.4.8 for a certain γ < 1/2. We

show those have a negligible contribution to the variance.

Ω = E t Ec (8.26)

Therefore

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
 = E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Ec


+ E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1E

 (8.27)

Using Hölder’s inequality,

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1E

 ≤√E [1E ]

√√√√√E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)4
 (8.28)

lemma 3.4.8 and theorem 3.4.1 ensure that for all p > 0,

E [1E ] = O
(
hpl
)

E

(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)4

= O (1)
(8.29)

and thus for all p̃ > 0,

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1E

 = O
(
hp̃l

)
O (1) = O

(
hp̃l

)
(8.30)
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that is, extreme paths have a negligible contribution and we can focus on the con-

tribution of non-extreme paths:

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
 = E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Ec

+O
(
hp̃l

)
(8.31)

In the coming sections, the analysis is therefore restricted to non-extreme paths. Ex-

cept when specified otherwised, it is always assumed that we are working exclusively

within Ec.

Contribution of paths for which tfmin = tcmin Now we define D, the set of

non-extreme paths such that tfmin = tcmin, and Dc its complementary. On D, we

have (
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)2

=

(
∂S

tfmin

∂θ
−
∂S

tfmin

∂θ

)2

= 0 (8.32)

We can thus write

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Ec

 = E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Dc


+ E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1D


= E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Dc


(8.33)

This means the only significant contribution comes from non-extreme paths for which

tfmin 6= tcmin. Using Hölder’s inequality again, we get

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Dc


≤ E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec

1/p

E [1Dc ]
1/q

(8.34)

where p, q > 1 are such that
1

p
+

1

q
= 1. Note we can let p→∞ and q → 1 .

We note that E [1Dc ] = P
((
tfmin 6= tcmin

)
∩ Ec

)
. In the caseM = 2,

(
tfmin 6= tcmin

)
corresponds to (

tfmin = U ∩ tcmin = T
)
∪
(
tfmin = T ∩ tcmin = U

)
(8.35)

that is ((
ŜfU < ŜfT

)
∩
(
ŜcT < ŜcU

))
∪
((
ŜfT < ŜfU

)
∩
(
ŜcU < ŜcT

))
(8.36)
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thus

E [1Dc ] = P
((
ŜfU < ŜfT

)
∩
(
ŜcT < ŜcU

)
∩ Ec

)
+ P

((
ŜfT < ŜfU

)
∩
(
ŜcU < ŜcT

)
∩ Ec

) (8.37)

We now study P
((
ŜfU < ŜfT

)
∩
(
ŜcT < ŜcU

)
∩ Ec

)
, i.e. the case tfmin = U . We use

the properties of non-extreme paths:

ŜfT ≤ Ŝ
c
T + h1−γ

l

ŜcU ≤ Ŝ
f
U + h1−γ

l

(8.38)

and get

ŜfU ≤ Ŝ
f
T ≤ Ŝ

c
T + h1−γ

l < ŜcU + h1−γ
l ≤ ŜfU + 2h1−γ

l (8.39)

This means that for non-extreme paths, ŜfT ∈
[
ŜfU , Ŝ

f
U + 2h1−γ

l

]
and thus ST ∈[

SU − 2h1−γ
l , SU + 4h1−γ

l

]
. Summing up previous results, this means that for paths

in Ec, (
tfmin = U ∩ tcmin = T

)
⇒ ST ∈

[
SU − 2h1−γ , SU + 4h1−γ

l

]
(8.40)

Note that for some event X,

P (X ∩ Ec) = P (X|Ec)P (Ec)

= P (X|Ec)
(
1−O

(
hpl
))

∼ P (X|Ec)

(8.41)

Therefore, we can write

P
(
tfmin = U ∩ tcmin = T ∩ Ec

)
≤ P

(
tfmin = U ∩ tcmin = T |Ec

)
≤ P

(
ST ∈

[
SU − 2h1−γ , SU + 4h1−γ

l

]
|Ec
)

∼ P
(
ST ∈

[
SU − 2h1−γ , SU + 4h1−γ

l

]
∩ Ec

)
≤ P

(
ST ∈

[
SU − 2h1−γ , SU + 4h1−γ

l

])
(8.42)

As before, the ellipticity condition (see section 3.3.3) ensures that the SDE’s solution

has a smooth and bounded transition probability density function pST−SU between

U and T . Therefore it is uniformly bounded on the intervals
[
−2h1−γ

l , 4h1−γ
l

]
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as hl → 0 and

P
(
ST ∈

[
SU − 2h1−γ

l , SU + 4h1−γ
l

])
=

4h1−γl∫
−2h1−γl

pST−SU (S)dS

≤ 6h1−γ
l max

[−2h1−γl ,4h1−γl ]
(pST−SU (S))

= O
(
h1−γ
l

)
(8.43)

Therefore

P
((
ŜfU < ŜfT

)
∩
(
ŜcT < ŜcU

)
∩ Ec

)
= O

(
h1−γ
l

)
(8.44)

Similarly, in the case tfmin = T , we show that

P
((
ŜfT < ŜfU

)
∩
(
ŜcU < ŜcT

)
∩ Ec

)
= O

(
h1−γ
l

)
(8.45)

and

E [1Dc ] = O
(
h1−γ
l

)
(8.46)

Equation (8.34) becomes

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Dc


≤ E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec

1/p

O

(
h

1−γ
q

l

) (8.47)

We now analyse E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec

1/p

. If the path is extreme, then

(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec = 0 (8.48)

If the path is non-extreme, then(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec ≤

(∣∣∣∣∣ ∂Stfmin

∂θ

∣∣∣∣∣+

∣∣∣∣ ∂Stcmin

∂θ

∣∣∣∣
)2p

≤ 4ph−2pγ
l

(8.49)

finally

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec

1/p

≤ 4h−2γ
l (8.50)
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Equation (8.34) is then

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Dc

 = O
(
h−2γ
l

)
O

(
h

1−γ
q

l

)

= O

(
h

1−γ
q
−2γ

l

) (8.51)

From (8.33), (8.31) and (8.24),

V
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2


= O

(
h

1−γ
q
−2γ

l

) (8.52)

As q → 1+,
1− γ
q
→ 1−γ, therefore for any γ > 0, we can pick q(γ) > 1 sufficiently

close to 1 such that 1− 4γ ≤ 1− γ
q(γ)

− 2γ. Then we take the corresponding p(γ) such

that
1

p(γ)
+

1

q(γ)
= 1. With this pair p(γ), q(γ), equation (8.52) becomes

V
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

(
h1−4γ
l

)
(8.53)

We have proved that β = (1− γ̃) for γ̃ as small as we want.

8.2.1.2 Order of convergence α

The analysis of the weak convergence is very similar to that of the strong con-

vergence. We write for some parameter θ

E
(
∂P f

∂θ
− ∂P c

∂θ

)
= E

∂ŜfT
∂θ
−
∂Ŝf

tfmin

∂θ
−
∂ŜcT
∂θ

+
∂Ŝctcmin

∂θ


= E

[
∂ŜfT
∂θ
−
∂ŜcT
∂θ

]
+ E

∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ


(8.54)

Under the usual assumptions, the weak convergence properties of the Milstein scheme

give

E

[
∂ŜfT
∂θ
−
∂ŜcT
∂θ

]
= O (hl) (8.55)
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We now study

E

∂Ŝftfmin

∂θ
−
∂Ŝctcmin

∂θ

 = E
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∂S
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∂θ
+
∂S
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∂θ
+
∂Stcmin
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∂θ


= E
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−
∂S
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∂θ

+

E

[
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

]
+

E

[
∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

]
(8.56)

Under the usual conditions,

E

∂Ŝftfmin

∂θ
−
∂S

tfmin

∂θ

 = O (hl)

E

[
∂Stcmin

∂θ
−
∂Ŝctcmin

∂θ

]
= O (hl log hl)

(8.57)

and thus

E
(
∂P f

∂θ
− ∂P c

∂θ

)
= O (hl) +O

E

∂Ŝftfmin

∂θ
−
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∂θ


= O (hl log hl) +O

(
E

[
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

]) (8.58)

We now study

E

[
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

]
(8.59)
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Contribution of extreme paths Again we can check extreme paths have only

a negligible contribution to the global expectation: for all p > 0,∣∣∣∣∣E
[
∂S

tfmin
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−
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] ∣∣∣∣∣ ≤
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∂Stcmin

∂θ

)
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] ∣∣∣∣∣
+
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[(
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)
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≤
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[(

∂S
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∂θ
−
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)
1Ec
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+
√
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√√√√√E
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−
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)2
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≤
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[(

∂S
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∂θ
−
∂Stcmin

∂θ

)
1Ec

] ∣∣∣∣∣+O
(
hpl
)
O (1)

(8.60)

Contribution of paths for which tfmin = tcmin As before we can write

E

[(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)
1Ec

]
= E

[(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)
1Dc

]
(8.61)

We thus focus on non-extreme paths for which tfmin 6= tcmin. Using Hölder’s inequality,∣∣∣∣∣E
[(

∂S
tfmin

∂θ
−
∂Stcmin

∂θ

)
1Dc

] ∣∣∣∣∣
≤ E

[∣∣∣∣∣ ∂Stfmin

∂θ
−
∂Stcmin

∂θ
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p

1Ec

]1/p

E [1Dc ]
1/q

(8.62)

where p, q > 1 are such that
1

p
+

1

q
= 1.

From (8.46), E [1Dc ] = O
(
h1−γ
l

)
and the previous equation becomes

E

[(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)
1Ec1Dc

]

≤ E

[∣∣∣∣∣ ∂Stfmin

∂θ
−
∂Stcmin

∂θ
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p

1Ec

]1/p

O

(
h

1−γ
q

l

) (8.63)

As before, we note that for both extreme and non-extreme paths,∣∣∣∣∣ ∂Stfmin

∂θ
−
∂Stcmin

∂θ

∣∣∣∣∣
p

1Ec ≤ 2ph−pγl (8.64)
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finally

E

[∣∣∣∣∣ ∂Stfmin

∂θ
−
∂Stcmin

∂θ

∣∣∣∣∣
p

1Ec

]1/p

≤ 2h−γl (8.65)

Equation (8.63) is then

E

[(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)
1Ec1Dc

]
= O

(
h

1−γ
q
−γ

l

)
(8.66)

From (8.58), (8.60) and (8.61),

E
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

(
h

1−γ
q
−γ

l

)
(8.67)

As before, we can pick q(γ) > 1 such that 1− 3γ ≤ 1− γ
q(γ)

− γ. and then p(γ) such

that
1

p(γ)
+

1

q(γ)
= 1. With this pair p(γ), q(γ), equation (8.67) becomes

E
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

(
h1−3γ
l

)
(8.68)

We have proved that α = (1− γ̃) for γ̃ as small as we want.

8.2.2 Case where M > 2

The analysis of the more realistic case where the number of sample points M is

larger (M > 2) is extremely similar to the case M = 2.

8.2.2.1 Order of convergence β

As before we obtain

V
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

(
(hl log hl)

2
)

+O

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
 (8.69)

As in (8.33) and (8.34), we can write

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2
 ∼ E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2

1Dc


≤ E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec

1/p

E [1Dc ]
1/q

(8.70)

where p, q > 1 are such that
1

p
+

1

q
= 1.

181



Again we compute

E [1Dc ] = P
((
tfmin 6= tcmin

)
∩ Ec

)
(8.71)

Now T 2 has M2 elements and there are M couples
(
tfmin, t

c
min

)
such that

tfmin = tcmin, therefore there are M2 −M possible couples
(
tfmin, t

c
min

)
to consider.

Let us consider one of them: we write tfmin = U and tcmin = V . As before, we get

P
((
tfmin 6= tcmin

)
∩ Ec

)
=

∑
(U 6=V )∈T 2

P
(
tfmin = U ∩ tcmin = V ∩ Ec

)
= O

(
h1−γ
l

) (8.72)

That is, E [1Dc ]
1/q = O

(
h

1−γ
q

l

)
and as before we can construct q(γ) sufficiently

small such that

E [1Dc ]
1/q = O

(
h1−2γ
l

)
(8.73)

As in (8.48) and (8.49), for both extreme and non-extreme paths(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec ≤ 4ph−2pγ
l

(8.74)

thus

E

(∂Stfmin

∂θ
−
∂Stcmin

∂θ

)2p

1Ec

1/p

≤ 4h−γl (8.75)

and finally

V
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

(
h−2γ
l

)
O
(
h1−2γ
l

)
= O

(
h1−4γ
l

)
(8.76)

We have proved that β = (1− γ̃) for γ̃ as small as we want.

8.2.2.2 Order of convergence α

As before we prove

E
(
∂P f

∂θ
− ∂P c

∂θ

)
= O (h log hl) +O

(
E

[(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)])
(8.77)

and

E

[(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)]
≤ E

[(
∂S

tfmin

∂θ
−
∂Stcmin

∂θ

)p
1Ec

]1/p

E [1Dc ]
1/q (8.78)
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where p, q > 1 are such that
1

p
+

1

q
= 1. Finally, we obtain

E
(
∂P f

∂θ
− ∂P c

∂θ

)
= O

(
h−γl

)
O
(
h1−2γ
l

)
= O

(
h1−3γ
l

)
(8.79)

We have proved that α = (1− γ̃) for γ̃ as small as we want.

8.3 Conclusion

The analysis of sections 8.2.1 and 8.2.2 reveals that in the discrete case the order

of convergence is limited by the fact that
∂S

∂θ
, the sensitivity of the underlying asset,

can differ significantly between the times at which the fine and the coarse paths reach

their respective minimums. This also corresponds to what the analysis of section

8.1.1 together with the simulation of section 8.1.2 suggest for the continuous case.

We have proved that in the case of discretely sampled lookback options,

α = 1 − γ̃ and β = 1 − γ̃ for γ̃ > 0 as small as we want. Those rates of con-

vergence are also the ones observed in chapter 2 for continuously sampled lookback

options. Intuitively this is explained by the fact that the price of a discretely sampled

lookback option converges towards the price of its continuously sampled equivalent

when the number of sampling points M is increased.

We can summarise the results we have proved in this chapter as follows:

Theorem 8.3.1. Let us consider a lookback option on an asset St. We assume that

this underlying asset’s price follows an Ito process as described by equation (1.2),

that the coefficients of the diffusion a(S, t) and b(S, t) satisfy conditions A1 to A4

of theorem 3.4.3 and that there exists a constant ε > 0 such that b(S, t) ≥ ε.
Multilevel pathwise sensitivities estimators of the Greeks of discretely sampled

lookback options have an accuracy O (ε) at a cost O
(
ε−2 (log ε)2

)
.

Proof. See above.
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Chapter 9

Conclusion and future work

Option prices’ sensitivities, the Greeks, are indicators of financial risk. Their

estimation is an important problem in mathematical finance. A commonly used

method is Monte Carlo simulations. However, obtaining accurate estimates of those

sensitivities can be computationally costly, much more so than simply estimating

option prices. The computational cost of obtaining a sensitivity with an accuracy

of ε is at best of order O
(
ε−3
)

and for most options it is even higher. Efficient

algorithms enabling faster computations therefore become crucial in this setting.

Multilevel techniques provide computational savings in various settings, notably

for option pricing. Nevertheless such methods have never been used for the com-

putation of Greeks. In this thesis we tried to answer the following questions: can

multilevel Monte Carlo techniques be applied to this problem? If so, how should we

use them to obtain computationally efficient estimators of the sensitivities? Finally

what complexity improvements can be achieved using these methods?

Here we summarise the results we obtained and later we will describe new ques-

tions arising from this work, new directions for future research.

9.1 Summary

Introduction - chapter 1

We first described the setting in which we are working. We then presented

existing Monte Carlo techniques used for pricing . We also recalled other Monte

Carlo techniques (pathwise sensitivities, Likelihood Ratio Method, Vibrato Monte

Carlo) for estimating the Greeks, i.e. their sensitivities and the basic principles of

multilevel Monte Carlo pricing.

Then we explained how we would combine those ideas in the following chapters:

we would use them as building blocks for techniques intended to efficiently evaluate

Greeks.
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Algorithms and simulations - chapter 2

Here we first explained in detail the implementation of the ideas mentioned in

chapter 1 for various option types. We then ran simulations to verify the valid-

ity of our algorithms. This would also provide a better insight into the potential

computational savings offered by those new multilevel estimators.

As a preliminary step we gave details about how to read the experimental con-

vergence rates from our simulations. We also explained how to use those readings

with the complexity theorem of chapter 1 to numerically estimate the computational

cost of our algorithms.

We first dealt with simple European options with regular payoffs for which we

could use pathwise sensitivities.

However, using multilevel techniques efficiently for other option types proved

more tricky: digital options required a special treatment to take into account the

payoff’s discontinuity and permit the use of pathwise sensitivities. This lead to

the so-called conditional expectation technique which can also help achieve higher

convergence rates for non-smooth Lipschitz options; we also showed how Vibrato

Monte Carlo or the path splitting technique could be used as an alternative to the

conditional expectation technique in a multilevel setting.

While Asian options can be easily dealt with using multilevel pathwise sensitivi-

ties, other exotic options like barrier or lookback options require more attention. In

those cases, obtaining maximum computational savings from multilevel ideas could

prove particularly tricky. We needed to take into account the behaviour of the path

between discretisation times to simulate local minima or to estimate their likelihood

of crossing the barrier within each time step.

Preliminary theoretical results - chapter 3

In chapter 2 we obtained experimental evidence of the validity of our approach.

We now needed to rigorously prove that it resulted in asymptotically unbiased es-

timators of the Greeks. We also had to confirm the computational benefits they

offered. This would involve a detailed analysis of each estimator, which we would

perform in chapters 4 to 8. Beforehand in chapter 3 we established several important

theoretical results.

We first proved that under certain assumptions, the stochastic differential equa-

tion followed by an asset and its sensitivities did indeed correspond to the equation

obtained by naively differentiating the asset value’s evolution equation. This enabled

us to prove the validity of the discretisation scheme used in chapter 2.

We then came up with practical conditions ensuring that the pathwise sensitivi-

ties technique was applicable when working with the exact solution of an Itô process.

We proved that this method was also applicable when working with discretised so-

lutions of the process and that the sensitivities of the payoff estimators did result in
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estimators of the Greeks with a vanishing bias.

We then provided conditions on the process’s volatility ensuring that its tran-

sition probabilities are well-behaved (smooth, bounded). Those conditions may be

slightly restrictive but contribute to having a cleaner analysis.

We finally introduced various path approximations that are used in following

chapters and established their properties by recalling essential theorems about the

moments of SDE solutions and about the so-called extreme-path analysis.

Detailed analysis of multilevel Greeks estimators - chapters 4 to 8

As explained earlier, chapters 4 to 8 consist of a detailed analysis of the con-

vergence and computational complexity of the multilevel algorithms suggested in

chapter 2.

Chapter 4 - Multilevel pathwise sensitivities for European options. In

chapter 4 we provided an analytical proof for the convergence rates/computational

complexities observed in chapter 2 in the case of European options with Lipschitz

payoffs. To introduce essential ideas of the analysis and its basic outline, we began

with the simple case of options with smooth payoffs and proved that the computa-

tional complexity using multilevel Monte Carlo was reduced to O
(
ε−2
)

instead of

O
(
ε−3
)

with standard (single level) Monte Carlo.

We then adapted this analysis to the case of non-smooth payoffs; this analysis

revealed that we had to consider the respective contributions of paths arriving near

the payoff’s kinks and of all other paths, which involved the use of the extreme-

path analysis. The kinks reduce the convergence speed of multilevel estimators and

therefore limit the complexity to O
(
ε−2 (log ε)2

)
.

Chapter 5 - Multilevel pathwise sensitivities and conditional expecta-

tions technique. Chapter 5 dealt with the joint use of pathwise sensitivities and

the conditional expectation technique. While the technique was initially introduced

to extend the use of pathwise sensitivities to discontinuous payoffs (it enables the

computation of the Greeks of options with discontinuous payoffs with a complexity

O
(
ε−3
)
), it is also useful in the case of non-smooth Lipschitz payoffs and improves

the computational savings obtained with multilevel Monte Carlo. We indeed ob-

tained complexities of O
(
ε−2
)

for the European call instead of O
(
ε−2 (log ε)2

)
for

simple pathwise sensitivities as explained in chapter 4.

Chapter 6 - Asian options. We analysed Asian options in chapter 6. While

this case a priori required the analysis of the paths and their discretisations on the

whole time interval considered and therefore required the use of stronger results

than previous chapters, a minor change of the fundamental ”extreme path theorem”
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of chapter 3 made the analysis fairly similar to that of European options with non-

smooth Lipschitz payoffs. We obtained a complexity O
(
ε−2 (log ε)2

)
.

Chapter 7 - Barrier options. Chapter 7 provided an analysis of our multilevel

estimator for barrier options’ sensitivities. As the payoff depends on the path’s entire

trajectory and more specifically on its minimum, only considering its values at the

discretisation times was insufficient and we computed the likelihood that the path’s

approximation (Milstein discretisation with Brownian bridge interpolation within

each time step) reached the barrier. This resulted in a complexity O
(
ε−3
)
.

Chapter 8 - Lookback options. Finally, we devoted chapter 8 to lookback op-

tions. We showed that the analysis of the (mostly academic) case of

continuously sampled lookback options was made particularly difficult by the fact

that the fine and coarse paths used by our estimators didn’t necessarily reach their

minima at the same time. Noting that the prices of discretely sampled lookback

options converge towards the prices of equivalent continuously sampled lookback

options when the sampling frequency increases, we could get around the problem

by studying the former. The results obtained for discretely sampled options were

consistent with what we expected from continuously sampled options and we proved

that the complexity of the multilevel Greeks estimator was O
(
ε−2 (log ε)2

)
.

9.2 Future work

We answered our initial questions. We have shown that multilevel Monte Carlo

techniques could be used for the estimation of Greeks. We have proved it did provide

significant complexity improvements over standard Monte Carlo.

Our analysis also left some questions open for future research. How can we

rigorously analyse the choice of the optimal number of final samples for split pathwise

sensitivities? How can we analyse the multilevel Vibrato Monte Carlo method? Once

again how would we choose the optimal number of samples for the final time step?

This research also raised new questions which would have to be investigated in

the future. In [Xia11], Giles and Xia investigate techniques for option pricing using

multilevel Monte Carlo with jump processes. How would we adapt the methods

we presented to work in the context of jump processes? As explained for example

in [CG07], [FLL+99b], [Ben03] or [GKH03] , the use of Malliavin calculus provides

interesting hybrid estimators of Greeks. How could we use our ideas in conjunction

with Malliavin techniques for an efficient computation of Greeks?

187



Appendix A

Numerical verification methods

In this appendix, we present some useful techniques that can be used to vali-

date our code and check the correctness of our computations of multilevel Greeks.

The techniques related to the numerical evaluation of the derivatives of functions

defined by a computer program are collectively known as algorithmic differentiation

or automatic differentiation techniques.

To illustrate the ideas, let’s consider some function f specified by some computer

code function that takes some real inputs: input = (i1, ..., iM ) and returns the real

outputs: output = (o1, ..., oN ). Using MATLAB’s notation,

1 input=[i1 ,...,iM];

2 output =[o1 ,..., oN];

3 output=function(i1 ,...,iM);

A.1 Finite difference

A naive technique to evaluate the sensitivity of some code’s outputs with respect

to its inputs is to use finite differences, also known as variable “bumping”.

A.1.1 Principle

The idea is simply to “bump” by a small amount ε the k-th input. Indeed,

assuming f is sufficiently differentiable, we can write the Taylor expansion:

f(..., ik + ε, ...) = f(..., ik, ...) + ε
∂f(..., ik, ...)

∂ik
+

1

2
ε2
∂2f(..., ik, ...)

∂i2k
+ . . . (A.1)

The k-th sensitivity can then be simply evaluated with an accuracy O (ε) via the

forward difference scheme

∂output

∂ik
≈ f(..., ik + ε, ...)− f(..., ik, ...)

ε
(A.2)

that is, we compute
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1 output=function(i1 ,...,ik ,..., iM);

2 output_p=function(i1 ,...,ik+eps ,...,iM);

and then,

∂output

∂ik
≈ (output_p-output)/eps

Alternatively, a more accurate stencil known as a “central difference” uses

1 output_m=function(i1 ,...,ik -eps/2,..., iM);

2 output_p=function(i1 ,...,ik+eps/2,...,iM);

The k-th sensitivity is then evaluated as

∂output

∂ik
≈ (output_p-output_m)/eps

There is a rich literature on finite difference schemes. More details on the basic tech-

niques presented here and higher order schemes can be found in [CB80] or [Duf06].

A.1.2 Complexity and limitations

We see that the computation of the Jacobian of f with the forward difference

requires M +1 simulations and central difference requires 2M simulations. The cost

is proportional to the number of inputs of the function.

The limitations of this method are also well-known and detailed in the litera-

ture (e.g. [CB80], [BSPSM81]). Let’s recall the major issues associated with this

technique.

Floating point arithmetics First, the accuracy of the scheme is clearly deter-

mined by the size of the “bump” ε; we should a priori take ε as small as possible to

decrease the bias of our estimate. Nevertheless, the limitations of simple and double

precision arithmetic prevent us from doing so. In practice, taking ε ≈ 10−4ik or

ε ≈ 10−6ik is safe for single and double precision respectively and results in a small

bias for continuous payoffs.

Discontinuous payoffs and variance explosion When pricing discontinuous

payoffs, the variance of the finite difference estimator of the sensitivity explodes as

ε→ 0. Considering the example of the digital call with strike K (with a discontinuity

around K), we can write that most samples are away from K and then, f (S + ε)−
f (S) = O (ε) and for a fraction O (ε) of all samples, f (S + ε)−f (S) = O (1), which

leads to

E
[
f (S + ε)− f (S)

ε

]
= O (1)

E

[(
f (S + ε)− f (S)

ε

)2
]

= O

(
1

ε

) (A.3)
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and therefore the variance of the estimator is O
(
ε−1
)
. The choice of ε is then the

result of a tradeoff between bias and variance to minimise the estimator’s mean

square error.

A.2 Complex variable “trick”

An alternative to finite differences is the so-called “complex variable trick”, as

presented in [ST98].

A.2.1 Principle

To study the sensitivity with respect to some input, the idea is again to “bump”

it, this time by a pure imaginary number iε (where ε ∈ R and

i =
√
−1). For analytic functions with real values on the real line, we can write

the beginning of the Taylor expansion

f(i1, ..., ik + iε, ..., iM ) = f(i1, ..., ik + iε, ..., iM ) + iε
∂f

∂ik
− ε2 1

2

∂2f

∂i2k
+O

(
ε3
)

(A.4)

Therefore
∂f

∂ik
≈ Imag

[
f(i1, ..., ik + iε, ..., iM )

ε

]
+O

(
ε2
)

(A.5)

The benefit of this approximation of the sensitivity is that its accuracy is of order

O
(
ε2
)
, and also it doesn’t involve a subtraction which would make the estimator

vulnerable to floating point arithmetic errors.

A.2.2 Complexity and limitations

As before, this technique only gives one sensitivity at a time and we need to run

it M times (bumping each input once) to get all sensitivities. The cost of running

what is initially a real function on complex numbers is likely to be close to two times

the cost of a “normal” run with real variables.

Language Another limitation of this technique is that it is obviously better adapted

to programming languages with a native support of complex numbers (e.g. MAT-

LAB). It is still possible to use this idea in other languages, provided we can define

a complex type and the corresponding operations. This approach would actually be

very similar to the idea of algorithmic differentiation via operator overloading (see

[Gri89] or [BHN02]).

Definition of analytical extensions Some operations are not mathematically

defined for complex numbers or not analytic (e.g. max,min, | , | . . .). Some languages

(e.g. MATLAB) sometimes define extensions but they rarely behave in the way we

require. We therefore need to define our own analytic extensions.
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Payoff discontinuities The technique gives accurate estimates of pathwise sensi-

tivities, yet it does not necessarily mean it gives an accurate estimate of the Greeks.

It does so only when pathwise sensitivities are applicable (see section 1.3.1).
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