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Euler-Maruyama method

For European options, Euler-Maruyama method has O(h)
weak convergence.

However, for some path-dependent options it can give only
O(

√
h) weak convergence, unless the numerical payoff is

constructed carefully.
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Barrier option

A down-and-out call option has discounted payoff

exp(−rT ) (S(T )−K)+1mint S(t)>B

i.e. it is like a standard call option except that it pays nothing
if the minimum value drops below the barrier B.

The natural numerical discretisation of this is

f = exp(−rT ) (ŜT/h −K)+1
minn Ŝn>B
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Barrier option

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

r = 0.05, σ = 0.5, T = 1

Down-and-out call: S0 = 100, K = 110, B = 90.

Plots shows weak error versus analytic expectation using
106 paths, and difference from 2h approximation using
105 paths.

(We don’t need as many paths as in Lecture 9 because the
weak errors are much larger in this case.)
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Barrier option
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Barrier option
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Lookback option

A floating-strike lookback call option has discounted payoff

exp(−rT )

(
S(T )−min

[0,T ]
S(t)

)

The natural numerical discretisation of this is

f = exp(−rT )
(
ŜT/h −min

n
Ŝn

)
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Lookback option
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Lookback option
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Brownian bridge

To recover O(h) weak convergence we first need some
theory.

Consider simple Brownian motion

dS = a dt+ b dW

with constant a, b and initial data S(0)=0.

Question: given S(T ), what is conditional probability density
for S(T/2)?
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Conditional probability

With discrete probabilities,

P (A|B) =
P (A ∩ B)

P (B)

Similarly, with probability density functions

p1(x|y) =
p2(x, y)

p3(y)

where

p1(x|y) is the conditional p.d.f. for x, given y

p2(x, y) is the joint probability density function for x, y

p3(y) is the probability density function for y
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Brownian bridge

In our case,
y ≡ S(T ), x ≡ S(T/2)

p2(x, y) =
1√
π T b

exp

(
− (x− aT/2)2

b2 T

)

× 1√
π T b

exp

(
− (y − x− aT/2)2

b2 T

)

p3(y) =
1√

2π T b
exp

(
− (y − aT )2

2 b2 T

)

=⇒ p1(x|y) =
1√

π T/2 b
exp

(
− (x− y/2)2

b2 T/2

)

Hence, x is Normally distributed with mean y/2 and
variance b2T/4. MC Lecture 10 – p. 12



Brownian bridge

Extending this to a particular timestep with endpoints S(tn)
and S(tn+1), conditional on these the mid-point is Normally
distributed with mean

1
2 (S(tn) + S(tn+1))

and variance b2h/4.

We can take a sample from this conditional p.d.f. and then
repeat the process, recursively bisecting each interval to fill
in more and more detail.

Note: the drift a is irrelevant, given the two endpoints.
Because of this, we will take a = 0 in the next bit of theory.
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Barrier crossing

Consider zero drift Brownian motion with S(0)>0.

If the path S(t) hits a barrier at 0, it is equally likely
thereafter to go up or down. Hence, by symmetry, for s > 0,
the p.d.f. for paths with S(T ) = s after hitting the barrier is
equal to the p.d.f. for paths with S(T ) = −s.

Thus, for S(T ) > 0,

P (hit barrier|S(T )) =
exp

(
− (−S(T )−S(0))2

2b2T

)

exp
(
− (S(T )−S(0))2

2b2T

)

= exp

(
− 2S(T )S(0)

b2T

)
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Barrier crossing

For a timestep [tn, tn+1] and non-zero barrier B this
generalises to

P (hit barrier|Sn, Sn+1 > B) = exp

(
− 2 (Sn+1−B) (Sn−B)

b2h

)

This can also be viewed as the cumulative probability
P (Smin < B) where Smin = min

[tn,tn+1]
S(t).

Since this is uniformly distributed on [0, 1] we can equate
this to a uniform [0, 1] random variable Un and solve to get

Smin = 1
2

(
Sn+1 + Sn −

√
(Sn+1−Sn)2 − 2 b2h logUn

)
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Barrier crossing

For a barrier above, we have

P (hit barrier|Sn, Sn+1 < B) = exp

(
− 2 (B−Sn+1) (B−Sn)

b2h

)

and hence

Smax = 1
2

(
Sn+1 + Sn +

√
(Sn+1−Sn)2 − 2 b2h logUn

)

where Un is again a uniform [0, 1] random variable.
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Barrier option

Returning now to the barrier option, how do we define the
numerical payoff f̂(Ŝ)?

First, calculate Ŝn as usual using Euler-Maruyama method.

Second, two alternatives:

use (approximate) probability of crossing the barrier

directly sample (approximately) the minimum in each
timestep
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Barrier option

Alternative 1: treating the drift and volatility as being
approximately constant within each timestep, the probability
of having crossed the barrier within timestep n is

Pn = exp

(
− 2 (Ŝn+1−B)+ (Ŝn−B)+

b2(Ŝn, tn) h

)

Probability at end of not having crossed barrier is∏

n

(1− Pn) and so the payoff is

f̂(Ŝ) = exp(−rT ) (ŜT/h −K)+
∏

n

(1− Pn).

I prefer this approach because it is differentiable – good for
Greeks MC Lecture 10 – p. 18



Barrier option

Alternative 2: again treating the drift and volatility as being
approximately constant within each timestep, define the
minimum within timestep n as

M̂n = 1
2

(
Ŝn+1 + Ŝn −

√
(Ŝn+1−Ŝn)2 − 2 b2(Ŝn, tn)h logUn

)

where the Un are i.i.d. uniform [0, 1] random variables.

The payoff is then

f̂(Ŝ) = exp(−rT ) (ŜT/h −K)+ 1
minn M̂n>B

With this approach one can stop the path calculation as
soon as one M̂n drops below B.
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Lookback option

This is treated in a similar way to Alternative 2 for the
barrier option.

We construct a minimum M̂n within each timestep and then
the payoff is

f̂(Ŝ) = exp(−rT )
(
ŜT/h −min

n
M̂n

)

This is differentiable, so good for Greeks – unlike
Alternative 2 for the barrier option.
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Weak convergence

With these modification to the numerical payoff
approximation, the weak convergence for both barrier and
lookback options is improved from O(

√
h) to O(h).

See practical 3 for numerical demonstration!
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Final Words

“natural” approximation of barrier and lookback options
leads to poor O(

√
h) weak convergence

this is an inevitable consequence of dependence on
minimum/maximum and O(

√
h) path variation within

each timestep

improved treatment based on Brownian bridge theory
approximates behaviour within timestep as simple
Brownian motion with constant drift and volatility
– gives O(h) weak convergence
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