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hnology, Pasadena, CA 91125Abstra
t. These le
ture notes begin by observing that in many 
ases the most im-portant engineering outputs of CFD 
al
ulations are one or two integral quantities,su
h as the lift and drag. It is then explained that the solution to an appropriateadjoint problem gives the e�e
t of numeri
al approximations on the output fun
-tional of interest, fa
ilitating the 
al
ulation of more a

urate fun
tional estimates.The theory is presented for both linear and nonlinear di�erential equations, in
or-porating a range of numeri
al examples illustrating the ability to obtain answerswith twi
e the order of a

ura
y of the underlying numeri
al solution.1 Introdu
tion1.1 Output fun
tionalsWhy do engineers perform CFD 
al
ulations? In the 
ase of a transport air-
raft at 
ruise 
onditions, a 
al
ulation might be performed to investigatewhether there is an adverse pressure gradient near the leading edge of thewing, 
ausing boundary layer separation and premature transition. Alter-natively, one might be 
on
erned about wing/pylon/na
elle integration, inwhi
h 
ase one might be looking to see if there are any sho
ks on the py-lon, leading to una

eptable integration losses. In both of these examples,qualitative information is being obtained from the 
omputed 
ow �eld tounderstand and interpret the impa
t of the phenomena on the quantitativeoutputs of most 
on
ern to the aeronauti
al engineer, the lift and drag on theair
raft. The quality of the CFD 
al
ulation is judged, �rst and foremost, bythe a

ura
y of the lift and drag predi
tions. The details of the 
ow �eld aremu
h less important, and are used in a more qualitative manner to suggestways in whi
h the design may be modi�ed to improve the lift or drag. Thisfo
us on a few output quantities is even 
learer in design optimisation, whenone is trying to optimise a single obje
tive fun
tion, possibly subje
t to anumber of 
onstraints.This interest in integral outputs, also referred to as fun
tionals, arises inmany appli
ations of CFD. O

asionally, volume integrals are of importan
e.For example, the infra-red signature of a military air
raft will depend in parton a volume integral of some fun
tion of the temperature in the thermal wake
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ebehind the air
raft. However, usually it is surfa
e integrals that are of most
on
ern, as with lift and drag. Other aeronauti
al examples in
lude: the rollmoment produ
ed by aileron de
e
tion; the mass 
ow through a 
ompressorblade row; the out
ow 
ux of nitrous oxides from a 
ombustor; the total heat
ux into a high pressure turbine blade from the surrounding 
ow; averagenoise levels on the ground due to an air
raft landing or taking o�.The idea of output fun
tionals is 
entral to these le
ture notes; they are
on
erned spe
i�
ally with the analysis of the numeri
al error in these fun
-tionals, and a parti
ular method of 
orre
tion that very greatly redu
es theerror, typi
ally doubling the order of a

ura
y for the fun
tional relativeto the underlying 
ow solution. This distinguishes this kind of error analy-sis from other approa
hes that fo
us on the maximum, root-mean-square orsome other measure of the error in the whole 
ow �eld. The problem withsu
h measures is that they 
an have little relation to the errors in the integraloutputs of primary 
on
ern to the engineer.As an example, 
onsider the wake behind a wing. To adequately resolvethe wake requires a �ne grid lo
ally, but it is often the 
ase that the 
omputedwake a 
hord or two downstream of the wing passes into a region in whi
hthe grid resolution is rather 
oarse. Grid adaptation based on error estimatesthat look at the whole solution, possibly by looking at the lo
al trun
ationerror, would 
ause the grid to be further re�ned in this region. However, thein
uen
e of errors in this region on the 
omputed lift and drag would be verysmall, and a mu
h greater redu
tion in the lift and drag errors 
ould probablybe a
hieved by adding the grid re�nement 
loser to the wing, possibly nearthe leading and trailing edge where very small errors 
an have an enormousimpa
t on the lift and drag.1.2 A priori and a posteriori error analysisThe adjoint error 
orre
tion te
hnique to be des
ribed later is applied asa post-pro
essing step, and so it �ts into the framework of a posteriori er-ror analysis. This is error analysis based on the 
omputed 
ow solution, asopposed to a priori error analysis that is based on some (usually limited)knowledge of the analyti
 solution without the bene�t of any numeri
al so-lution.A priori error analysis leads to an error bound of the formError < 
hpwhere h is the representative grid spa
ing, and 
; p are positive 
onstants thatdo not depend on h.The main point of a priori error analysis is �nding the value of p, whi
hdetermines how rapidly the error redu
es as the 
omputational grid is re�ned,uniformly. For most �nite di�eren
e and �nite volume methods, the error inoutput fun
tionals is of the same order as the error in the 
ow solution, so it
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tion 3does not matter whi
h error is 
onsidered. On stru
tured grids with smooth
ow solutions, the solution error is proportional to the trun
ation error andits order 
an be relatively easily determined.The value of the other 
onstant 
 depends on the details of the ana-lyti
 problem being solved, the geometry of the 
omputational domain, theboundary 
onditions, et
. It is extremely diÆ
ult to get a good value for 
 foranything but the simplest problems. Ridi
ulously large values su
h as 1010are not un
ommon in the literature. This makes the error bound useless inany pra
ti
al sense, and as a 
onsequen
e there is often no attempt made toevaluate 
.One area in whi
h a priori error analysis is very helpful is appli
ationswith singularities in the solution. For su
h problems, 
areful analysis 
anreveal the degree of lo
al grid re�nement that is required to re
over the orderof a

ura
y (expressed as a fun
tion of the total number of grid points) thatwould be obtained for non-singular solutions.With a posteriori error analysis, ideally one would like a guaranteed errorbound of the form Error < e(uh)where e(uh) is a 
omputable fun
tion of the numeri
al solution uh. If theerror being 
onsidered is the error in the lift from a CFD 
al
ulation, thiswould enable an engineer to perform a 
al
ulation and know, with 
omplete
ertainty, that the true value for the lift lay within 
ertain limits.For su
h a bound to be of use, it needs to be tight. The eÆ
ien
y ortightness of the bound is measured by the ratio e(uh)=Error. A value of 1 isperfe
t. In the range 2{10, it is useful, but if it were more than 1000 then itwould be fairly useless for pra
ti
al purposes.Although guaranteed error bounds are the ideal, in pra
ti
e they are ex-tremely diÆ
ult to obtain for anything but the simplest of problems. Nonlin-earity 
auses parti
ular diÆ
ulties. Therefore, most a posteriori bounds areasymptoti
, so that Error < e(uh) for all h < h0The problem is that the value of h0 is not known. All that is known is that apositive h0 does exist, below whi
h the asymptoti
 error bound will be valid.However, above this value the error may ex
eed the error bound.As an example, if Error = 1:36h2 + 0:77h4;then 1:37h2 is an asymptoti
 bound that is valid for h2 < 0:01=0:77, butex
eeded when h = 1.The distin
tion between guaranteed and asymptoti
 bounds is important.With asymptoti
 bounds, a user must exer
ise their judgement to de
idewhether the grid is suÆ
iently �ne that the bound is likely to be valid. With
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e
omplex geometries and 
omplex 
ow �elds, this is not easy, parti
ularly for anovi
e user. On the other hand, with a guaranteed bound one 
ould start withan extremely 
oarse grid, and then use the guaranteed error bounds to drivegrid adaptation until it produ
es a numeri
al solution within a user-spe
i�edtoleran
e. This would require no user judgement other than the 
hoi
e of theerror toleran
e.We 
on
lude this dis
ussion of error bounds with a 
omment on the is-sue of error bounds versus error 
orre
tion. Error bounds based on adjointsolutions require a similar level of 
omputational e�ort to the adjoint error
orre
tion to be dis
ussed in these notes. If one has a pre
ise estimate of theerror, this 
ould be used to form a near-perfe
t asymptoti
 error bound, orit 
ould be used to 
orre
t the leading order terms in the error and therebyobtain a solution with a higher order of a

ura
y. The latter approa
h is theone that we follow.1.3 An introdu
tion to adjointsThe use of adjoints lies at the heart of error analysis for output fun
tionals.The main theory will use adjoint di�erential equations, but here we introdu
ethe ideas at an algebrai
 level.Suppose we want to 
al
ulate the value of a ve
tor s
alar produ
tgTu;where the ve
tor u is the solution of the system of linear equationsAu = f:An equivalent dual treatment is to evaluate the produ
tvT f;where the v is the solution of the adjoint (or dual) equationsAT v = g;The equivalen
e of the two 
al
ulations 
omes from the simple identityvT (Au) = (AT v)Tu; (1)from whi
h it follows that vT f = gTu:So, to obtain a linear output fun
tional from the solution of a linearsystem of equations, we 
an either solve the original equations (sometimesreferred to as the primal equations) or solve the adjoint (dual) equations.
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tion 5This simple result is the basis for all that follows later. With di�erentialequations, the ve
tor produ
t be
omes an integral inner produ
t, the trans-posed matrix AT be
omes the adjoint di�erential operator, and the adjointidentity in
ludes 
ertain boundary integral terms, but in essen
e the equiva-len
e is the same.When the output is desired for a single f and g, there is no bene�t inusing the adjoint approa
h. Either method requires the solution of a linearsystem of equations of the same dimension, with the same 
omputational
ost. The bene�t arises when the value of the output is wanted for a sin-gle g but several di�erent ve
tors f . The dire
t approa
h would require thesolution of the primal equations for ea
h value of f , greatly in
reasing the
omputational 
ost, whereas the dual approa
h would still require just oneadjoint 
al
ulation, to be followed by an inexpensive ve
tor produ
t vT f , forea
h f .We are now going to look at how this result 
an be used in two di�erent
ontexts: design optimisation and error analysis. The motivation for begin-ning with design optimisation is that this is the primary reason why manyresear
h groups within a
ademia and industry are developing adjoint Eulerand Navier-Stokes 
odes [Jam95,AV99℄. Design optimisation has a 
lear in-dustrial \pay-o�", whereas the bene�ts of good error analysis are yet to beappre
iated. For the same reason, design optimisation is also the most widelyknown appli
ation for the use of adjoints.Design optimisation Consider design optimisation using a `dis
rete' alge-brai
 approa
h [EP97,NA99,AB99,MP99,GDM01℄, rather than the `
ontinu-ous' di�erential approa
h [Jam88,KIH91,TKS92,BE92,Jam95,JPM98,DG00℄,(see [Gil97,GP00℄ for a dis
ussion of their relative merits and [NTB+99℄ foran ex
ellent review of resear
h on adjoint design methods). The starting pointof this formulation is that U , the 
ow variables at a dis
rete set of points with
oordinates X , is the solution of a system of nonlinear equationsN(U;X) = 0;that 
ome from the dis
retisation of the Euler or Navier-Stokes equations,together with appropriate boundary 
onditions.Through the grid generation pro
ess, the grid 
oordinates depend on �whi
h represents one or more geometri
 design variables. In wing design, forexample, perturbations to � might 
hange the thi
kness distribution and the
amber of the wing. If there is only one design variable �, we 
an lineariseabout a 
ow solution for the baseline geometry to obtainAu = fwhere u is the sensitivity of the 
ow �eld to 
hanges in �,u � dUd� ;
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eand A = �N�U ; f = ��N�X dXd� :The aim of design optimisation is to minimise some obje
tive fun
tionJ(U;X) whi
h, for example, might be a dis
rete approximation to the drag.Linearising this fun
tion givesdJd� = gTu+ �J�X dXd� ;where gT = �J�U :In the adjoint approa
h, this sensitivity of the obje
tive fun
tion to 
hangesin � is obtained from dJd� = vT f + �J�X dXd� ;where v satis�es the adjoint equationsAT v = g:If there are several design variables, ea
h has a di�erent f , but the same g,so the adjoint approa
h is mu
h 
heaper, requiring the solution of just oneadjoint set of equations.Error analysis We now return to the original problem of evaluating gTuwith u being the solution of the linear equationsAu = f:The 
orresponding dual problem whi
h is to evaluate vT f where v is thesolution of the adjoint equations AT v = g:Suppose we have approximate solutions ~u; ~v to ea
h of these equations.We 
an then obtain the following result.gTu=gT ~u+ gT (u�~u)=gT ~u+ vTA (u�~u)=gT ~u+ ~vTA (u�~u) + (v�~v)TA (u�~u)=gT ~u� ~vT (A~u�f) + (v�~v)TA (u�~u): (2)The �rst of the three terms in the �nal result is the value of the fun
tionalusing the approximate solution ~u. The se
ond term is also 
omputable sin
eit involves the known approximate solutions ~u and ~v.
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tion 7The third term is not 
omputable if the exa
t solutions u and v are notknown. However, if ~u and ~v are 
lose approximations to u and v, respe
tively,then the third term will be very small. Thus, the sum of the �rst two termsgives a very good approximation to the true value of gTu { a mu
h betterapproximation in general than gT ~u.Note the form of the se
ond term, whi
h we refer to as the adjoint error
orre
tion term. A~u�f is the residual error in solving the equations Au = f .The approximate adjoint solution ~v provides the appropriate weighting for theresidual error, giving the e�e
t of the residual error on the output fun
tionalof interest. This inner produ
t of a residual error and an adjoint weightingwill be repeated throughout these notes.To take it a step further, suppose now that we want to evaluate a nonlinearfun
tion J(U), where U is the solution of the nonlinear equationsN(U) = 0:Given an approximate solution eU , we de�ne u to be the solution error,u = eU � U;and then linearise both the nonlinear equations and the fun
tional to obtainN(eU) = N(U+u) � �N�U u;and J(eU) = J(U+u) � J(U) + �J�U u:These 
an be re-written as Au � f;where A = �N�U ; f = N(eU):and J(U) � J(eU)� gTu;where gT = �J�U :If v is de�ned to satisfy the adjoint equationAT v = g;then we obtain J(U) � J(eU)� vT f � J(eU)� vTN(eU):Hen
e, the quantity J(eU)� vTN(eU)is a more a

urate estimate for J(U) than J(eU) alone. Again note that theadjoint error 
orre
tion term is a produ
t of an approximate adjoint solutionand the residual error from the original nonlinear equations.
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eAutomati
 di�erentiation An introdu
tion to adjoints would not be 
om-plete without a mention of Automati
 Di�erentiation (AD). This is a te
h-nique, implemented in a number of software pa
kages, that starts with a 
odeto 
ompute a nonlinear ve
tor fun
tion F (U), and automati
ally generates
odes to 
ompute either �F�U ~ufor any ~u (forward mode), or ��F�U�T�vfor any �v (reverse mode).The forward mode is relatively easy to understand. A 
omputer 
ode 
anbe de
omposed into a sequen
e of binary operations
 = op(a; b);where the operation is addition, subtra
tion, multipli
ation or division, plusa few unitary operations 
 = fn(a);where the fun
tion may be, for example, an exponential or a logarithm. If wetreat unitary operations as a spe
ial 
ase of binary operations, then linearisinga binary operation gives~
 = �
�a ~a+ �
�b ~b = � �
�a �
�b�� ~a~b� :The forward mode AD software inserts the instru
tions to 
ompute �
�aand �
�b and evaluate the output sensitivity ~
 given the sensitivities of the twoinputs. Carrying this out throughout the 
ode gives the linear sensitivity ofthe output of the whole 
ode to a spe
i�ed 
ombination of linear perturba-tions to the inputs.The reverse mode AD software performs a task that seems mu
h harderthan the forward mode, but in fa
t it is only slightly harder. Looking again atthe single binary instru
tion, suppose for simpli
ity that the variables a; b; 
are used only on
e during the whole 
ode. Let �a;�b; �
 denote the sensitivityof the output of the whole 
ode to perturbations in a; b; 
. These are thenrelated by the equation � �a�b� = � �
�a �
�b�T �
;whi
h is the transpose of the linear sensitivity equation. The tri
ky thingwith the reverse mode is that the adjoint steps have to be performed in the
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tion 9reverse order to the original nonlinear 
ode. Therefore the AD software hasto generate temporary storage for ea
h operation in whi
h to keep the lin-earisation 
oeÆ
ients su
h as �
�a and �
�b . Other than this, the 
omputational
ost of reverse mode AD is similar to forward mode AD, typi
ally no morethan a fa
tor 4 greater than the original nonlinear 
ode.The main AD pa
kages are ADIFOR [BCH+98℄, Odyss�ee [FP98℄ andTAMC [GK98℄. For further information, the reader is referred to the do
-umentation for ea
h of these, and the ex
ellent book by Griewank [Gri00℄,one of the original developers of ADIFOR.The signi�
an
e of these pa
kages is that they 
an greatly simplify the taskof writing an adjoint CFD 
ode. For examples of the use of AD to generatesu
h 
odes see [MP99,Moh97,CFG98℄. However, there are limitations to theirability to 
arry out automati
 di�erentiation of 
odes that use iterative solvers[Gil01℄, so it is best to view them as aides rather than a bla
k-box solution.1.4 A brief overview of the literatureHere we give a very brief overview of some of the main developments in theliterature 
on
erning the use of adjoints for error analysis.The subje
t begins in 1967 with the work of Aubin and Nits
he (see[SF73℄), who used a suitably de�ned adjoint problem to derive a priori opti-mal order proofs of L2 
onvergen
e of �nite element approximations of ellip-ti
 p.d.e.'s. In 1978, Babu�ska and Rheinboldt [BR78b,BR78a℄ built on thisto develop an a posteriori error analysis that they applied to �nite elementapproximations of the Poisson and Cau
hy-Riemann equations.In 1984, Babu�ska and Miller [BM84a,BM84b℄ were perhaps the �rst tofo
us attention on integral fun
tional outputs. Be
ause their primary interestwas in point fun
tionals su
h as the maximum stress in stru
tural analysisappli
ations, they used \extra
tion fun
tions" to 
onvert the point quantitiesinto integrals. A key feature of these papers is the a priori analysis of thesuper
onvergen
e of the �nite element approximations of the integral fun
-tionals. This will be dis
ussed later in these le
ture notes, but the essen
e isthat the adjoint error 
orre
tion term outlined previously is zero be
ause ofa parti
ular feature of Galerkin �nite element methods known as \Galerkinorthogonality". As a result, the order of a

ura
y of the values for integralfun
tionals is roughly double that of the underlying �nite element solution.In extending this work to the 
onve
tion-di�usion equation, Barrett andElliott [BE87℄ were the �rst to analyse a problem that is not self-adjoint,(i.e. one for whi
h the adjoint di�erential operator is not the same as theoriginal di�erential operator). This step was vital for CFD appli
ations, noneof whi
h are self-adjoint.The late 1990's saw an explosion of interest and resear
h into a posteriorianalysis of errors in integral fun
tionals and related methods for optimal gridadaptation. S�uli [GLLS97,MS98,S�ul98,HRS00℄, Johnson [Joh95,JRB95℄ andRanna
her and Be
ker [BR96,BR98,BR99,Ran00,BKR00,BR01℄ have used
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e�nite element methods that exhibit natural super
onvergen
e and have fo-
ussed their attention on using a posteriori error bounds to derive good gridadaptation indi
ators. In outline, their approa
hes are similar, but with sig-ni�
ant di�eren
es in the details.Patera and Peraire [PP97,PPP97,PP99℄ also fo
us on �nite element meth-ods, but they use a 
ompletely di�erent a posteriori approa
h to derive errorbounds for the fun
tional 
omputed on a \truth mesh" that is de�ned to besuÆ
iently �ne that the dis
retisation errors may be negle
ted. Yet anotherapproa
h for bounding the errors in fun
tional outputs from �nite elementmethods is that of Oden and Prudhomme [OP99,OP00℄.These le
ture notes 
over the adjoint error 
orre
tion ideas developed byGiles and Pier
e [GP98,GP99,PG00,Gil00℄. One way in whi
h they may beviewed is that they extend to �nite volume methods the super
onvergen
ethat is natural for many �nite element methods. This is a
hieved through theexpli
it evaluation of the adjoint 
orre
tion term whi
h is non-zero be
auseof the la
k of \orthogonality". However, as will be shown later, it is also pos-sible to apply the te
hnique with �nite element solutions to obtain fun
tionalvalues that are even more a

urate than the super
onvergent values that arisenaturally from the �nite element 
omputation.Venditti & Darmofal [VD00,VD01℄ have used an algebrai
 version of theadjoint error 
orre
tion to 
orre
t the fun
tional errors 
omputed on a \truthmesh" using a solution interpolated from the original mesh. They have alsoused the approa
h to derive grid adaptation 
riteria. This will be dis
ussedlater in these notes, and sample results will be shown.
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tion 112 Linear adjoint error 
orre
tionIn this se
tion we develop the adjoint 
orre
tion theory for linear di�erentialequations. We begin with a restri
ted version without boundary terms be-
ause it has the greatest similarity to the algebrai
 error 
orre
tion presentedin the previous se
tion.2.1 Theory without boundary termsLet u be the solution of the linear di�erential equationLu = f;on some domain 
, subje
t to homogeneous boundary 
onditions for whi
hthe problem is well-posed when f 2 L2(
) (meaning that f is a square-integrable fun
tion).The adjoint di�erential operator L� and asso
iated homogeneous bound-ary 
onditions are de�ned by the identity(v; Lu) = (L�v; u); (3)that must hold for all u, v satisfying the respe
tive boundary 
onditions. Herethe notation (:; :) denotes an integral inner produ
t over the domain 
, i.e.(v; Lu) � Z
 vTLu dV;allowing for the possibility that u, and hen
e v, may be a ve
tor fun
tionrather than just a s
alar.The appropriate de�nition for L� 
an be 
onstru
ted by integration byparts, starting from (v; Lu), until all of the derivatives are a
ting on v ratherthan u. In the pro
ess, the adjoint boundary 
onditions 
ome from the re-quirement that the boundary terms that arise from the integration by partsmust be zero. Examples of this will be given later.Suppose now that we are 
on
erned with the value of the fun
tional J=(g; u), for a given fun
tion g 2 L2(
). An equivalent dual formulation of theproblem is to evaluate the fun
tional J=(v; f), where v satis�es the adjointequation L�v = g;subje
t to the homogeneous adjoint boundary 
onditions. The equivalen
e ofthe two forms of the problem follows immediately from the de�nition of theadjoint operator. (v; f) = (v; Lu) = (L�v; u) = (g; u):Suppose that uh and vh are approximations to u and v, respe
tively, andsatisfy the homogeneous boundary 
onditions. The subs
ript h indi
ates that
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ethe approximate solutions are derived from a numeri
al 
omputation usinga grid with average spa
ing h. When using �nite di�eren
e or �nite volumemethods, uh and vh might be 
reated by interpolation through 
omputedvalues at grid nodes. With �nite element solutions, one might simply usethe �nite element solutions themselves, or one 
ould again use interpola-tion through nodal values and thereby obtain approximate solutions that aresmoother than the �nite element solutions.It is assumed that uh and vh are suÆ
iently smooth that Luh and L�vhlie in L2(
). If uh and vh were equal to u and v, then the residual errorsLuh�f and L�vh�g would be zero. Thus, the magnitude of the residual errorsis a 
omputable indi
ation of the extent to whi
h uh and vh are not the truesolutions.Now, using the de�nitions and identities given above, we obtain the fol-lowing expression for the fun
tional:(g; u) = (g; uh)� (L�vh; uh�u) + (L�vh�g; uh�u)= (g; uh)� (vh; L(uh�u)) + (L�(vh�v); uh�u)= (g; uh)� (vh; Luh�f) + (vh�v; L(uh�u)): (4)The �rst term in the �nal expression is the value of the fun
tional obtainedfrom the approximate solution uh. The se
ond term is an inner produ
t of theresidual error Luh�f and the approximate adjoint solution vh. The adjointsolution gives the weighting of the 
ontribution of the lo
al residual error tothe overall error in the 
omputed fun
tional. Therefore, by evaluating andsubtra
ting this adjoint error term we obtain a more a

urate value for thefun
tional.The third term is the remaining error after making the adjoint 
orre
tion.If Luh�f = L(uh�u) is of the same order of magnitude as uh�u then the re-maining error has a bound that is proportional to the produ
t kuh�uk kvh�vk(using L2 norms), and thus the 
orre
ted fun
tional value is super
onvergent.For example, if the solution errors uh�u and vh�v are both O(hp) then theerror in the fun
tional is O(h2p).Furthermore, the remaining error term 
an be expressed as(vh�v; L(uh�u)) = �vh�v; LL�1(Luh�f)�= �L�(vh�v); L�1(Luh�f)�= �L�vh�g; L�1(Luh�f)� :This has the 
omputable a posteriori bound kL�1k kLuh� fk kL�vh� gk.The problem with this bound is obtaining a value for the operator normkL�1k. This 
an be 
al
ulated analyti
ally in the simplest 
ases, but forharder problems it may be ne
essary to estimate it numeri
ally.Note the similarity between this analysis and the algebrai
 version in the�rst se
tion. The adjoint identities (1) and (3) look almost identi
al, as dothe expressions for the fun
tional, (2) and (4).
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tion 132.2 Galerkin �nite element methodsIf the approximate solutions uh and vh are the �nite element solutions froma Galerkin �nite element dis
retisation, then the 
orre
tion term(vh; Luh � f)is automati
ally zero, due to the requirement that the �nite element residualis orthogonal to all members of the �nite element spa
e [SF73℄. Thus, theGalerkin �nite element method gives naturally super
onvergent estimates forintegral outputs, in the sense that a single order of a

ura
y improvement inthe solution, through in
reasing the degree of the polynomials in the �niteelement spa
e, leads to two orders of a

ura
y improvement in the value ofthe fun
tional.However, there is usually a loss of a

ura
y be
ause of a la
k of smoothnessin the �nite element solution. Typi
ally, if the solution errors are O(hp), thenthe residual error Luh�f is O(hp�m) where m is the degree of the di�erentialoperator, the degree of the highest derivative in the operator. Hen
e, theremaining error in the fun
tional is O(h2p�m).If one takes the �nite element solution and re
onstru
ts smoother solu-tions uh and vh, then there is the possibility of re
overing O(h2p) a

ura
y forthe fun
tional, at the 
ost of 
arrying out an adjoint 
al
ulation to evaluatethe adjoint error 
orre
tion. This will be demonstrated in the se
ond of thetwo examples to follow.2.3 First example: 1D Poisson equationThe �rst example is the one-dimensional Poisson equation,d2udx2 = f;on the unit interval [0; 1℄ subje
t to the homogeneous boundary 
onditionsu(0)=u(1)=0.The dual problem is the Poisson equation,d2vdx2 = g;subje
t to the same homogeneous boundary 
onditions. The adjoint identityis easily veri�ed, taking into a

ount that u and v are zero at ea
h end.Z 10 v d2udx2 dx = � Z 10 dvdx dudx dx = Z 10 d2vd2x u dx:The Poisson equation is approximated numeri
ally on a uniform grid, withspa
ing h, using a se
ond order �nite di�eren
e dis
retisation,h�2Æ2xuj = f(xj):
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eThe approximate solution uh(x) is then de�ned by 
ubi
 spline interpo-lation through the nodal values uj . The adjoint solution vh is obtained inexa
tly the same manner.Numeri
al results have been obtained for the 
asef = x3(1�x)3; g = sin(�x):Figure 1 shows the residual error Luh�f when h= 132 , as well as the threeGaussian quadrature points on ea
h sub-interval that are used in the nu-meri
al integration of the inner produ
t (vh; Luh�f). Sin
e uh is a 
ubi
spline, fh� d2uhdx2 is 
ontinuous and pie
ewise linear. The best pie
ewise lin-ear approximation to f has an approximation error whose dominant term isquadrati
 on ea
h sub-interval; this explains the s
alloped shape of the resid-ual error. Figure 2 shows the approximate adjoint solution vh, whi
h simplyillustrates that the residual error in the 
enter of the domain 
ontributes mostto the overall error in the fun
tional.Figure 3 is a log-log plot of three quantities versus the number of 
ells:the error in the base value of the fun
tional (g; uh); the remaining error aftersubtra
ting the adjoint 
orre
tion term (vh; Luh�f); the a posteriori errorbound kL�1k kLuh�fk kL�vh�gk. The superimposed lines have slopes of�2 and �4, 
on�rming that the base solution is se
ond order a

urate whilethe error in the 
orre
ted fun
tional and the error bound are both fourthorder. It is also worth noting that on a grid with 16 
ells, whi
h might be areasonable 
hoi
e for pra
ti
al 
omputations, the error in the 
orre
ted valueof the fun
tional is over 200 times smaller than the un
orre
ted error.2.4 Se
ond example: 2D Poisson equationThe se
ond example is the two-dimensional Poisson equation,r2u = f;on the unit square [0; 1℄� [0; 1℄ subje
t to homogeneous Diri
hlet boundary
onditions. The dual problem is r2v = g;with the same boundary 
onditions, and the adjoint identity is again easilyveri�ed, Z
 v r2u dA = � Z
 rv �ru dA = Z
 r2v u dA:For this example, the equations are approximated using a Galerkin �niteelement method with pie
ewise bilinear elements on a uniform Cartesian grid.Finite element error analysis reveals that the solution error for the primalproblem, and the error in the 
omputed fun
tional using the �nite element
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tion 17solution are both O(h2). However, using bi-
ubi
 spline interpolation throughthe 
omputed nodal values, one 
an re
onstru
t an improved approximatesolution uh(x; y) with an error that is still O(h2), but mu
h smoother, so thatthe residual error is also O(h2). Using a similarly re
onstru
ted approximateadjoint solution vh(x; y), one 
an then 
ompute the adjoint error 
orre
tionterm resulting in a 
orre
ted fun
tional whose a

ura
y is O(h4). All innerprodu
t integrals are approximated by 3�3 Gaussian quadrature on ea
hsquare 
ell to ensure that the numeri
al quadrature errors are of a higherorder.Figure 4 shows the numeri
al results obtained for the fun
tionsf(x; y) = x(1�x)y(1�y); g(x; y) = sin(�x) sin(�y):The ordinate is the log of the number of 
ells in ea
h dimension, and lines ofslope �2 and �4 are again superimposed. As predi
ted by the analysis, thebase error in the fun
tional is 
learly se
ond order whereas the error in the
orre
ted value of the fun
tional as well as the error bound are again fourthorder.2.5 Theory with boundary termsWe now extend the theory to in
lude inhomogeneous boundary 
onditionsfor the primal and dual problems, and boundary integrals in their outputfun
tionals.Let u be the solution of the linear di�erential equationLu = f;in the domain 
, subje
t to the linear boundary 
onditionsBu = e;on the boundary �
. In general, the dimension of the operator B may bedi�erent on di�erent parts of the boundary (e.g. in
ow and out
ow se
tionsfor the 
onve
tion p.d.e.).The output fun
tional of interest is taken to beJ = (g; u) + (h;Cu)�
 ;where (:; :)�
 represents an integral inner produ
t over the boundary �
.The boundary operator C may be algebrai
 (e.g. Cu � u) or di�erential(e.g. Cu � �u�n ), but must have the same dimension as the adjoint boundary
ondition operator B� to be de�ned shortly. Note that the 
omponents ofh may be set to zero if the fun
tional does not have a boundary integral
ontribution.The 
orresponding linear adjoint problem isL�v = g;
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ein 
, subje
t to the boundary 
onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and theboundary operator C� is(v; Lu) + (C�v;Bu)�
 = (L�v; u) + (B�v; Cu)�
 ; (5)for all u; v. This identity is obtained by integration by parts. Examples willbe given later, but see also [GP97℄ for the 
onstru
tion of the appropriateadjoint operators for the linearised Euler and Navier-Stokes equations.Using the adjoint identity, one immediately obtains the equivalent dualform of the output fun
tional,J = (v; f) + (C�v; e)�
 :Given approximate solutions uh; vh, we obtain the following result for thefun
tional.(g; u) + (h;Cu)�
 = (g; uh) + (h;Cuh)�
�(L�vh; uh�u)� (B�vh; C(uh�u))�
+(L�vh�g; uh�u) + (B�vh�h;C(uh�u))�
= (g; uh) + (h;Cuh)�
�(vh; L(uh�u))� (C�vh; B(uh�u))�
+(L�(vh�v); uh�u) + (B�(vh�v); C(uh�u))�
= (g; uh) + (h;Cuh)�
�(vh; Luh�f)� (C�vh; Buh�e)�
+(vh�v; L(uh�u)) + (C�(vh�v); B(uh�u))�
 :In the �nal result, the �rst line is the fun
tional based on the approximatesolution uh. The se
ond line is the 
omputable adjoint error 
orre
tion thatnow in
ludes a term related to the residual error in satisfying the primalboundary 
onditions. The third line is the remaining error. In prin
iple, an aposteriori error bound for this 
an again be found, but the main point is thatea
h of the terms involves an inner produ
t of two small quantities, so weagain have the result that the 
orre
ted fun
tional is super
onvergent relativeto the underlying solutions to the primal and adjoint problems.2.6 Example: 2D Lapla
e equationFor the 2D Lapla
e equation r2u = 0;



Adjoint Error Corre
tion 19with Diri
hlet boundary 
onditions u = e, and fun
tionalJ = Z�
 h�u�n ds;we have the operatorsLu = r2u; Bu = u; Cu = �u�n:Integrating by parts givesZ
 v Lu dA = � Z
 rv � ru dA+ Z�
 v �u�n ds= Z
 r2v u dA+ Z�
 �v �u�n � �u�n v� ds;so the adjoint identity is satis�ed for all u; v if we de�neL�v = r2v; B�v = v; C�v = �v�n:To 
onstru
t an analyti
 test
ase with 
urved boundaries and a singular-ity in the solution, we use a 
onformal mapping. We start by de�ning thedomain in a 
omplex Z-plane to be the region between two 
ir
les 
enteredat (X;Y ) = (�0:1; 0) with radii of R1 = 1:1 and R2 = 3:0. Appli
ation ofthe Joukowski mapping z = Z + 1Z ;then produ
es a 
omputational domain between a 
usped airfoil (�
z1) anda smooth outer boundary (�
z2). Using 
ylindri
al 
oordinates R; � de�nedby X + 0:1 = R 
os �; Y = R sin �;the fun
tion U(X;Y ) = R2 �R21R sin �;is a solution of the Lapla
e equation in the Z-plane. Furthermore, by a well-known feature of 
onformal mappings, the fun
tion u(x; y) = U(X;Y ) is alsoa solution of the Lapla
e equation in the z-plane.Evaluating u(x; y) on the inner and outer boundaries gives the Diri
h-let boundary 
ondition for the test problem. As illustrated in Figure 6, thesolution 
orresponds to the stream fun
tion for in
ompressible invis
id 
owaround the airfoil, with zero 
ir
ulation.The fun
tional, expressed in the Z-plane, is 
hosen to beZ 2�0 sin � �U�n ����R=R1 d�:
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Fig. 5. The 
omputational grid for a 2D Lapla
e problem around a Joukowskiairfoil.Its analyti
 value is �2�. When mapped into the z-plane, the 
orrespondingexpression for the fun
tional is �h; �u�n��
 ;where h = R�11 sin �; on the inner boundary �
z1, and h = 0 on the outerboundary. Hen
e the dual problem is the Lapla
e equation subje
t to theDiri
hlet boundary 
onditions v=h.The numeri
al results for both the primal and dual problems are 
al-
ulated using the bilinear Galerkin �nite element method. Figure 5 illus-trates one of the grids used. The grid points in the z-plane are generated bythe 
onformal mapping of a regular polar grid in the Z-plane, but the useof isoparametri
 elements in the z-plane means the 
ells in the z-plane arequadrilaterals, and do not have 
urved edges.Figure 6 presents the primal and dual solutions. It 
an be seen that thegradient of the adjoint solution is singular at the 
usped trailing edge of theairfoil.The approximate solutions uh and vh are formed by bi-
ubi
 spline in-terpolation. The 
oordinate data is also splined, so that the solutions and
oordinates, uh; vh; xh; yh, are all de�ned parametri
ally as fun
tions of the
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oordinates �; �. Given these, ruh 
an be 
al
ulated from0� �uh���uh�� 1A = 0� �xh�� �yh���xh�� �yh�� 1A0� �uh�x�uh�y 1Aand r2uh 
an be 
omputed similarly.The error 
orre
tion integral, whi
h in this 
ase is simply(vh;r2uh)is evaluated by transforming it into an integral over (�; �), and then using3� 3 Gaussian quadrature on ea
h quadrilateral 
ell.The errors in the fun
tional are shown in Figure 7. The superimposed linesof slope �2 and �4 show that the base solution is again se
ond order a

uratewhereas the 
orre
ted value for the fun
tional is fourth order a

urate. Thisimprovement is a
hieved despite the presen
e of the singularity at the trailingedge, and the added 
ompli
ations of the 
urved boundaries and the boundaryfun
tional.
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tion 233 Linear defe
t error 
orre
tionAdjoint error 
orre
tion is not the only means of improving the a

ura
y ofnumeri
al 
al
ulations. In this se
tion, based on Referen
e [Gil00℄, we lookat the use of defe
t 
orre
tion [BMM88,Kor88,Ske81,Ste78℄, and show thatit 
an be extremely e�e
tive in redu
ing the errors in a model 1D Helmholtzproblem; the 
ombination of defe
t and adjoint error 
orre
tion is even better.The primary motivation for this investigation is the need for high ordera

ura
y for aeroa
ousti
 and ele
tromagneti
s 
al
ulations. In steady CFD
al
ulations, grid adaptation 
an be used to provide high grid resolution inthe limited areas that require it. However, using standard se
ond order a
-
urate methods, the wave-like nature of aeroa
ousti
 and ele
tromagneti
solutions would lead to grid re�nement throughout the 
omputational do-main in order to redu
e the wave dispersion and dissipation to a

eptablelevels. The preferable alternative is to use higher order methods, allowingone to use fewer points per wavelength, whi
h 
an lead to a very substantialredu
tion in the total number of grid points for 3D 
al
ulations. The diÆ
ultywith this is that one often wants to use unstru
tured grids be
ause of theirgeometri
 
exibility, and the 
onstru
tion of higher order approximations onunstru
tured grids is 
ompli
ated and 
omputationally expensive.3.1 Problem des
ription and Galerkin methodThe model problem to be solved is the 1D Helmholtz equationu00 + �2u = 0; 0 < x < 10;subje
t to the Diri
hlet boundary 
ondition u=1 at x=0 and the radiationboundary 
ondition u0�i�u=0 at x=10. The analyti
 solution is u=exp(i�x)and the domain 
ontains pre
isely �ve wavelengths. The output fun
tional ofinterest is the value u(10) at the right hand boundary. This 
an be viewed asa model of a far-�eld boundary integral giving the radiated a
ousti
 energyin aeroa
ousti
s, or the radar 
ross-se
tion in ele
tromagneti
s [MS98℄.Integrating by parts, the weak form of the inhomogeneous equationu00 + �2u = f; 0 < x < 10;subje
t to the same boundary 
onditions is�(w0; u0) + �2(w; u) + i�w�(10)u(10) = (w; f);for any di�erentiable w(x) with w(0) = 0. One important feature of thisHelmholtz problem is that the solution is 
omplex. Therefore the inner prod-u
t (w; u) is de�ned as (w; u) � Z 100 w�u dx;
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ewith w� denoting the 
omplex 
onjugate of w.The Galerkin solution on the irregular grid xj ; j = 0; 1; 2; : : : ; N , is de�nedas U(x) = NXj=0Uj�j(x)where the �j(x) are the usual pie
ewise linear `hat' fun
tions for whi
h�j(xi)=Æij . The value U0 is given by the Diri
hlet boundary 
ondition. Thevalues of the other 
oeÆ
ients Uj for j >0 are obtained from the equations�(�0i; U 0) + �2(�i; U) + i��i(10)U(10) = 0; i = 1; 2; : : : ; N:It is well established that this dis
retisation is se
ond order a

urate, pro-du
ing dispersion but no dissipation on a uniform grid.3.2 Defe
t 
orre
tionThe �rst step in the defe
t 
orre
tion is to de�ne a new approximate solutionuh(x) by 
ubi
 spline interpolation of the nodal values Uj . The 
hoi
e ofend 
onditions for the 
ubi
 spline is very important. A natural 
ubi
 splinewould have u00h = 0 at both ends, but this would introdu
e small errors atea
h end sin
e u00 6=0 for the analyti
 solution. Instead, at x=10 we requirethe splined solution to satisfy the analyti
 boundary 
ondition by imposingu0h � i�uh = 0. At x=0, the analyti
 boundary 
ondition is already imposedthrough having the 
orre
t value for the end point U(0). Therefore, here werequire that u00h + �2uh = 0 so the splined solution satis�es the o.d.e. at theboundary.The solution error, e = u(x)�uh(x) satis�es the inhomogeneous Helmholtzequation e00 + �2e = �(u00h+�2uh); 0 < x < 10;the right-hand-side of whi
h is the residual error of the approximation uh(x).Given the homogeneous Diri
hlet boundary 
ondition at x=0, and the sameradiation boundary 
ondition at x=10, the Galerkin approximation to theerror is given by the equations�(�0i; E0) + �2(�i; E) + i��i(10)E(10) = �(�i; u00h+�2uh); i = 1; 2; : : : ; N:Adding the nodal 
orre
tions Ej to the original nodal values Uj gives a 
or-re
ted solution. The whole pro
edure 
an then be repeated to improve thea

ura
y. This follows the pro
edure des
ribed by Barrett et al who alsoshowed that it 
onverges to a solution of an appropriately de�ned Petrov-Galerkin dis
retisation, with the trial spa
e being the spa
e of 
ubi
 splines,while the test spa
e is the spa
e of pie
ewise linear fun
tions [BMM88℄.
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tion 253.3 Adjoint error 
orre
tionTo apply the linear theory to the Helmholtz problem, the �rst step is to
onstru
t the appropriate adjoint problem. Integration by parts reveals thatthe Helmholtz equation is self-adjoint, soL�v � v00 + �2v;and (v; Lu)� (L�v; u) = �vHAu�100 ;where u = � ududx � ; v = � vdvdx � ;and A = � 0 1�1 0� :At x = 10 we haveBu � u0 � i�u � Bu; B = (�i� 1) ;and Cu � u � Cu; C = (1 0) :To satisfy the adjoint identity (5) we require B� and C� su
h thatA = ��C�B� �H �BC� :Solving this gives ��C�B� � = �BC ��HAH = � 1 0�i� �1�and hen
e B�v � �v0 � i�v and C�v � �v. Similarly, at x= 0, we obtainB�v = v and C�v = v0.Now, noting that in our appli
ation f =g=0, and h has value 0 at x=0and 1 at x=10, then the full spe
i�
ation of the adjoint problem isv00 + �2v = 0; 0 < x < 10;with v=0 at x=0 and �v0 � i�v = 1 at x=10.Let vh be an approximate solution of this problem, obtained by the sameGalerkin and 
ubi
 spline re
onstru
tion approa
h as uh, with or withoutdefe
t 
orre
tion. Noting that the 
ubi
 spline re
onstru
tion ensures thatthe boundary 
onditions are satis�ed exa
tly, the 
orre
ted approximation tothe value u(10) is uh(10)� (vh; u00h+�2uh):
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eThe theory gives the error in this 
orre
ted fun
tional as being(vh � v; u00h+�2uh):In the absen
e of defe
t 
orre
tion, both terms in this inner produ
t arese
ond order in the average grid spa
ing and so the error is fourth order.With defe
t 
orre
tion, the �rst term is fourth order while the se
ond termremains se
ond order. Therefore, the error remaining after the adjoint error
orre
tion is sixth order.3.4 Numeri
al resultsNumeri
al results have been obtained for grids with 4, 8, 16, 32, 64 and 128points per wavelength. To test the ability to 
ope with irregular grids, the
oordinates for the grid with N intervals are de�ned asx0 = 0; xN = 10; xj = 10N (j + �j) ; 0<j<N;where �j is a uniformly distributed random variable in the range [�0:3; 0:3℄.Figure 1 shows the L2 norm of the error in the re
onstru
ted 
ubi
 splinesolution before and after defe
t 
orre
tion. Without defe
t 
orre
tion, theerror is se
ond order, while with defe
t 
orre
tion it is fourth order. Note thata se
ond appli
ation of defe
t 
orre
tion makes a signi�
ant redu
tion in theerror even though it remains fourth order. This is be
ause one appli
ationof the defe
t 
orre
tion pro
edure gives a 
orre
tion that is se
ond orderin magnitude, with a 
orresponding error that is se
ond order in relativemagnitude and therefore fourth order in absolute magnitude. It is this errorthat is 
orre
ted by a se
ond appli
ation of the defe
t 
orre
tion pro
edure.Figure 2 shows the error in the numeri
al value for the output fun
tionalu(10). Without any 
orre
tion, the error is se
ond order. Using either defe
t
orre
tion or adjoint error 
orre
tion on their own in
reases the order ofa

ura
y to fourth order, but using them both in
reases the a

ura
y to sixthorder. Note that the 
al
ulation with 8 points per wavelength plus both defe
tand adjoint error 
orre
tion gives an error whi
h is approximately 2� 10�3.This is more a

urate than the 
al
ulation with 128 points per wavelengthand no 
orre
tions, and 
omparable to the results using 14 points and defe
t
orre
tion, or 30 points with adjoint error 
orre
tion.In 3D, the 
omputational 
ost is proportional to the 
ube of the numberof points per wavelength, so this indi
ates the potentially huge savings of-fered by the 
ombination of defe
t and adjoint error 
orre
tion. The 
ost of
omputing the 
orre
tions is �ve times the 
ost of the original 
al
ulation,due to the additional two 
al
ulations for the defe
t 
orre
tion, and the oneadjoint 
al
ulation plus its two defe
t 
orre
tions. In pra
ti
e, the se
onddefe
t 
orre
tion for the primal and adjoint 
al
ulations make negligible dif-feren
e to the value obtained after the adjoint error 
orre
tion, so these 
anbe omitted, redu
ing the 
ost of the 
orre
tions to just three times the 
ostof the original 
al
ulation.
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e4 Nonlinear adjoint error 
orre
tionThis se
tion looks at the extension from the linear theory to handle nonlinearproblems. It begins with some preliminaries that address the key issues inlinearising nonlinear fun
tions and operators.4.1 PreliminariesIf u is a s
alar variable and f(u) is a nonlinear s
alar fun
tion then a standardTaylor series expansion givesf(u2) = f(u1) + f 0(u1) (u2�u1) +O((u2�u1)2):However, one 
an obtain an exa
t expression without any remainder termsby starting fromdd� f (u1+�(u2�u1)) = f 0 (u1+�(u2�u1)) (u2 � u1);and then integrating this from �=0 to �=1 to obtainf(u2)� f(u1) = f 0(u1;u2) (u2 � u1);where f 0(u1;u2) � Z 10 f 0 (u1+�(u2�u1)) d�:If u and f are ve
tors, we need to de�ne the Ja
obian matrixAu = �f�u ����u ;with the subs
ript u denoting the fa
t that the value of the Ja
obian matrixdepends on the value of u around whi
h f(u) is linearised. We then obtaindd� f (u1+�(u2�u1)) = Au1+�(u2�u1) (u2�u1)so integrating over � givesf(u2)� f(u1) = A(u1;u2) (u2�u1);where A(u1;u2) = Z 10 �f�u ����u1+�(u2�u1) d�:The next step is to 
onsider a nonlinear operator N(u). The linearisedoperator Lu is 
alled a Fr�e
het derivative, and it is formally de�ned byLu~u � lim"!0 N(u+ "~u)�N(u)"
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tion 29Again the subs
ript u denotes the fa
t that the linear operator matrix de-pends on the value of u around whi
h N(u) is linearised. For example, ifN(u) = ��x �12u2�� � �2u�x2then Lu~u = ��x �u ~u�� � �2~u�x2The �nal step in these preliminaries is to start fromdd� N �u1+�(u2�u1)� = Lu1+�(u2�u1) (u2�u1)and then integrate over � to obtainN(u2)�N(u1) = L(u1;u2) (u2�u1);where L(u1;u2) = Z 10 Lju1+�(u2�u1) d�:Thus L(u1;u2) is the average value of the linear operator Lu over the \path"from u1 to u2.4.2 Nonlinear theoryLet u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subje
t to the nonlinear boundary 
onditionsD(u) = 0;on the boundary �
.The linear di�erential operators Lu and Bu are de�ned to be the Fr�e
hetderivatives of N and D, respe
tively,Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear fun
tional of interest, J(u), has a Fr�e
hetderivative of the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h;Cu~u)�
 :
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eHere the dimension of the operator Cu (whi
h may be di�erential) is requiredto equal the dimension of the adjoint boundary operator B�u, to be de�nedshortly.The 
orresponding linear adjoint problem isL�uv = g(u)in 
, subje
t to the boundary 
onditionsB�uv = hon the boundary �
. The adjoint identity de�ning L�u, B�u and the boundaryoperator C�u is(v; Lu~u) + (C�uv;Bu~u)�
 = (L�uv; ~u) + (B�uv; Cu~u)�
 ; (6)for all ~u; v.We now 
onsider approximate solutions uh; vh of the primal and dualproblems, respe
tively. The analysis will use the quantitiesL�uhvh; B�uhvh; C�uhvh:Note that these 
an be evaluated sin
e uh and vh are both known, whereas wewould not be able to evaluate the Fr�e
het derivatives based on the unknownanalyti
 solution u.The analysis also requires averaged Fr�e
het derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;so that, as explained in the preliminaries,N(uh)�N(u) = L(u;uh) (uh�u);D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h;C(u;uh)(uh�u))�
 :
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tion 31We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h;C(u;uh)(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:In the �nal result, the �rst line is the adjoint 
orre
tion term takinginto a

ount the residual errors in satisfying both the p.d.e. and the bound-ary 
onditions. The other lines are the remaining errors, whi
h in
lude the
onsequen
es of nonlinearity in L;B;C and g as well as residual errors inapproximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linearadjoint problem are of the same order, and they are both suÆ
iently smooththat the 
orresponding residual errors are also of the same order, then theorder of a

ura
y of the fun
tional approximation after making the adjoint
orre
tion is twi
e the order of the primal and adjoint solutions. However,rigorous a priori and a posteriori analysis of the remaining errors is mu
hharder than in the linear 
ase [PG98℄ and pra
ti
al a posteriori error boundshave yet to be obtained for the quasi-1D and 2D Euler equations.
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e4.3 Quasi-1D Euler equationsThe steady quasi-1D Euler equations for the 
ow of an ideal 
ompressible
uid in a variable area du
t areddx (AF )� dAdx P = 0;where A(x) is the 
ross-se
tional area of the du
t and U , F and P are de�nedas U = 0� ��q�E1A ; F = 0� �q�q2 + p�qH 1A ; P = 0�0p01A :Here � is the density, q is the velo
ity, p is the pressure, E is the total energyand H is the stagnation enthalpy. The system is 
losed by the equation ofstate for an ideal gas.The fun
tional of interest is the `lift'J = Z p dx:The Fr�e
het derivative operator isLu~u � ddx �A �F�u ~u�� dAdx �P�u ~u;and therefore the 
orresponding adjoint equations areL�uv � �A��F�u�T dvdx � dAdx ��P�u�T v = ��p�u�T :The equations are approximated using a standard se
ond order �nite vol-ume method with 
hara
teristi
 smoothing on a uniform 
omputational grid.The linear adjoint problem is approximated by the so-
alled `
ontinuous'method, in whi
h one dis
retises the analyti
 adjoint equations on the sameuniform grid as the 
ow solution [AV99,Jam95℄. In the alternative `dis
rete'approa
h, one starts with the dis
retised nonlinear 
ow equations, linearisesthem and then uses the transpose of the linear matrix as the dis
rete adjointoperator [EP97℄. Previous resear
h has shown that both approa
hes produ
eapproximate solutions whi
h 
onverge to the analyti
 adjoint solution, whi
hhas been determined in 
losed form for the quasi-1D Euler equations [GP01℄.The approximate solution uh(x) is 
onstru
ted from the dis
rete 
owsolution by 
ubi
 spline interpolation of the nodal values of the three 
om-ponents of the state ve
tor U . Similarly, the approximate adjoint solutionvh(x) is obtained by 
ubi
 spline interpolation of the nodal values of thethree 
omponents of the dis
rete adjoint solution. The integrals that formthe base value for the fun
tional and the adjoint 
orre
tion are approximatedby 3-point Gaussian quadrature.
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h number distributions for quasi-1D Euler equation test 
ases.Subsoni
 
ow The �rst 
ase is smooth subsoni
 
ow in a 
onverging-diverging du
t 
orresponding to the Ma
h number distribution depi
ted inFigure 10. Figure 11 shows the error 
onvergen
e for the 
omputed fun
-tional. The superimposed lines of slope �2 and �4 show that the base erroris se
ond order whereas the error in the 
orre
ted fun
tional is fourth order.This is in agreement with an a priori error analysis [PG98℄ that proves thatuh�u, vh�v and their �rst derivatives are all O(h2) for the parti
ular �nitevolume s
heme that is used, and hen
e the error in the 
orre
ted fun
tionalis O(h4).Isentropi
 transoni
 
ow Figure 12 shows the error 
onvergen
e for a tran-soni
 
ow in a 
onverging-diverging du
t 
orresponding to the Ma
h numberdistribution of Figure 10. The 
ow is subsoni
 at the in
ow boundary andupstream of the throat (lo
ated at x=0), and supersoni
 downstream of thethroat and at the out
ow boundary. Again the results show that the baseerror is se
ond order while the remaining error after the adjoint 
orre
tionis fourth order, even though there is logarithmi
 singularity in the adjointsolution at the throat [GP01℄.
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k-free transoni

ow.4.4 Nonlinear thermal di�usionThe 
omputational domain for this problem is the 
ir
ular annulus 1 � r � 3,and the p.d.e. is the nonlinear di�usion equationr � (uru) = 0;subje
t to the requirement that u is positive. Diri
hlet boundary 
onditionsare spe
i�ed at the inner and outer boundaries so as to agree with the analyti
solution u(r; �) = �1 + �r4 � 1r� 
os ��1=2 :The fun
tional of interest isJ(u) = Z 2�0 �u�n ����r=1 d�;and the 
orresponding dual problem isL�uv � ur2v = 0;with Diri
hlet boundary 
onditions of 1=u and 0 on the inner and outerboundaries, respe
tively.
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tional for a 2D nonlinear thermaldi�usion problem.The primal and dual solutions shown in Figure 14 are obtained by a bi-linear Galerkin �nite element formulation using 3�3 Gaussian quadrature toevaluate the mass and sti�ness matri
es. The nonlinear equations are solvedusing a full approximation s
heme multigrid method. Bi-
ubi
 spline interpo-lation and 3�3 Gaussian quadrature are then used to 
al
ulate the fun
tionalwith and without the adjoint 
orre
tion.The error in the fun
tional is shown in Figure 15 on a log-log plot versusthe square root of the total number of 
ells; this is a measure of h�1, theinverse of the average mesh spa
ing. The superimposed lines of slopes �2and �4 show se
ond order a

ura
y for the basi
 �nite element solution andfourth order a

ura
y after the in
lusion of the adjoint error 
orre
tion. Fora 128�32 mesh, the error de
reases by a fa
tor of more than 105.
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e5 Grid adaptationIn this se
tion we very brie
y outline a number of possible strategies for gridadaptation based on a posteriori error estimates for output fun
tionals. Inea
h 
ase we express reservations about the justi�
ation of using the strategy,while re
ognising that in the end an a

eptable justi�
ation may be that itprovides a robust re�nement 
riterion in pra
ti
e.5.1 Option 1: magnitude of 
orre
tion termFor nonlinear adjoint error 
orre
tion, the dominant 
orre
tion term is theinterior integral inner produ
t (vh; N(uh)), whi
h 
an be expressed as a sumof 
ontributions from ea
h 
ell in the domain(vh; N(uh)) �X� (vh; N(uh))�:One adaptive strategy is to subdivide those 
ells for whi
h(vh; N(uh))�is bigger than some toleran
e.M�uller and Giles have tried this approa
h for subsoni
 and transoni
 airfoil
al
ulations [MG01℄, but the results are little better than using an ad ho
method based on pressure di�eren
es a
ross ea
h 
ell.One questionable aspe
t of this strategy is that the purpose of the ad-joint error 
orre
tion is to evaluate and 
orre
t for this term, so what is thejusti�
ation for trying to make it small? Is it not better to try to make theremaining error small?5.2 Option 2: estimated remaining error termAfter making the adjoint error 
orre
tion, the main remaining error term 
anbe expressed as (v�vh; N(uh)) :The diÆ
ulty with this expression is that the analyti
 adjoint solution v isnot known. One option therefore is to estimate it and then adapt those 
ellsin whi
h (v�vh; N(uh))�is greater than some toleran
e.The problem is how to estimate v. Ranna
her et al [BR96,BR01℄ use aquadrati
 re
onstru
tion to estimate v, having used a pie
ewise linear �niteelement solution for vh. However, if the quadrati
 re
onstru
tion is a betterapproximation to v than the pie
ewise linear one, might it not be better to
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tion 39use the quadrati
 re
onstru
tion as the approximate solution vh and therebyget a more a

urate adjoint error 
orre
tion?It might appear that another possible 
riti
ism of this approa
h is that itassumes that the solution error v�vh is primarily a lo
al interpolation error,whereas it may be due to trun
ation errors in an entirely di�erent part of thegrid. However, for a Galerkin �nite element method, be
ause of orthogonalitythe quantity (v�vh; N(uh))has the same value for any vh in the appropriate �nite element spa
e. There-fore, it is permissible to 
onsider a di�erent vh whi
h is an interpolant ofv, so v�vh is then an interpolation error whi
h 
an be estimated using the
omputed adjoint solution.The approa
h used by Venditti & Darmofal [VD01℄ is an extension of thatused by Ranna
her et al. An alternative, approximately equivalent form forthe dominant part of the remaining error is(Rh; u�uh);where Rh � L�uhvh�g(uh) is the residual error in satisfying the adjoint p.d.e.Therefore, they adapt any 
ell in whi
h the sum��(v�vh; N(uh))��� + ��(Rh; u�uh)���is greater than some threshold. The analyti
 solutions u and v are againapproximated by a higher order re
onstru
tion. Be
ause they use a �nitevolume method to 
al
ulate uh and vh, the repla
ement of v�vh by a lo
alinterpolation error does not have the same theoreti
al justi�
ation as withthe Galerkin method. On the other hand, it does seem an ex
ellent idea totake into a

ount the residual errors of the adjoint problem, and they do usethe more a

urate re
onstru
tion of the approximate solution to obtain the
orre
tion to the value of the fun
tional. The numeri
al results they obtain arevery good; Figure 16, taken from [VD01℄, illustrates the results they obtainfor a three-element airfoil 
al
ulation. It shows the adapted grid obtainedusing their re�nement 
riterion, as well as the improved a

ura
y of the liftpredi
tion with and without adjoint 
orre
tion, 
ompared to a sequen
e ofuniformly-re�ned grids.5.3 Option 3: 
oarse grid error estimatesUsing the residual errors from both the original and adjoint problems, thedominant remaining error 
an be expressed as�L�uh�1Rh; N(uh)� � �Rh; L�1uhN(uh)�
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tion 41The problem with using this in an adaptive approa
h is that L�1uh is a globaloperator. However, it might be possible to use a 
oarse grid to approximatelyevaluate L�1uhN(uh) and L�uh�1Rh, and then adapt in any 
ell � for whi
h��� �L�uh�1Rh; N(uh)�����+ ��� �Rh; L�1uhN(uh)�����is bigger than some toleran
e. This approa
h may also give a useful a poste-riori bound on the total remaining error.The 
riti
ism that 
an be levelled at this idea is that it requires the
al
ulation of the quantity L�1uhN(uh) whi
h is essentially a defe
t 
orre
tion.In that 
ase, is it not better to use this to further improve the a

ura
y of thesolution and hen
e the fun
tional, rather than bound the remaining error?Yet again, it appears there is a 
hoi
e to be made between improveda

ura
y or a tight bound. If we 
hoose the improved a

ura
y then we 
anstill use the suggested measure as a re�nement 
riterion, but we are re�ningbased on the estimated magnitude of one part of the 
orre
ted error, ratherthan on the estimated remaining error. It may still prove to be a usefuladaptation 
riterion, but its rational basis has been 
ompromised.5.4 Multiple fun
tionalsA last 
omment 
on
erns the situation in whi
h there are several di�erentfun
tionals of 
on
ern, su
h as lift, drag and pit
hing moment. How shouldall of these be in
orporated into the adaptation 
riterion?One 
ould perform a separate adjoint 
al
ulation for ea
h. This would bene
essary if one wished to perform an adjoint error 
orre
tion to improve thea

ura
y of ea
h of the output fun
tionals. Alternatively, following options 1and 2 above, one 
ould adapt wheneverV� Z� jN(uh)j dAex
eeds some threshold, with V� representing the magnitude of the typi
aladjoint solution in 
ell � (big near the airfoil, tending to zero far away) iffollowing option 1, or a 
orresponding interpolation error estimate for option2.
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e6 Future resear
h dire
tionsIn this 
on
luding se
tion, we o�er some thoughts about dire
tions for futureresear
h. Some of these are spe
i�
 to adjoint error 
orre
tion, but mostapply more generally to the subje
t of a posteriori error analysis and gridadaptation for fun
tional outputs.6.1 Grid adaptationAs indi
ated in the previous se
tion, grid adaptation remains a topi
 forfuture resear
h. Being pra
ti
al, there is no need for a \perfe
t" adaptivestrategy, even if one 
ould de�ne what that would be. The important 
riterionfor su

ess is that the strategy should be robust and produ
e 
onsistentlygood results for a wide variety of problems. It is also important that forproblems with singularities, for whi
h it is known that the standard orderof a

ura
y (expressed in terms of the number of nodes/
ells used) 
an bere
overed with the appropriate degree of lo
al grid resolution, the adaptivestrategy should automati
ally a

omplish this.Two other adaptation issues to be addressed are anisotropi
 re�nementand grid redistribution. Currently, most adaptive strategies use grid re�ne-ment, adding additional nodes/
ells through an isotropi
 re�nement pro
essthat lo
ally re�nes equally in ea
h dire
tion, giving 
ells with a bounded as-pe
t ratio. This is good for many appli
ations, but far from ideal for others.One example is the invis
id 
ow around a wing. Here the grid resolutionnormal to the leading edge needs to be mu
h �ner than the spanwise resolu-tion. In this 
ase, anisotropi
 re�nement is probably the best solution. Thismeans adding nodes in su
h a way that the resolution normal to the leadingedge is greater than in the spanwise resolution. The question this poses ishow to de
ide whi
h dire
tion requires additional resolution? There are al-ready ad ho
 re�nement methods that address this. The 
hallenge will be toextend the a posteriori adjoint-based re�nement indi
ators to give a morequantitative answer to this question.Another more extreme example of the need for anisotropi
 resolution isa boundary layer on a wing, where there is 
learly a need for mu
h betterresolution a
ross the boundary layer than in the other two dire
tions. In this
ase, the best solution may well be grid redistribution, moving existing gridnodes to provide the resolution where it is needed. Again there are goodexisting ad ho
 methods for doing this and the 
hallenge is how to developnew methods using a posteriori error estimates.
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tion 436.2 Asymptoti
 error boundsIdeally, we would like to have our 
ake and eat it too! We would like to usesmooth re
onstru
tion and adjoint error 
orre
tion to generate extremelya

urate fun
tional values, and at the same time still be able to bound theremaining error with bounds that are at least asymptoti
ally valid and fairlytight.As suggested in the previous se
tion, this may be una
hievable. Theremay be a 
hoi
e to be made between using smooth re
onstru
ted solutionsfor defe
t and/or adjoint error 
orre
tion, or for tight error bounds. If so, thenour preferen
e would be for the in
reased a

ura
y. However, this de�nitelymerits further resear
h.6.3 Smooth re
onstru
tion on unstru
tured gridsOne key issue is going to be the smooth re
onstru
tion of approximate solu-tions in multiple dimensions on unstru
tured grids. On a stru
tured grid, 
u-bi
 spline interpolation 
an be used in ea
h dire
tion, but on an unstru
turedgrid there is a need for a suitable generalisation of 
ubi
 spline interpolationto produ
e a re
onstru
ted solution of suÆ
ient smoothness.Venditti & Darmofal have a
hieved some su

ess with a pie
ewise quadrati
re
onstru
tion using least squares minimization in the H1 Sobolev norm[VD01℄. In unpublished resear
h, this lo
al approximation has been suÆ-
ient for them to obtain results doubling the order of a

ura
y of fun
tionaloutputs from a Galerkin approximation of a 
onve
tion-di�usion equation.However, there is reason to believe that in general the solution at thenodes of an unstru
tured grid may not be very smooth. In parti
ular, thesolution error, ei = ui � u(xi)may not be very smooth, and therefore even if ei = O(h2), any interpolationmay lead to a re
onstru
tion errore(x) = uh(x) � u(x)for whi
h re = O(h). This loss of a

ura
y be
ause of the loss of smoothnesswould 
ompletely negate the ability of the adjoint error 
orre
tion to improveupon the a

ura
y of �nite element solutions.To avoid this, it seems likely that it will be ne
essary to use some formof smoothed spline re
onstru
tion, in whi
h the spline does not interpolatethe nodal values, but instead 
ompromises between the twin obje
tives ofmat
hing the 
omputed data and maintaining smoothness. For example, ifUh is a se
ond order a

urate pie
ewise linear �nite element solution, thenthe re
onstru
tion uh 
ould be de�ned by some suitable approximation tothe equation h2r2(r2uh) + uh � Uh = 0:
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eThe purpose of the bi-harmoni
 term is to ensure the smoothness of the so-lution. The h2 weighting ensures that this is not a
hieved at the expense ofsa
ri�
ing the se
ond order a

ura
y of the underlying solution. Some pre-liminary numeri
al analysis for problems with periodi
 boundary 
onditions[GS02℄ 
on�rms that this should have the desired smoothing e�e
t, but it hasyet to be implemented and tested.6.4 Sho
ksOne last 
hallenge we wish to highlight is the problem of sho
ks and otherdis
ontinuities.With the quasi-1D Euler equations, it 
an be proved that with an appro-priate 
onservative formulation, and a numeri
al dis
retisation that is se
ondorder a

urate when the solution is smooth, the a

ura
y of output fun
-tionals su
h as the integrated pressure is also se
ond order [Gil96℄. However,numeri
al eviden
e suggests this is not the 
ase in multiple dimensions, andinstead there is an error in quantities su
h as the lift on a transoni
 airfoilthat is proportional to the lo
al grid spa
ing at the sho
k. Thus, to get evense
ond order a

ura
y would require anisotropi
 grid adaptation so that thegrid spa
ing at the sho
k is O(h2), with h here being the average grid spa
ingin the rest of the grid.Appli
ation of adjoint error 
orre
tion ideas raises another problem. There
onstru
ted solution will be 
ontinuous, whereas the true solution is dis-
ontinuous. Therefore, it is unavoidable that there is an O(1) error in the ap-proximate solution at the sho
k. This violates the whole basis for the adjointerror 
orre
tion sin
e it relies on a linearisation of the nonlinear equationsthat is valid only for small perturbations.We are 
urrently working on this problem. Our approa
h is to numeri-
ally approximate a \vis
ous" sho
k with the level of vis
osity being O(h2).The adjoint error 
orre
tion then has to 
orre
t for the numeri
al error inapproximating the vis
ous sho
k, plus the analyti
 error in using the vis
oussho
k problem to approximate the invis
id sho
k problem. This latter partrequires the use of mat
hed asymptoti
 expansions to understand that toleading order there is a linear dependen
e of integral fun
tionals on the levelof vis
osity. This error 
an be 
ompensated for by using the vis
ous adjointto give the sensitivity of the lift to a 
hange in the level of the vis
osity.A
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