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Abstract. These lecture notes begin by observing that in many cases the most im-
portant engineering outputs of CFD calculations are one or two integral quantities,
such as the lift and drag. It is then explained that the solution to an appropriate
adjoint problem gives the effect of numerical approximations on the output func-
tional of interest, facilitating the calculation of more accurate functional estimates.
The theory is presented for both linear and nonlinear differential equations, incor-
porating a range of numerical examples illustrating the ability to obtain answers
with twice the order of accuracy of the underlying numerical solution.

1 Introduction

1.1 Output functionals

Why do engineers perform CFD calculations? In the case of a transport air-
craft at cruise conditions, a calculation might be performed to investigate
whether there is an adverse pressure gradient near the leading edge of the
wing, causing boundary layer separation and premature transition. Alter-
natively, one might be concerned about wing/pylon/nacelle integration, in
which case one might be looking to see if there are any shocks on the py-
lon, leading to unacceptable integration losses. In both of these examples,
qualitative information is being obtained from the computed flow field to
understand and interpret the impact of the phenomena on the quantitative
outputs of most concern to the aeronautical engineer, the lift and drag on the
aircraft. The quality of the CFD calculation is judged, first and foremost, by
the accuracy of the lift and drag predictions. The details of the flow field are
much less important, and are used in a more qualitative manner to suggest
ways in which the design may be modified to improve the lift or drag. This
focus on a few output quantities is even clearer in design optimisation, when
one is trying to optimise a single objective function, possibly subject to a
number of constraints.

This interest in integral outputs, also referred to as functionals, arises in
many applications of CFD. Occasionally, volume integrals are of importance.
For example, the infra-red signature of a military aircraft will depend in part
on a volume integral of some function of the temperature in the thermal wake
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behind the aircraft. However, usually it is surface integrals that are of most
concern, as with lift and drag. Other aeronautical examples include: the roll
moment, produced by aileron deflection; the mass flow through a compressor
blade row; the outflow flux of nitrous oxides from a combustor; the total heat
flux into a high pressure turbine blade from the surrounding flow; average
noise levels on the ground due to an aircraft landing or taking off.

The idea of output functionals is central to these lecture notes; they are
concerned specifically with the analysis of the numerical error in these func-
tionals, and a particular method of correction that very greatly reduces the
error, typically doubling the order of accuracy for the functional relative
to the underlying flow solution. This distinguishes this kind of error analy-
sis from other approaches that focus on the maximum, root-mean-square or
some other measure of the error in the whole flow field. The problem with
such measures is that they can have little relation to the errors in the integral
outputs of primary concern to the engineer.

As an example, consider the wake behind a wing. To adequately resolve
the wake requires a fine grid locally, but it is often the case that the computed
wake a chord or two downstream of the wing passes into a region in which
the grid resolution is rather coarse. Grid adaptation based on error estimates
that look at the whole solution, possibly by looking at the local truncation
error, would cause the grid to be further refined in this region. However, the
influence of errors in this region on the computed lift and drag would be very
small, and a much greater reduction in the lift and drag errors could probably
be achieved by adding the grid refinement closer to the wing, possibly near
the leading and trailing edge where very small errors can have an enormous
impact on the lift and drag.

1.2 A priori and a posteriori error analysis

The adjoint error correction technique to be described later is applied as
a post-processing step, and so it fits into the framework of a posteriori er-
ror analysis. This is error analysis based on the computed flow solution, as
opposed to a priori error analysis that is based on some (usually limited)
knowledge of the analytic solution without the benefit of any numerical so-
lution.

A priori error analysis leads to an error bound of the form

Error < ¢h?

where h is the representative grid spacing, and ¢, p are positive constants that
do not depend on h.

The main point of a priori error analysis is finding the value of p, which
determines how rapidly the error reduces as the computational grid is refined,
uniformly. For most finite difference and finite volume methods, the error in
output functionals is of the same order as the error in the flow solution, so it
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does not matter which error is considered. On structured grids with smooth
flow solutions, the solution error is proportional to the truncation error and
its order can be relatively easily determined.

The value of the other constant ¢ depends on the details of the ana-
lytic problem being solved, the geometry of the computational domain, the
boundary conditions, etc. It is extremely difficult to get a good value for ¢ for
anything but the simplest problems. Ridiculously large values such as 10'°
are not uncommon in the literature. This makes the error bound useless in
any practical sense, and as a consequence there is often no attempt made to
evaluate c.

One area in which a priori error analysis is very helpful is applications
with singularities in the solution. For such problems, careful analysis can
reveal the degree of local grid refinement that is required to recover the order
of accuracy (expressed as a function of the total number of grid points) that
would be obtained for non-singular solutions.

With a posteriori error analysis, ideally one would like a guaranteed error
bound of the form

Error < e(up)

where e(uy) is a computable function of the numerical solution uy. If the
error being considered is the error in the lift from a CFD calculation, this
would enable an engineer to perform a calculation and know, with complete
certainty, that the true value for the lift lay within certain limits.

For such a bound to be of use, it needs to be tight. The efficiency or
tightness of the bound is measured by the ratio e(up)/Error. A value of 1 is
perfect. In the range 2-10, it is useful, but if it were more than 1000 then it
would be fairly useless for practical purposes.

Although guaranteed error bounds are the ideal, in practice they are ex-
tremely difficult to obtain for anything but the simplest of problems. Nonlin-
earity causes particular difficulties. Therefore, most a posteriori bounds are
asymptotic, so that

Error < e(up)  for all h < hg

The problem is that the value of hq is not known. All that is known is that a
positive hg does exist, below which the asymptotic error bound will be valid.
However, above this value the error may exceed the error bound.

As an example, if

Error = 1.36 h? 4+ 0.77 h*,

then 1.37h? is an asymptotic bound that is valid for h? < 0.01/0.77, but
exceeded when h = 1.

The distinction between guaranteed and asymptotic bounds is important.
With asymptotic bounds, a user must exercise their judgement to decide
whether the grid is sufficiently fine that the bound is likely to be valid. With
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complex geometries and complex flow fields, this is not easy, particularly for a
novice user. On the other hand, with a guaranteed bound one could start with
an extremely coarse grid, and then use the guaranteed error bounds to drive
grid adaptation until it produces a numerical solution within a user-specified
tolerance. This would require no user judgement other than the choice of the
error tolerance.

We conclude this discussion of error bounds with a comment on the is-
sue of error bounds versus error correction. Error bounds based on adjoint
solutions require a similar level of computational effort to the adjoint error
correction to be discussed in these notes. If one has a precise estimate of the
error, this could be used to form a near-perfect asymptotic error bound, or
it could be used to correct the leading order terms in the error and thereby
obtain a solution with a higher order of accuracy. The latter approach is the
one that we follow.

1.3 An introduction to adjoints

The use of adjoints lies at the heart of error analysis for output functionals.
The main theory will use adjoint differential equations, but here we introduce
the ideas at an algebraic level.

Suppose we want to calculate the value of a vector scalar product

g u,
where the vector u is the solution of the system of linear equations
Au = f.
An equivalent dual treatment is to evaluate the product
o' f,
where the v is the solution of the adjoint (or dual) equations
ATy =g,
The equivalence of the two calculations comes from the simple identity
v (Au) = (ATv)Tu, (1)

from which it follows that
vl f =gTu.

So, to obtain a linear output functional from the solution of a linear
system of equations, we can either solve the original equations (sometimes
referred to as the primal equations) or solve the adjoint (dual) equations.
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This simple result is the basis for all that follows later. With differential
equations, the vector product becomes an integral inner product, the trans-
posed matrix AT becomes the adjoint differential operator, and the adjoint
identity includes certain boundary integral terms, but in essence the equiva-
lence is the same.

When the output is desired for a single f and g, there is no benefit in
using the adjoint approach. Either method requires the solution of a linear
system of equations of the same dimension, with the same computational
cost. The benefit arises when the value of the output is wanted for a sin-
gle g but several different vectors f. The direct approach would require the
solution of the primal equations for each value of f, greatly increasing the
computational cost, whereas the dual approach would still require just one
adjoint calculation, to be followed by an inexpensive vector product v’ f, for
each f.

We are now going to look at how this result can be used in two different
contexts: design optimisation and error analysis. The motivation for begin-
ning with design optimisation is that this is the primary reason why many
research groups within academia and industry are developing adjoint Euler
and Navier-Stokes codes [Jam95,AV99]. Design optimisation has a clear in-
dustrial “pay-off”, whereas the benefits of good error analysis are yet to be
appreciated. For the same reason, design optimisation is also the most widely
known application for the use of adjoints.

Design optimisation Consider design optimisation using a ‘discrete’ alge-
braic approach [EP97,NA99,AB99,MP99,GDMO01], rather than the ‘continu-
ous’ differential approach [Jam88 KTH91,TKS92,BE92,Jam95,JPM98 DG00],
(see [Gil97,GP00] for a discussion of their relative merits and [NTB*99] for
an excellent review of research on adjoint design methods). The starting point
of this formulation is that U, the flow variables at a discrete set of points with
coordinates X, is the solution of a system of nonlinear equations

N(U,X) =0,

that come from the discretisation of the Euler or Navier-Stokes equations,
together with appropriate boundary conditions.

Through the grid generation process, the grid coordinates depend on «
which represents one or more geometric design variables. In wing design, for
example, perturbations to a might change the thickness distribution and the
camber of the wing. If there is only one design variable «, we can linearise
about a flow solution for the baseline geometry to obtain

Au=f

where u is the sensitivity of the flow field to changes in «,

u=—,
a
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and
ON ON dX

A=— = —.

ouU’ f 0X da

The aim of design optimisation is to minimise some objective function
J(U, X) which, for example, might be a discrete approximation to the drag.

Linearising this function gives

dJ _ r 0J dX
da 7T OX da”
where
r_ 0J
=50
In the adjoint approach, this sensitivity of the objective function to changes
in « is obtained from

g

A g, 974X
da 0X da’
where v satisfies the adjoint equations
ATy = g.

If there are several design variables, each has a different f, but the same g,
so the adjoint approach is much cheaper, requiring the solution of just one
adjoint set of equations.

Error analysis We now return to the original problem of evaluating g7 u
with u being the solution of the linear equations

Au = f.

The corresponding dual problem which is to evaluate v” f where v is the
solution of the adjoint equations

ATy = g.

Suppose we have approximate solutions i, o to each of these equations.
We can then obtain the following result.

g u=g"t+g" (u—1)
_ T~ _ T .
=g'i+v' A(u—1u)
=gTa+ o7 A (u—1)

(v—0)T A (u—1u)
=g~ 0" (Ad—f) + (v—

+
+ (v—0)T A (u—1a). (2)

The first of the three terms in the final result is the value of the functional
using the approximate solution %. The second term is also computable since
it involves the known approximate solutions @ and .
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The third term is not computable if the exact solutions v and v are not
known. However, if 4 and ¥ are close approximations to v and v, respectively,
then the third term will be very small. Thus, the sum of the first two terms
gives a very good approximation to the true value of g”u — a much better
approximation in general than g7'.

Note the form of the second term, which we refer to as the adjoint error
correction term. Atu— f is the residual error in solving the equations Au = f.
The approximate adjoint solution ¢ provides the appropriate weighting for the
residual error, giving the effect of the residual error on the output functional
of interest. This inner product of a residual error and an adjoint weighting
will be repeated throughout these notes.

To take it a step further, suppose now that we want to evaluate a nonlinear
function J(U), where U is the solution of the nonlinear equations

N(U) =0.
Given an approximate solution U , we define u to be the solution error,
u="U — U,

and then linearise both the nonlinear equations and the functional to obtain

N(U) = N(U+u) ~ oN u,

oU
and
J(U) = J(U+u) ~ JU) + o5,
= ~ i
These can be re-written as
Aur f,
where IN
A=—, f=N(U).
5 f=ND)
and _
JU) =~ JU) - g"u,
where 57
T —_
7= au
If v is defined to satisfy the adjoint equation
ATy =g,

then we obtain
JU) ~ JU)=vTf ~ JU) - N().
Hence, the quantity

J(U) —v"N(U)

is a more accurate estimate for J(U) than J(U) alone. Again note that the
adjoint error correction term is a product of an approximate adjoint solution
and the residual error from the original nonlinear equations.
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Automatic differentiation An introduction to adjoints would not be com-
plete without a mention of Automatic Differentiation (AD). This is a tech-
nique, implemented in a number of software packages, that starts with a code
to compute a nonlinear vector function F(U), and automatically generates
codes to compute either

oF _

%’U/

oF\",
oU
for any v (reverse mode).

The forward mode is relatively easy to understand. A computer code can
be decomposed into a sequence of binary operations

for any @ (forward mode), or

¢ = op(a,b),

where the operation is addition, subtraction, multiplication or division, plus
a few unitary operations
¢ = fn(a),

where the function may be, for example, an exponential or a logarithm. If we
treat unitary operations as a special case of binary operations, then linearising
a binary operation gives

s e, Ocy (e Oc) [a
‘0" """ \oa ) \b)
Oc

The forward mode AD software inserts the instructions to compute 3=
and % and evaluate the output sensitivity ¢ given the sensitivities of the two
inputs. Carrying this out throughout the code gives the linear sensitivity of
the output of the whole code to a specified combination of linear perturba-
tions to the inputs.

The reverse mode AD software performs a task that seems much harder
than the forward mode, but in fact it is only slightly harder. Looking again at
the single binary instruction, suppose for simplicity that the variables a, b, ¢
are used only once during the whole code. Let @, b, denote the sensitivity
of the output of the whole code to perturbations in a,b,c. These are then

related by the equation
a) _ (e de\",
b) ~\Ba o) ©

which is the transpose of the linear sensitivity equation. The tricky thing
with the reverse mode is that the adjoint steps have to be performed in the
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reverse order to the original nonlinear code. Therefore the AD software has
to generate temporary storage for each operation in which to keep the lin-
earisation coefficients such as % and %. Other than this, the computational
cost of reverse mode AD is similar to forward mode AD, typically no more
than a factor 4 greater than the original nonlinear code.

The main AD packages are ADIFOR [BCH'98], Odyssée [FP98] and
TAMC [GK98]. For further information, the reader is referred to the doc-
umentation for each of these, and the excellent book by Griewank [Gri00],
one of the original developers of ADIFOR.

The significance of these packages is that they can greatly simplify the task
of writing an adjoint CFD code. For examples of the use of AD to generate
such codes see [MP99,Moh97,CFG98]. However, there are limitations to their
ability to carry out automatic differentiation of codes that use iterative solvers

[Gil01], so it is best to view them as aides rather than a black-box solution.

1.4 A brief overview of the literature

Here we give a very brief overview of some of the main developments in the
literature concerning the use of adjoints for error analysis.

The subject begins in 1967 with the work of Aubin and Nitsche (see
[SF73]), who used a suitably defined adjoint problem to derive a priori opti-
mal order proofs of Ly convergence of finite element approximations of ellip-
tic p.d.e.’s. In 1978, Babuska and Rheinboldt [BR78b,BR78a] built on this
to develop an a posteriori error analysis that they applied to finite element
approximations of the Poisson and Cauchy-Riemann equations.

In 1984, Babuska and Miller [BM84a,BM84b] were perhaps the first to
focus attention on integral functional outputs. Because their primary interest
was in point functionals such as the maximum stress in structural analysis
applications, they used “extraction functions” to convert the point quantities
into integrals. A key feature of these papers is the a priori analysis of the
superconvergence of the finite element approximations of the integral func-
tionals. This will be discussed later in these lecture notes, but the essence is
that the adjoint error correction term outlined previously is zero because of
a particular feature of Galerkin finite element methods known as “Galerkin
orthogonality”. As a result, the order of accuracy of the values for integral
functionals is roughly double that of the underlying finite element solution.

In extending this work to the convection-diffusion equation, Barrett and
Elliott [BE87] were the first to analyse a problem that is not self-adjoint,
(i.e. one for which the adjoint differential operator is not the same as the
original differential operator). This step was vital for CFD applications, none
of which are self-adjoint.

The late 1990’s saw an explosion of interest and research into a posteriori
analysis of errors in integral functionals and related methods for optimal grid
adaptation. Siili [GLLS97,MS98,Siil98, HRS00], Johnson [Joh95,JRB95] and
Rannacher and Becker [BR96,BR98,BR99,Ran00,BKR00,BR01] have used
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finite element methods that exhibit natural superconvergence and have fo-
cussed their attention on using a posteriori error bounds to derive good grid
adaptation indicators. In outline, their approaches are similar, but with sig-
nificant differences in the details.

Patera and Peraire [PP97,PPP97,PP99] also focus on finite element meth-
ods, but they use a completely different a posteriori approach to derive error
bounds for the functional computed on a “truth mesh” that is defined to be
sufficiently fine that the discretisation errors may be neglected. Yet another
approach for bounding the errors in functional outputs from finite element
methods is that of Oden and Prudhomme [OP99,0P00].

These lecture notes cover the adjoint error correction ideas developed by
Giles and Pierce [GP98,GP99,PG00,Gil00]. One way in which they may be
viewed is that they extend to finite volume methods the superconvergence
that is natural for many finite element methods. This is achieved through the
explicit evaluation of the adjoint correction term which is non-zero because
of the lack of “orthogonality”. However, as will be shown later, it is also pos-
sible to apply the technique with finite element solutions to obtain functional
values that are even more accurate than the superconvergent values that arise
naturally from the finite element computation.

Venditti & Darmofal [VD00,VDO01] have used an algebraic version of the
adjoint error correction to correct the functional errors computed on a “truth
mesh” using a solution interpolated from the original mesh. They have also
used the approach to derive grid adaptation criteria. This will be discussed
later in these notes, and sample results will be shown.
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2 Linear adjoint error correction

In this section we develop the adjoint correction theory for linear differential
equations. We begin with a restricted version without boundary terms be-
cause it has the greatest similarity to the algebraic error correction presented
in the previous section.

2.1 Theory without boundary terms

Let u be the solution of the linear differential equation
Lu = f,

on some domain (2, subject to homogeneous boundary conditions for which
the problem is well-posed when f € Lo(f2) (meaning that f is a square-
integrable function).

The adjoint differential operator L* and associated homogeneous bound-
ary conditions are defined by the identity

(v, Lu) = (L7, u), (3)

that must hold for all u, v satisfying the respective boundary conditions. Here
the notation (.,.) denotes an integral inner product over the domain (2, i.e.

(v, Lu) E/ v Lu dV,
2

allowing for the possibility that u, and hence v, may be a vector function
rather than just a scalar.

The appropriate definition for L* can be constructed by integration by
parts, starting from (v, Lu), until all of the derivatives are acting on v rather
than u. In the process, the adjoint boundary conditions come from the re-
quirement that the boundary terms that arise from the integration by parts
must be zero. Examples of this will be given later.

Suppose now that we are concerned with the value of the functional .J =
(g,u), for a given function g € Ly(£2). An equivalent dual formulation of the
problem is to evaluate the functional J= (v, f), where v satisfies the adjoint
equation

L'v =g,
subject to the homogeneous adjoint boundary conditions. The equivalence of
the two forms of the problem follows immediately from the definition of the
adjoint operator.

(v, ) = (v, Lu) = (L*v,u) = (g, u)-

Suppose that up and v, are approximations to u and v, respectively, and
satisfy the homogeneous boundary conditions. The subscript h indicates that



12 M.B. Giles and N.A. Pierce

the approximate solutions are derived from a numerical computation using
a grid with average spacing h. When using finite difference or finite volume
methods, u, and v, might be created by interpolation through computed
values at grid nodes. With finite element solutions, one might simply use
the finite element solutions themselves, or one could again use interpola-
tion through nodal values and thereby obtain approximate solutions that are
smoother than the finite element solutions.

It is assumed that up and vy are sufficiently smooth that Lup and L*vy
lie in Lo(£2). If up and vy, were equal to u and v, then the residual errors
Lup—f and L*vp—g would be zero. Thus, the magnitude of the residual errors
is a computable indication of the extent to which uj, and vy, are not the true
solutions.

Now, using the definitions and identities given above, we obtain the fol-
lowing expression for the functional:

(gau) = (gauh) - (L*Uhauh_u) + (L*Uh_gauh_u)
= (9,un) = (vn, L(un —u)) + (L* (vp —v), up—u)
= (g9, un) = (vn, Lup— f) + (vn —v, L(up—u)). (4)

The first term in the final expression is the value of the functional obtained
from the approximate solution uy. The second term is an inner product of the
residual error Lup— f and the approximate adjoint solution v. The adjoint
solution gives the weighting of the contribution of the local residual error to
the overall error in the computed functional. Therefore, by evaluating and
subtracting this adjoint error term we obtain a more accurate value for the
functional.

The third term is the remaining error after making the adjoint correction.
If Lup—f = L(up—u) is of the same order of magnitude as up—u then the re-
maining error has a bound that is proportional to the product ||up—ul|| ||[vh—v]|
(using Ly norms), and thus the corrected functional value is superconvergent.
For example, if the solution errors u,—u and v, —v are both O(h?) then the
error in the functional is O(h%P).

Furthermore, the remaining error term can be expressed as

(vh—v, L(up—u)) = (vh—v, LL™ " (Lup— f))
= (L*(vn—v), L~ (Lup - f))
= (L*on—g,L " (Lun—f)) .

This has the computable a posteriori bound ||L=Y||||Lup — f| ||L*vh — gl|-
The problem with this bound is obtaining a value for the operator norm
|[L7]]. This can be calculated analytically in the simplest cases, but for
harder problems it may be necessary to estimate it numerically.

Note the similarity between this analysis and the algebraic version in the
first section. The adjoint identities (1) and (3) look almost identical, as do
the expressions for the functional, (2) and (4).
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2.2 Galerkin finite element methods

If the approximate solutions u; and vy, are the finite element solutions from
a Galerkin finite element discretisation, then the correction term

(vn, Lup, — f)

is automatically zero, due to the requirement that the finite element residual
is orthogonal to all members of the finite element space [SF73]. Thus, the
Galerkin finite element method gives naturally superconvergent estimates for
integral outputs, in the sense that a single order of accuracy improvement in
the solution, through increasing the degree of the polynomials in the finite
element space, leads to two orders of accuracy improvement in the value of
the functional.

However, there is usually a loss of accuracy because of a lack of smoothness
in the finite element solution. Typically, if the solution errors are O(h?), then
the residual error Lup—f is O(h?~™) where m is the degree of the differential
operator, the degree of the highest derivative in the operator. Hence, the
remaining error in the functional is O(h*~™).

If one takes the finite element solution and reconstructs smoother solu-
tions uy, and vy, then there is the possibility of recovering O(h?P) accuracy for
the functional, at the cost of carrying out an adjoint calculation to evaluate
the adjoint error correction. This will be demonstrated in the second of the
two examples to follow.

2.3 First example: 1D Poisson equation
The first example is the one-dimensional Poisson equation,

d?u
it

on the unit interval [0, 1] subject to the homogeneous boundary conditions
u(0)=u(1)=0.
The dual problem is the Poisson equation,
d?v
dz?
subject to the same homogeneous boundary conditions. The adjoint identity
is easily verified, taking into account that u and v are zero at each end.

=9,

v — dzr=— = — u dz.

/1 d’u fdv du T d%
o dz? o dz dz ), Az

The Poisson equation is approximated numerically on a uniform grid, with
spacing h, using a second order finite difference discretisation,

h™263u; = f(z;).
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The approximate solution uy(x) is then defined by cubic spline interpo-
lation through the nodal values u;. The adjoint solution vy is obtained in
exactly the same manner.

Numerical results have been obtained for the case

f=2*(1-2)3 g = sin(nz).

Figure 1 shows the residual error Luyp — f when h= %, as well as the three
Gaussian quadrature points on each sub-interval that are used in the nu-
merical integration of the inner product (vp,Lup — f). Since wuy is a cubic
spline, f, = dZ;LZh is continuous and piecewise linear. The best piecewise lin-
ear approximation to f has an approximation error whose dominant term is
quadratic on each sub-interval; this explains the scalloped shape of the resid-
ual error. Figure 2 shows the approximate adjoint solution vy, which simply
illustrates that the residual error in the center of the domain contributes most
to the overall error in the functional.

Figure 3 is a log-log plot of three quantities versus the number of cells:
the error in the base value of the functional (g, up); the remaining error after
subtracting the adjoint correction term (vp, Lup— f); the a posteriori error
bound ||[L7Y|||Lup — f|| [|L*vn — g||- The superimposed lines have slopes of
—2 and —4, confirming that the base solution is second order accurate while
the error in the corrected functional and the error bound are both fourth
order. It is also worth noting that on a grid with 16 cells, which might be a
reasonable choice for practical computations, the error in the corrected value
of the functional is over 200 times smaller than the uncorrected error.

2.4 Second example: 2D Poisson equation
The second example is the two-dimensional Poisson equation,
Vu = f,

on the unit square [0, 1] x [0, 1] subject to homogeneous Dirichlet boundary
conditions. The dual problem is

Vv =g,

with the same boundary conditions, and the adjoint identity is again easily

verified,
/ UV2udA:—/ Vv-VudA:/ Vv u dA.
1} 2 I}

For this example, the equations are approximated using a Galerkin finite
element method with piecewise bilinear elements on a uniform Cartesian grid.
Finite element error analysis reveals that the solution error for the primal
problem, and the error in the computed functional using the finite element
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Fig. 3. Functional error convergence for 1D Poisson equation.
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solution are both O(h?). However, using bi-cubic spline interpolation through
the computed nodal values, one can reconstruct an improved approximate
solution uy, (z, y) with an error that is still O(h?), but much smoother, so that
the residual error is also O(h?). Using a similarly reconstructed approximate
adjoint solution vy, (z,y), one can then compute the adjoint error correction
term resulting in a corrected functional whose accuracy is O(h*). All inner
product integrals are approximated by 3 x 3 Gaussian quadrature on each
square cell to ensure that the numerical quadrature errors are of a higher
order.
Figure 4 shows the numerical results obtained for the functions

flz,y) =2(1-2)y(1—y), g(w,y) = sin(rz) sin(ry).

The ordinate is the log of the number of cells in each dimension, and lines of
slope —2 and —4 are again superimposed. As predicted by the analysis, the
base error in the functional is clearly second order whereas the error in the
corrected value of the functional as well as the error bound are again fourth
order.

2.5 Theory with boundary terms

We now extend the theory to include inhomogeneous boundary conditions
for the primal and dual problems, and boundary integrals in their output
functionals.

Let u be the solution of the linear differential equation

Lu=f,
in the domain 2, subject to the linear boundary conditions
Bu =e,

on the boundary 0f2. In general, the dimension of the operator B may be
different on different parts of the boundary (e.g. inflow and outflow sections
for the convection p.d.e.).

The output functional of interest is taken to be

J = (gau) + (haCU)ao,

where (.,.)o represents an integral inner product over the boundary 02.
The boundary operator C' may be algebraic (e.g. Cu = u) or differential
(e.g. Cu = %), but must have the same dimension as the adjoint boundary
condition operator B* to be defined shortly. Note that the components of
h may be set to zero if the functional does not have a boundary integral
contribution.

The corresponding linear adjoint problem is

L*'v =g,
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in (2, subject to the boundary conditions
B*v = h,

on the boundary 9f2. The fundamental identity defining L*, B* and the
boundary operator C* is

(v, Lu) + (C*v, Bu)se = (L*v,u) + (B*v,Cu)sq, (5)

for all u,v. This identity is obtained by integration by parts. Examples will
be given later, but see also [GP97] for the construction of the appropriate
adjoint operators for the linearised Euler and Navier-Stokes equations.

Using the adjoint identity, one immediately obtains the equivalent dual
form of the output functional,

J = (v, f) +(C7v,e)a0.

Given approximate solutions uy, vy, we obtain the following result for the
functional.

(9,u) + (h, Cu)aq = (g,un) + (h,Cup)on
—(L*vp,up—u) — (B*vs, C(up—u))an

+(L*vp—g,up—u) + (B*vp—h,C(up—u))sg

= (g,Uh) + (h7 Ouh)BQ
—(vn, L(up—u)) — (C*vp, B(up—u))on
+(L*(vh —v),un—u) + (B* (v —v), C(up —u))oq

= (g,Uh) + (h7 Ouh)BQ
—(vn, Lup—f) = (C*vp, Bup—e€)oq
+(vn—v, L(up—u)) + (C* (vp, —v), B(up—u))on-

In the final result, the first line is the functional based on the approximate
solution up. The second line is the computable adjoint error correction that
now includes a term related to the residual error in satisfying the primal
boundary conditions. The third line is the remaining error. In principle, an a
posteriori error bound for this can again be found, but the main point is that
each of the terms involves an inner product of two small quantities, so we
again have the result that the corrected functional is superconvergent relative
to the underlying solutions to the primal and adjoint problems.

2.6 Example: 2D Laplace equation

For the 2D Laplace equation
Vu =0,
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with Dirichlet boundary conditions u = e, and functional

h@u

J = ds,

50 8n

we have the operators
Lu=V%*u, Bu=u, Cu=—.

Integrating by parts gives

/vLudAz—/Vv-VudA+/ v%ds
Q ? o On

/V2vudA+/ (v%—%v> ds,
0 50 8n 8n

so the adjoint identity is satisfied for all u,v if we define

_Ov
- on’

To construct an analytic testcase with curved boundaries and a singular-
ity in the solution, we use a conformal mapping. We start by defining the
domain in a complex Z-plane to be the region between two circles centered
at (X,Y) = (—0.1,0) with radii of Ry = 1.1 and R, = 3.0. Application of
the Joukowski mapping

L*v =V?v, Bv=wv, C*v

1
=74 =
z + A
then produces a computational domain between a cusped airfoil (0£2,;) and
a smooth outer boundary (9(2.5). Using cylindrical coordinates R, 6 defined
by
X +01=Rcosf, Y =Rsinb,

the function ) )

UX,Y) = % sin 6,
is a solution of the Laplace equation in the Z-plane. Furthermore, by a well-
known feature of conformal mappings, the function u(z,y) = U(X,Y) is also
a solution of the Laplace equation in the z-plane.

Evaluating u(z,y) on the inner and outer boundaries gives the Dirich-
let boundary condition for the test problem. As illustrated in Figure 6, the
solution corresponds to the stream function for incompressible inviscid flow
around the airfoil, with zero circulation.

The functional, expressed in the Z-plane, is chosen to be

27 . aU
/0 sm0% de.

R=R;
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Joukowski Airfoil

-4 -2 0 2 4

Fig. 5. The computational grid for a 2D Laplace problem around a Joukowski
airfoil.

Its analytic value is —27. When mapped into the z-plane, the corresponding
expression for the functional is
ou
(5
"/ a0

where h = R, 'sinf, on the inner boundary 942.;, and h = 0 on the outer
boundary. Hence the dual problem is the Laplace equation subject to the
Dirichlet boundary conditions v=h.

The numerical results for both the primal and dual problems are cal-
culated using the bilinear Galerkin finite element method. Figure 5 illus-
trates one of the grids used. The grid points in the z-plane are generated by
the conformal mapping of a regular polar grid in the Z-plane, but the use
of isoparametric elements in the z-plane means the cells in the z-plane are
quadrilaterals, and do not have curved edges.

Figure 6 presents the primal and dual solutions. It can be seen that the
gradient, of the adjoint solution is singular at the cusped trailing edge of the
airfoil.

The approximate solutions u; and v, are formed by bi-cubic spline in-
terpolation. The coordinate data is also splined, so that the solutions and
coordinates, up, vy, T, Yn, are all defined parametrically as functions of the
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Primal Solution

-4 -2 0 2 4

Dual Solution

_4 i i i
-4 -2 0 2 4
X

Fig. 6. The reconstructed primal and dual solutions for a 2D Laplace problem
around a Joukowski airfoil.
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Error Convergence
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Fig. 7. Error convergence of a boundary functional for a 2D Laplace problem
around a Joukowski airfoil.

two spline coordinates &, 7. Given these, Vuy can be calculated from

Sup Oz Oyn Oup
0g 9¢ B¢ oz
duy Oxn Oyn Oup
on on On oy

and V2uy, can be computed similarly.
The error correction integral, which in this case is simply

(vn, Vup)

is evaluated by transforming it into an integral over (&,7), and then using
3 x 3 Gaussian quadrature on each quadrilateral cell.

The errors in the functional are shown in Figure 7. The superimposed lines
of slope —2 and —4 show that the base solution is again second order accurate
whereas the corrected value for the functional is fourth order accurate. This
improvement is achieved despite the presence of the singularity at the trailing
edge, and the added complications of the curved boundaries and the boundary
functional.
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3 Linear defect error correction

Adjoint error correction is not the only means of improving the accuracy of
numerical calculations. In this section, based on Reference [Gil00], we look
at the use of defect correction [BMM88,Kor88,Ske81,Ste78], and show that
it can be extremely effective in reducing the errors in a model 1D Helmholtz
problem; the combination of defect and adjoint error correction is even better.
The primary motivation for this investigation is the need for high order
accuracy for aeroacoustic and electromagnetics calculations. In steady CFD
calculations, grid adaptation can be used to provide high grid resolution in
the limited areas that require it. However, using standard second order ac-
curate methods, the wave-like nature of aeroacoustic and electromagnetic
solutions would lead to grid refinement throughout the computational do-
main in order to reduce the wave dispersion and dissipation to acceptable
levels. The preferable alternative is to use higher order methods, allowing
one to use fewer points per wavelength, which can lead to a very substantial
reduction in the total number of grid points for 3D calculations. The difficulty
with this is that one often wants to use unstructured grids because of their
geometric flexibility, and the construction of higher order approximations on
unstructured grids is complicated and computationally expensive.

3.1 Problem description and Galerkin method

The model problem to be solved is the 1D Helmholtz equation
v +71?u=0, 0<z<10,

subject to the Dirichlet boundary condition u =1 at =0 and the radiation
boundary condition u'—iru=0 at 2 =10. The analytic solution is u=exp(irz)
and the domain contains precisely five wavelengths. The output functional of
interest is the value u(10) at the right hand boundary. This can be viewed as
a model of a far-field boundary integral giving the radiated acoustic energy
in aeroacoustics, or the radar cross-section in electromagnetics [MS98].
Integrating by parts, the weak form of the inhomogeneous equation

u'+71Pu=f, 0<z<10,
subject to the same boundary conditions is
—(w',u") + 7 (w,u) + irw* (10) u(10) = (w, f),

for any differentiable w(z) with w(0) = 0. One important feature of this
Helmholtz problem is that the solution is complex. Therefore the inner prod-
uct (w,u) is defined as

10
(w,u) E/ w*u dz,
0
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with w* denoting the complex conjugate of w.
The Galerkin solution on the irregular grid z;,j = 0,1,2,..., N, is defined
as

N
Uz) = Ujg;(x)
=0

where the ¢;(z) are the usual piecewise linear ‘hat’ functions for which
¢j(x;)=09;;. The value Uy is given by the Dirichlet boundary condition. The
values of the other coefficients U; for j >0 are obtained from the equations

—(¢},U") + 7%(¢s, U) +im;(10) U(10) = 0, i=1,2,...,N.

It is well established that this discretisation is second order accurate, pro-
ducing dispersion but no dissipation on a uniform grid.

3.2 Defect correction

The first step in the defect correction is to define a new approximate solution
up(z) by cubic spline interpolation of the nodal values U;. The choice of
end conditions for the cubic spline is very important. A natural cubic spline
would have u} =0 at both ends, but this would introduce small errors at
each end since u” #0 for the analytic solution. Instead, at =10 we require
the splined solution to satisfy the analytic boundary condition by imposing
uy, —imup, = 0. At =0, the analytic boundary condition is already imposed
through having the correct value for the end point U(0). Therefore, here we
require that uj, + m2uj, = 0 so the splined solution satisfies the o.d.e. at the
boundary.

The solution error, e = u(z)—up(z) satisfies the inhomogeneous Helmholtz
equation

e +m%e = —(uj+m*up), 0<z <10,

the right-hand-side of which is the residual error of the approximation uy ().
Given the homogeneous Dirichlet boundary condition at =0, and the same
radiation boundary condition at x =10, the Galerkin approximation to the
error is given by the equations

—(¢}, E") + 7° (s, E) + i (10) E(10) = — (¢, uf +7up), i=1,2,...,N.

Adding the nodal corrections E; to the original nodal values U; gives a cor-
rected solution. The whole procedure can then be repeated to improve the
accuracy. This follows the procedure described by Barrett et al who also
showed that it converges to a solution of an appropriately defined Petrov-
Galerkin discretisation, with the trial space being the space of cubic splines,
while the test space is the space of piecewise linear functions [BMMS88].
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3.3 Adjoint error correction

To apply the linear theory to the Helmholtz problem, the first step is to
construct the appropriate adjoint problem. Integration by parts reveals that
the Helmholtz equation is self-adjoint, so

L*v =" + 7o,

and o
(v, Lu) — (L*v, u) = [UHAu]O ,
where
() o= (&)
U=\ du )]s UV=1\| dv |>
dz dz
and

At £ = 10 we have
Bu=u'—iru= Bu, B=(-ir 1),

and
Cu=u=Cu, C=(1 0).

To satisfy the adjoint identity (5) we require B* and C* such that

@)
)-8 (2 )

and hence B*v = —v' — imrv and C*v = —v. Similarly, at z =0, we obtain
B*v = v and C*v =",

Now, noting that in our application f=g¢g=0, and h has value 0 at =0
and 1 at £=10, then the full specification of the adjoint problem is

Solving this gives

v +7%v=0, 0<z<10,

with v=0 at =0 and —v' —irv = 1 at x=10.

Let vy, be an approximate solution of this problem, obtained by the same
Galerkin and cubic spline reconstruction approach as wup, with or without
defect correction. Noting that the cubic spline reconstruction ensures that
the boundary conditions are satisfied exactly, the corrected approximation to
the value u(10) is

up (10) — (vp, up +m2up).
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The theory gives the error in this corrected functional as being
(v, — v, uf +7up).

In the absence of defect correction, both terms in this inner product are
second order in the average grid spacing and so the error is fourth order.
With defect correction, the first term is fourth order while the second term
remains second order. Therefore, the error remaining after the adjoint error
correction is sixth order.

3.4 Numerical results

Numerical results have been obtained for grids with 4, 8, 16, 32, 64 and 128
points per wavelength. To test the ability to cope with irregular grids, the
coordinates for the grid with N intervals are defined as

10
29 =0, xn =10, x]-:ﬁ(j+aj),0<j<N,

where ¢} is a uniformly distributed random variable in the range [—0.3,0.3].

Figure 1 shows the Ls norm of the error in the reconstructed cubic spline
solution before and after defect correction. Without defect correction, the
error is second order, while with defect correction it is fourth order. Note that
a second application of defect correction makes a significant reduction in the
error even though it remains fourth order. This is because one application
of the defect correction procedure gives a correction that is second order
in magnitude, with a corresponding error that is second order in relative
magnitude and therefore fourth order in absolute magnitude. It is this error
that is corrected by a second application of the defect correction procedure.

Figure 2 shows the error in the numerical value for the output functional
u(10). Without any correction, the error is second order. Using either defect
correction or adjoint error correction on their own increases the order of
accuracy to fourth order, but using them both increases the accuracy to sixth
order. Note that the calculation with 8 points per wavelength plus both defect
and adjoint error correction gives an error which is approximately 2 x 1072,
This is more accurate than the calculation with 128 points per wavelength
and no corrections, and comparable to the results using 14 points and defect
correction, or 30 points with adjoint error correction.

In 3D, the computational cost is proportional to the cube of the number
of points per wavelength, so this indicates the potentially huge savings of-
fered by the combination of defect and adjoint error correction. The cost of
computing the corrections is five times the cost of the original calculation,
due to the additional two calculations for the defect correction, and the one
adjoint calculation plus its two defect corrections. In practice, the second
defect correction for the primal and adjoint calculations make negligible dif-
ference to the value obtained after the adjoint error correction, so these can
be omitted, reducing the cost of the corrections to just three times the cost
of the original calculation.
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4 Nonlinear adjoint error correction

This section looks at the extension from the linear theory to handle nonlinear
problems. It begins with some preliminaries that address the key issues in
linearising nonlinear functions and operators.

4.1 Preliminaries

If w is a scalar variable and f(u) is a nonlinear scalar function then a standard
Taylor series expansion gives

fluz) = fur) + f'(wr) (uz—ur) + O((uz—wr)?).

However, one can obtain an exact expression without any remainder terms
by starting from

d !
@ f (U1+0(U2—U1)) = f (U1+0(U2—U1)) (U2 — Ul),

and then integrating this from =0 to # =1 to obtain
Fluz) = F(ur) = F iy uny (2 —ua),

where

1
Fluns = [ 1 (wr+8(uz 1)) db.

0
If uw and f are vectors, we need to define the Jacobian matrix

_of

Au = ou

)
u
with the subscript u denoting the fact that the value of the Jacobian matrix
depends on the value of u around which f(u) is linearised. We then obtain

T fur+0(us—u1)) = Ayito(us—ur) (U2 —u1)

so integrating over 6 gives

fluz) = fluy) = Z(uhug) (u2—uq),

_ Laf
A(uhuz) _/(; u

The next step is to consider a nonlinear operator N(u). The linearised
operator L, is called a Fréchet derivative, and it is formally defined by

where
deé.

u1+9(UQ—u1)

N i) — N
Ly = lim Y420 = N(w)
e—0 £



Adjoint Error Correction 29

Again the subscript u denotes the fact that the linear operator matrix de-
pends on the value of u around which N (u) is linearised. For example, if

_ a<1u2> 8%y

"o \2" ) Vo2
then o
~ - u
LuU—g(UU) —l/w

The final step in these preliminaries is to start from

d
@ N (’LL1 +0(U,2—U1)) = Lu1+¢9(u27u1) (U,Q—U,l)

and then integrate over 6 to obtain
N(U’Q) - N(U’l) = z(ul,uz) (UQ_Ul),
where

1
L(u1,uz) :/0 L|’LL1+9(U27’LL1) de.

Thus f(ul’uZ) is the average value of the linear operator L, over the “path”
from u; to us.
4.2 Nonlinear theory

Let u be the solution of the nonlinear differential equation

on the boundary 912.
The linear differential operators L,, and B, are defined to be the Fréchet
derivatives of NV and D, respectively,

L, u=lim ,
e—0 €

By ii = lim 20t €0 = D)
e—0 €

It is assumed that the nonlinear functional of interest, J(u), has a Fréchet
derivative of the following form,

lim LD =IO o )+ (b Cui)oo.

e—0 €
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Here the dimension of the operator C,, (which may be differential) is required
to equal the dimension of the adjoint boundary operator B}, to be defined
shortly.

The corresponding linear adjoint problem is

Ly =g(u)
in (2, subject to the boundary conditions
Biv=h

on the boundary 9f2. The adjoint identity defining L}, B} and the boundary
operator C is

(’U, Luﬂ) + (C;’U,Buﬂ,)ag = (LZ’U,@) + (BZ’U, Cuﬂ)ag, (6)

for all @,v.
We now consider approximate solutions up, vy of the primal and dual
problems, respectively. The analysis will use the quantities

* * *
Luhvh, Buhvh, C’uhvh.

Note that these can be evaluated since u; and vy, are both known, whereas we
would not be able to evaluate the Fréchet derivatives based on the unknown
analytic solution w.

The analysis also requires averaged Fréchet derivatives defined by

1
Luuny = /0 L|u+0(uh—u) do,
. 1
B(U’uh) = /0 B|u+9(“h*“) do,
- 1
C(U7uh) = / C|U+9(uh—u) df),
01
) = [ gtut 0w =) b,

so that, as explained in the preliminaries,

gl

N(uh)_N(u) = L(u,up) (uh_u)a
D(uh)_D(u) = F(muh) (uh_u)a

J(uh) _J(u) = (y(ua uh)a uh_u) + (haﬁ(muh)(uh_u))aﬂ'
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We now obtain the following:
J(un) — J(u) = (g(u, un), up—u) + (haa(u,uh)(uh_u))f)ﬂ

= (L, vh,un—u) + (By, vp, Cu, (un—u))agn
—(Ly, vn—9g(u, up), up,—u)
—(hy (Cuy, = C luyun)) (un— 1)) 902
—(Bg, vn—h, Cy, (up—u))og

= (Uh7Luh (uh_u)) + (O;hvha Buh (uh_u))f)ﬂ
_(Lzhvh_y(uauh)auh_u)
_(h7 (Cuh _6(u7uh))(uh_u))59
—(B;jhvh—h,C’uh (uh—u))ag

= (vn, Lu,un) (un =) + (Cy, Vhs Buun) (un—u)) o0
—(Ly, vn—g(u, up), up—u)

= (vn, N(un)) + (Cy, vn, D(un))ae
— (L, vn—9g(u, up), up—u)

h, (Cu, _€(U7uh))(uh_u))89

B;hvh—h,C’uh (uh—u))ag

Uh, (Luh _Z(u,uh))(uh_u))
+ C;hvha (Buh _E(u,uh))(uh_u))aﬂ-

In the final result, the first line is the adjoint correction term taking
into account the residual errors in satisfying both the p.d.e. and the bound-
ary conditions. The other lines are the remaining errors, which include the
consequences of nonlinearity in L, B,C and g as well as residual errors in
approximating the adjoint problem.

If the solution errors for the nonlinear primal problem and the linear
adjoint problem are of the same order, and they are both sufficiently smooth
that the corresponding residual errors are also of the same order, then the
order of accuracy of the functional approximation after making the adjoint
correction is twice the order of the primal and adjoint solutions. However,
rigorous a priori and a posteriori analysis of the remaining errors is much
harder than in the linear case [PG98] and practical a posteriori error bounds
have yet to be obtained for the quasi-1D and 2D Euler equations.
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4.3 Quasi-1D Euler equations
The steady quasi-1D Euler equations for the flow of an ideal compressible
fluid in a variable area duct are

d dA

where A(z) is the cross-sectional area of the duct and U, F' and P are defined

p P4 0
U=|pgs |, F=|pif+p|, P=|p
pE pqH 0

Here p is the density, ¢ is the velocity, p is the pressure, E is the total energy
and H is the stagnation enthalpy. The system is closed by the equation of
state for an ideal gas.

The functional of interest is the ‘lift’

J:/pdx.

The Fréchet derivative operator is

__d [ 8F \ dAoP._
LUU = @(A%U>—£%U,

and therefore the corresponding adjoint equations are

o) B2 - ()
v Ou/) dr dx \ du  \ou/)

The equations are approximated using a standard second order finite vol-
ume method with characteristic smoothing on a uniform computational grid.
The linear adjoint problem is approximated by the so-called ‘continuous’
method, in which one discretises the analytic adjoint equations on the same
uniform grid as the flow solution [AV99,Jam95]. In the alternative ‘discrete’
approach, one starts with the discretised nonlinear flow equations, linearises
them and then uses the transpose of the linear matrix as the discrete adjoint
operator [EP97]. Previous research has shown that both approaches produce
approximate solutions which converge to the analytic adjoint solution, which
has been determined in closed form for the quasi-1D Euler equations [GP01].

The approximate solution wup(z) is constructed from the discrete flow
solution by cubic spline interpolation of the nodal values of the three com-
ponents of the state vector U. Similarly, the approximate adjoint solution
vp(x) is obtained by cubic spline interpolation of the nodal values of the
three components of the discrete adjoint solution. The integrals that form
the base value for the functional and the adjoint correction are approximated
by 3-point Gaussian quadrature.
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Fig. 10. Mach number distributions for quasi-1D Euler equation test cases.

Subsonic flow The first case is smooth subsonic flow in a converging-
diverging duct corresponding to the Mach number distribution depicted in
Figure 10. Figure 11 shows the error convergence for the computed func-
tional. The superimposed lines of slope —2 and —4 show that the base error
is second order whereas the error in the corrected functional is fourth order.
This is in agreement with an a priori error analysis [PG98] that proves that
up —u, vy —v and their first derivatives are all O(h?) for the particular finite
volume scheme that is used, and hence the error in the corrected functional

is O(h%).

Isentropic transonic flow Figure 12 shows the error convergence for a tran-
sonic flow in a converging-diverging duct corresponding to the Mach number
distribution of Figure 10. The flow is subsonic at the inflow boundary and
upstream of the throat (located at £=0), and supersonic downstream of the
throat and at the outflow boundary. Again the results show that the base
error is second order while the remaining error after the adjoint correction
is fourth order, even though there is logarithmic singularity in the adjoint
solution at the throat [GPO1].
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Error Convergence
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Fig. 11. Error convergence for quasi-1D subsonic flow.
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Fig. 12. Error convergence for quasi-1D shock-free transonic flow.
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Fig. 13. Numerical and analytic adjoint solution for quasi-1D shock-free transonic
flow.

4.4 Nonlinear thermal diffusion

The computational domain for this problem is the circular annulus 1 < r < 3,
and the p.d.e. is the nonlinear diffusion equation

V- (uVu) =0,

subject to the requirement that u is positive. Dirichlet boundary conditions
are specified at the inner and outer boundaries so as to agree with the analytic

solution
r 1 1/
u(r,8) = <1 + (Z - ;) cosO) .

The functional of interest is

27 ou

and the corresponding dual problem is

a9,

r=1

Liv =uV? =0,

with Dirichlet boundary conditions of 1/u and 0 on the inner and outer
boundaries, respectively.
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Fig. 14. The primal and solutions for a 2D nonlinear thermal diffusion problem.
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Fig. 15. Error convergence of the boundary functional for a 2D nonlinear thermal
diffusion problem.

The primal and dual solutions shown in Figure 14 are obtained by a bi-
linear Galerkin finite element formulation using 3x3 Gaussian quadrature to
evaluate the mass and stiffness matrices. The nonlinear equations are solved
using a full approximation scheme multigrid method. Bi-cubic spline interpo-
lation and 3x3 Gaussian quadrature are then used to calculate the functional
with and without the adjoint correction.

The error in the functional is shown in Figure 15 on a log-log plot versus
the square root of the total number of cells; this is a measure of h~!, the
inverse of the average mesh spacing. The superimposed lines of slopes —2
and —4 show second order accuracy for the basic finite element solution and
fourth order accuracy after the inclusion of the adjoint error correction. For
a 128 x 32 mesh, the error decreases by a factor of more than 10°.
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5 Grid adaptation

In this section we very briefly outline a number of possible strategies for grid
adaptation based on a posteriori error estimates for output functionals. In
each case we express reservations about the justification of using the strategy,
while recognising that in the end an acceptable justification may be that it
provides a robust refinement criterion in practice.

5.1 Option 1: magnitude of correction term

For nonlinear adjoint error correction, the dominant correction term is the
interior integral inner product (vy, N(up)), which can be expressed as a sum
of contributions from each cell in the domain

(vn, N(un)) = D (08, N(un))a-

[e%

One adaptive strategy is to subdivide those cells for which
(v, N(un))a

is bigger than some tolerance.

Miiller and Giles have tried this approach for subsonic and transonic airfoil
calculations [MGO1], but the results are little better than using an ad hoc
method based on pressure differences across each cell.

One questionable aspect of this strategy is that the purpose of the ad-
joint error correction is to evaluate and correct for this term, so what is the
justification for trying to make it small? Is it not better to try to make the
remaining error small?

5.2 Option 2: estimated remaining error term

After making the adjoint error correction, the main remaining error term can
be expressed as
(v—ovp, N(up)) .

The difficulty with this expression is that the analytic adjoint solution v is
not known. One option therefore is to estimate it and then adapt those cells
in which

(v—on, N(un))a

is greater than some tolerance.

The problem is how to estimate v. Rannacher et al [BR96,BRO1] use a
quadratic reconstruction to estimate v, having used a piecewise linear finite
element solution for v,. However, if the quadratic reconstruction is a better
approximation to v than the piecewise linear one, might it not be better to
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use the quadratic reconstruction as the approximate solution v;, and thereby
get a more accurate adjoint error correction?

It might appear that another possible criticism of this approach is that it
assumes that the solution error v—uvy, is primarily a local interpolation error,
whereas it may be due to truncation errors in an entirely different part of the
grid. However, for a Galerkin finite element method, because of orthogonality
the quantity

(v—ovp, N(up))

has the same value for any vy in the appropriate finite element space. There-
fore, it is permissible to consider a different v, which is an interpolant of
v, s0 v—wvp, is then an interpolation error which can be estimated using the
computed adjoint solution.

The approach used by Venditti & Darmofal [VDO1] is an extension of that
used by Rannacher et al. An alternative, approximately equivalent form for
the dominant part of the remaining error is

(Rh,u—uh),

where Ry, = L, v—g(up) is the residual error in satisfying the adjoint p.d.e.
Therefore, they adapt any cell in which the sum

|(v=vn, N(un)|, +|(Rn,u—un)|,

is greater than some threshold. The analytic solutions u and v are again
approximated by a higher order reconstruction. Because they use a finite
volume method to calculate up and vy, the replacement of v—wvy, by a local
interpolation error does not have the same theoretical justification as with
the Galerkin method. On the other hand, it does seem an excellent idea to
take into account the residual errors of the adjoint problem, and they do use
the more accurate reconstruction of the approximate solution to obtain the
correction to the value of the functional. The numerical results they obtain are
very good; Figure 16, taken from [VDO1], illustrates the results they obtain
for a three-element airfoil calculation. It shows the adapted grid obtained
using their refinement, criterion, as well as the improved accuracy of the lift
prediction with and without adjoint correction, compared to a sequence of
uniformly-refined grids.

5.3 Option 3: coarse grid error estimates

Using the residual errors from both the original and adjoint problems, the
dominant remaining error can be expressed as

(L* R, N(uh)) ~ (Rn, Ly N(up))

Uh
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Fig. 16. Venditti / Darmofal test case (Figures 2 and 3 from [VDO01]).
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The problem with using this in an adaptive approach is that L;hl is a global
operator. However, it might be possible to use a coarse grid to approximately

evaluate L, ' N (up) and Lzhfth, and then adapt in any cell « for which

‘ (L;;th, N(uh)) + ‘ (Rh, L;;N(uh))

« «
is bigger than some tolerance. This approach may also give a useful a poste-
riori bound on the total remaining error.

The criticism that can be levelled at this idea is that it requires the
calculation of the quantity Ly N (uy) which is essentially a defect correction.
In that case, is it not better to use this to further improve the accuracy of the
solution and hence the functional, rather than bound the remaining error?

Yet again, it appears there is a choice to be made between improved
accuracy or a tight bound. If we choose the improved accuracy then we can
still use the suggested measure as a refinement criterion, but we are refining
based on the estimated magnitude of one part of the corrected error, rather
than on the estimated remaining error. It may still prove to be a useful
adaptation criterion, but its rational basis has been compromised.

5.4 Multiple functionals

A last comment concerns the situation in which there are several different
functionals of concern, such as lift, drag and pitching moment. How should
all of these be incorporated into the adaptation criterion?

One could perform a separate adjoint calculation for each. This would be
necessary if one wished to perform an adjoint error correction to improve the
accuracy of each of the output functionals. Alternatively, following options 1
and 2 above, one could adapt whenever

v, / IN(up)] dA

exceeds some threshold, with V,, representing the magnitude of the typical
adjoint solution in cell a (big near the airfoil, tending to zero far away) if
following option 1, or a corresponding interpolation error estimate for option
2.
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6 Future research directions

In this concluding section, we offer some thoughts about directions for future
research. Some of these are specific to adjoint error correction, but most
apply more generally to the subject of a posteriori error analysis and grid
adaptation for functional outputs.

6.1 Grid adaptation

As indicated in the previous section, grid adaptation remains a topic for
future research. Being practical, there is no need for a “perfect” adaptive
strategy, even if one could define what that would be. The important criterion
for success is that the strategy should be robust and produce consistently
good results for a wide variety of problems. It is also important that for
problems with singularities, for which it is known that the standard order
of accuracy (expressed in terms of the number of nodes/cells used) can be
recovered with the appropriate degree of local grid resolution, the adaptive
strategy should automatically accomplish this.

Two other adaptation issues to be addressed are anisotropic refinement
and grid redistribution. Currently, most adaptive strategies use grid refine-
ment, adding additional nodes/cells through an isotropic refinement process
that locally refines equally in each direction, giving cells with a bounded as-
pect ratio. This is good for many applications, but far from ideal for others.

One example is the inviscid flow around a wing. Here the grid resolution
normal to the leading edge needs to be much finer than the spanwise resolu-
tion. In this case, anisotropic refinement is probably the best solution. This
means adding nodes in such a way that the resolution normal to the leading
edge is greater than in the spanwise resolution. The question this poses is
how to decide which direction requires additional resolution? There are al-
ready ad hoc refinement methods that address this. The challenge will be to
extend the a posteriori adjoint-based refinement indicators to give a more
quantitative answer to this question.

Another more extreme example of the need for anisotropic resolution is
a boundary layer on a wing, where there is clearly a need for much better
resolution across the boundary layer than in the other two directions. In this
case, the best solution may well be grid redistribution, moving existing grid
nodes to provide the resolution where it is needed. Again there are good
existing ad hoc methods for doing this and the challenge is how to develop
new methods using a posteriori error estimates.
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6.2 Asymptotic error bounds

Ideally, we would like to have our cake and eat it too! We would like to use
smooth reconstruction and adjoint error correction to generate extremely
accurate functional values, and at the same time still be able to bound the
remaining error with bounds that are at least asymptotically valid and fairly
tight.

As suggested in the previous section, this may be unachievable. There
may be a choice to be made between using smooth reconstructed solutions
for defect and/or adjoint error correction, or for tight error bounds. If so, then
our preference would be for the increased accuracy. However, this definitely
merits further research.

6.3 Smooth reconstruction on unstructured grids

One key issue is going to be the smooth reconstruction of approximate solu-
tions in multiple dimensions on unstructured grids. On a structured grid, cu-
bic spline interpolation can be used in each direction, but on an unstructured
grid there is a need for a suitable generalisation of cubic spline interpolation
to produce a reconstructed solution of sufficient smoothness.

Venditti & Darmofal have achieved some success with a piecewise quadratic
reconstruction using least squares minimization in the H; Sobolev norm
[VDO1]. In unpublished research, this local approximation has been suffi-
cient for them to obtain results doubling the order of accuracy of functional
outputs from a Galerkin approximation of a convection-diffusion equation.

However, there is reason to believe that in general the solution at the
nodes of an unstructured grid may not be very smooth. In particular, the
solution error,

e; = u; — u(x;)

may not be very smooth, and therefore even if e; = O(h?), any interpolation
may lead to a reconstruction error

e(z) = un(z) —u(z)

for which Ve = O(h). This loss of accuracy because of the loss of smoothness
would completely negate the ability of the adjoint error correction to improve
upon the accuracy of finite element solutions.

To avoid this, it seems likely that it will be necessary to use some form
of smoothed spline reconstruction, in which the spline does not interpolate
the nodal values, but instead compromises between the twin objectives of
matching the computed data and maintaining smoothness. For example, if
Up, is a second order accurate piecewise linear finite element solution, then
the reconstruction uy could be defined by some suitable approximation to
the equation

h*V2(V2up) + up — Uy = 0.
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The purpose of the bi-harmonic term is to ensure the smoothness of the so-
lution. The h? weighting ensures that this is not achieved at the expense of
sacrificing the second order accuracy of the underlying solution. Some pre-
liminary numerical analysis for problems with periodic boundary conditions
[GS02] confirms that this should have the desired smoothing effect, but it has
yet to be implemented and tested.

6.4 Shocks

One last challenge we wish to highlight is the problem of shocks and other
discontinuities.

With the quasi-1D Euler equations, it can be proved that with an appro-
priate conservative formulation, and a numerical discretisation that is second
order accurate when the solution is smooth, the accuracy of output func-
tionals such as the integrated pressure is also second order [Gil96]. However,
numerical evidence suggests this is not the case in multiple dimensions, and
instead there is an error in quantities such as the lift on a transonic airfoil
that is proportional to the local grid spacing at the shock. Thus, to get even
second order accuracy would require anisotropic grid adaptation so that the
grid spacing at the shock is O(h?), with h here being the average grid spacing
in the rest of the grid.

Application of adjoint error correction ideas raises another problem. The
reconstructed solution will be continuous, whereas the true solution is dis-
continuous. Therefore, it is unavoidable that there is an O(1) error in the ap-
proximate solution at the shock. This violates the whole basis for the adjoint
error correction since it relies on a linearisation of the nonlinear equations
that is valid only for small perturbations.

We are currently working on this problem. Our approach is to numeri-
cally approximate a “viscous” shock with the level of viscosity being O(h?).
The adjoint error correction then has to correct for the numerical error in
approximating the viscous shock, plus the analytic error in using the viscous
shock problem to approximate the inviscid shock problem. This latter part
requires the use of matched asymptotic expansions to understand that to
leading order there is a linear dependence of integral functionals on the level
of viscosity. This error can be compensated for by using the viscous adjoint
to give the sensitivity of the lift to a change in the level of the viscosity.
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