Numerical Methods II

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Euler-Maruyama method

For European options, Euler-Maruyama method has O(h) weak convergence.

However, for some path-dependent options it can give only $O(\sqrt{h})$ weak convergence, unless the numerical payoff is constructed carefully.

A down-and-out call option has discounted payoff

$$\exp(-rT) \left(S(T) - K\right)^+ \mathbf{1}_{\min_t S(t) > B}$$

i.e. it is like a standard call option except that it pays nothing if the minimum value drops below the barrier B.

The natural numerical discretisation of this is

$$f = \exp(-rT) \left(\widehat{S}_{T/h} - K\right)^+ \mathbf{1}_{\min_n \widehat{S}_n > B}$$

Numerical demonstration: Geometric Brownian Motion

 $\mathrm{d}S = r\,S\,\mathrm{d}t + \sigma\,S\,\mathrm{d}W$

 $r = 0.05, \ \sigma = 0.5, \ T = 1$

Down-and-out call: $S_0 = 100, K = 110, B = 90.$

Plots shows weak error versus analytic expectation using 10^6 paths, and difference from 2h approximation using 10^5 paths.

(We don't need as many paths as in Lecture 9 because the weak errors are much larger in this case.)

Barrier weak convergence -- difference from 2h approximation

A floating-strike lookback call option has discounted payoff

$$\exp(-rT) \left(S(T) - \min_{[0,T]} S(t) \right)$$

The natural numerical discretisation of this is

$$f = \exp(-rT) \left(\widehat{S}_{T/h} - \min_{n}\widehat{S}_{n}\right)$$

MC Lecture 10 - p. 9

Brownian bridge

To recover O(h) weak convergence we first need some theory.

Consider simple Brownian motion

 $\mathrm{d}S = a \; \mathrm{d}t + b \; \mathrm{d}W$

with constant a, b and initial data S(0) = 0.

Question: given S(T), what is conditional probability density for S(T/2)?

Conditional probability

With discrete probabilities,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Similarly, with probability density functions

$$p_1(x|y) = \frac{p_2(x,y)}{p_3(y)}$$

where

- $p_1(x|y)$ is the conditional p.d.f. for x, given y
- $p_2(x,y)$ is the joint probability density function for x,y
- $p_3(y)$ is the probability density function for y

MC Lecture 10 – p. 11

Brownian bridge

In our case,

$$y \equiv S(T), \ x \equiv S(T/2)$$

$$p_{2}(x,y) = \frac{1}{\sqrt{\pi T b}} \exp\left(-\frac{(x - aT/2)^{2}}{b^{2} T}\right)$$

$$\times \frac{1}{\sqrt{\pi T b}} \exp\left(-\frac{(y - x - aT/2)^{2}}{b^{2} T}\right)$$

$$p_{3}(y) = \frac{1}{\sqrt{2\pi T b}} \exp\left(-\frac{(y - aT)^{2}}{2 b^{2} T}\right)$$

$$\Rightarrow p_{1}(x|y) = \frac{1}{\sqrt{\pi T/2 b}} \exp\left(-\frac{(x - y/2)^{2}}{b^{2} T/2}\right)$$

Hence, x is Normally distributed with mean y/2 and variance $b^2T/4.$

Brownian bridge

Extending this to a particular timestep with endpoints $S(t_n)$ and $S(t_{n+1})$, conditional on these the mid-point is Normally distributed with mean

$$\frac{1}{2}(S(t_n) + S(t_{n+1}))$$

and variance $b^2h/4$.

We can take a sample from this conditional p.d.f. and then repeat the process, recursively bisecting each interval to fill in more and more detail.

Note: the drift a is irrelevant, given the two endpoints. Because of this, we will take a = 0 in the next bit of theory.

Barrier crossing

Consider zero drift Brownian motion with S(0) > 0.

If the path S(t) hits a barrier at 0, it is equally likely thereafter to go up or down. Hence, by symmetry, for s > 0, the p.d.f. for paths with S(T) = s after hitting the barrier is equal to the p.d.f. for paths with S(T) = -s.

Thus, for
$$S(T) > 0$$
,
 $P(\text{hit barrier}|S(T)) = \frac{\exp\left(-\frac{(-S(T) - S(0))^2}{2b^2T}\right)}{\exp\left(-\frac{(S(T) - S(0))^2}{2b^2T}\right)}$
 $= \exp\left(-\frac{2S(T)S(0)}{b^2T}\right)$

Barrier crossing

For a timestep $[t_n, t_{n+1}]$ and non-zero barrier *B* this generalises to

$$P(\text{hit barrier}|S_n, S_{n+1} > B) = \exp\left(-\frac{2\left(S_{n+1} - B\right)\left(S_n - B\right)}{b^2 h}\right)$$

This can also be viewed as the cumulative probability $P(S_{min} < B)$ where $S_{min} = \min_{[t_n, t_{n+1}]} S(t)$.

Since this is uniformly distributed on [0, 1] we can equate this to a uniform [0, 1] random variable U_n and solve to get

$$S_{min} = \frac{1}{2} \left(S_{n+1} + S_n - \sqrt{(S_{n+1} - S_n)^2 - 2b^2 h \log U_n} \right)$$

MC Lecture 10 – p. 15

Barrier crossing

For a barrier above, we have

$$P(\text{hit barrier}|S_n, S_{n+1} < B) = \exp\left(-\frac{2(B - S_{n+1})(B - S_n)}{b^2 h}\right)$$

and hence

$$S_{max} = \frac{1}{2} \left(S_{n+1} + S_n + \sqrt{(S_{n+1} - S_n)^2 - 2b^2 h \log U_n} \right)$$

where U_n is again a uniform [0, 1] random variable.

Returning now to the barrier option, how do we define the numerical payoff $\widehat{f}(\widehat{S})$?

First, calculate \widehat{S}_n as usual using Euler-Maruyama method.

Second, two alternatives:

- use (approximate) probability of crossing the barrier
- directly sample (approximately) the minimum in each timestep

Alternative 1: treating the drift and volatility as being approximately constant within each timestep, the probability of having crossed the barrier within timestep n is

$$P_n = \exp\left(-\frac{2\left(\widehat{S}_{n+1} - B\right)^+ \left(\widehat{S}_n - B\right)^+}{b^2(\widehat{S}_n, t_n) h}\right)$$

Probability at end of <u>not</u> having crossed barrier is $\prod_{n} (1 - P_n)$ and so the payoff is

$$\widehat{f}(\widehat{S}) = \exp(-rT) \ (\widehat{S}_{T/h} - K)^+ \ \prod_n (1 - P_n).$$

I prefer this approach because it is differentiable – good for Greeks MC Lecture 10 – p. 18

Alternative 2: again treating the drift and volatility as being approximately constant within each timestep, define the minimum within timestep n as

$$\widehat{M}_n = \frac{1}{2} \left(\widehat{S}_{n+1} + \widehat{S}_n - \sqrt{(\widehat{S}_{n+1} - \widehat{S}_n)^2 - 2b^2(\widehat{S}_n, t_n)h \log U_n} \right)$$

where the U_n are i.i.d. uniform [0, 1] random variables.

The payoff is then

$$\widehat{f}(\widehat{S}) = \exp(-rT) \, (\widehat{S}_{T/h} - K)^+ \, \mathbf{1}_{\min_n \widehat{M}_n > B}$$

With this approach one can stop the path calculation as soon as one \widehat{M}_n drops below *B*.

MC Lecture 10 – p. 19

This is treated in a similar way to Alternative 2 for the barrier option.

We construct a minimum \widehat{M}_n within each timestep and then the payoff is

$$\widehat{f}(\widehat{S}) = \exp(-rT) \left(\widehat{S}_{T/h} - \min_{n}\widehat{M}_{n}\right)$$

This is differentiable, so good for Greeks – unlike Alternative 2 for the barrier option.

Weak convergence

With these modification to the numerical payoff approximation, the weak convergence for both barrier and lookback options is improved from $O(\sqrt{h})$ to O(h).

See practical 3 for numerical demonstration!

Final Words

- "natural" approximation of barrier and lookback options leads to poor $O(\sqrt{h})$ weak convergence
- this is an inevitable consequence of dependence on minimum/maximum and $O(\sqrt{h})$ path variation within each timestep
- improved treatment based on Brownian bridge theory approximates behaviour within timestep as simple Brownian motion with constant drift and volatility – gives O(h) weak convergence