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Quasi Monte Carlo

Standard Monte Carlo approximates high-dimensional
hypercube integral

∫

[0,1]d
f(x) dx

by

1

N

N
∑

i=1

f(x(i))

with points chosen randomly, giving

unbiased estimator

r.m.s. error proportional to N−1/2

confidence interval

MC Lecture 5 – p. 3



Quasi Monte Carlo

Standard quasi Monte Carlo uses the same equal-weight
estimator

1

N

N
∑

i=1

f(x(i))

but chooses the points systematically so that

the estimate is biased

error roughly proportional to N−1

no confidence interval

(We’ll eliminate the bias and get the confidence interval
back later by adding in some randomisation!)
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Low Discrepancy Sequences

The key is to use points which are fairly uniformly spread
within the hypercube, not clustered anywhere.

The star discrepancy D∗
N (x(1), . . . x(N)) of a set of N points

is defined as

D∗
N = sup

B∈J

∣

∣

∣

∣

A(B)

N
− λ(B)

∣

∣

∣

∣

where J is the set of all hyper-rectangles of the form

∏

[u−i , u
+
i ], u±i ∈ [0, 1],

A(B) is the number of points in B, and λ(B) is the volume
(or measure) of B.
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Low Discrepancy Sequences

There are sequences for which

D∗
N ≤ C

(logN)d

N

where d is the dimension of the problem.

This is important because of the Koksma-Hlawka inequality.
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Koksma-Hlawka Inequality

∣

∣

∣

∣

∣

1

N

N
∑

i=1

f(x(i))−

∫

[0,1]d
f(x) dx

∣

∣

∣

∣

∣

≤ V (f) D∗
N (x(1), . . . x(N))

where V (f) is the Hardy-Krause variation of f (for
sufficiently differentiable f ) is a sum of terms of the form

∫

[0,1]k

∣

∣

∣

∣

∂kf

∂xi1 . . . ∂xik

∣

∣

∣

∣

xj=1,j 6=i1,...,ik

dx

with i1<i2<. . .<ik for k ≤ d.

Problem: not a useful error bound

in finance applications f often isn’t even bounded

even when it is, it’s not sufficiently differentiable and
estimating V (f) is computationally demanding MC Lecture 5 – p. 7



Koksma-Hlawka Inequality

However, still useful because of what it tells us about the
asymptotic behaviour:

Error < C
(logN)d

N

for small dimension d, (d<10?) this is much better than

N−1/2 r.m.s. error for standard MC

for large dimension d, (logN)d could be enormous,
so not clear there is any benefit
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Rank-1 Lattice Rule

A rank-1 lattice rule has the simple construction

x(i) =
i

N
z mod 1

where z is a special d-dimensional “generating vector”
with integer components co-prime with N (i.e. GCF is 1)
and r mod 1 means dropping the integer part of r

In each dimension k, the values x
(i)
k are a permutation of

the equally spaced points 0, 1/N, 2/N . . . (N−1)/N which is
great for integrands f which vary only in one dimension.

Also very good if f(x) =
∑

k

fk(xk).
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Rank-1 Lattice Rule

Two dimensions: 256 points
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Sobol Sequences

The most popular QMC approach uses Sobol sequences

x(i) which have the property that for small dimensions
d < 40 the subsequence

2m ≤ i < 2m+1

of length 2m has precisely 2m−d points in each of the little

cubes of volume 2−d formed by bisecting the unit hypercube
in each dimension, and similar properties hold with other
pieces.
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Sobol Sequences

For example:

cutting it into halves in any dimension, each has 2m−1

points

cutting it into quarters in any dimension, each has 2m−2

points

cutting it into halves in one direction, then halves in

another direction, each quarter has 2m−2 points

etc.

The generation of these sequences is a bit complicated,
but it is fast and plenty of software is available to do it.
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Sobol sequences

Two dimensions: 256 points
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Randomised QMC

In the best cases, QMC error is O(N−1) instead of O(N−1/2)
but with a bias and without a confidence interval.

To eliminate the bias and get a confidence interval using a
rank-1 lattice rule, we use several sets of QMC points, with
the N points in set m defined by

x(i,m) =

(

i

N
z + X(m)

)

mod 1

where X(m) is a random offset vector, uniformly distributed

in [0, 1]d

MC Lecture 5 – p. 14



Randomised QMC

For each m, let

fm =
1

N

N
∑

i=1

f(x(i,m))

This is a random variable, and since E[f(x(i,m))] = E[f ]

it follows that E[fm] = E[f ]

By using multiple sets, we can estimate V[f ] in the usual
way and so get a confidence interval

More sets =⇒ better variance estimate, but poorer error.
Some people use as few as 10 sets, but I prefer 32.
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Randomised QMC

For Sobol sequences, randomisation is achieved through
digital scrambling (or digital shifting):

x(i,m) = x(i)∨ X(m)

where the exclusive-or operation ∨ is applied bitwise so that

0.1010011

∨ 0.0110110

= 0.1100101

Note: the bit-wise exclusive-or operator is ∧ in C/C++ and
Python.

The benefit of the digital scrambling is that it maintains the
special properties of the Sobol sequence.
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Call option: MC
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Call option: Sobol QMC
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Dominant Dimensions

QMC points have the property that the points are more
uniformly distributed through the lowest dimensions.
Consequently, it is important to think about how the
dimensions are allocated to the problem.

Previously, have generated correlated Normals through

Y = LX

with X i.i.d. N(0, 1) Normals.

For Monte Carlo, Y ’s have same distribution for any L such

that LLT = Σ.
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Dominant Dimensions

However, for QMC different L’s are equivalent to a change
of coordinates and it can make a big difference.

Usually best to use a PCA construction

L = U Λ1/2

with eigenvalues arranged in descending order, from largest
(=⇒ most important?) to smallest.
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Basket call option

5 underlying assets starting at S0 = 100, with call option
on arithmetic mean with strike K = 100

Geometric Brownian Motion model, r = 0.05, T = 1

volatility σ = 0.2 and covariance matrix

Σ = σ2















1 0.1 0.1 0.1 0.1

0.1 1 0.1 0.1 0.1

0.1 0.1 1 0.1 0.1

0.1 0.1 0.1 1 0.1

0.1 0.1 0.1 0.1 1














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Basket call option

Numerical results using 220 ≈ 106 samples in total,
comparing MC, Latin Hypercube and Sobol QMC, each with
either Cholesky or PCA factorisation of Σ.

Cholesky PCA

Val Err Bnd Val Err Bnd

Monte Carlo 7.0193 0.0239 7.0250 0.0239

Latin Hypercube 7.0244 0.0081 7.0220 0.0015

Sobol QMC 7.0228 0.0007 7.0228 0.0001
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Final words

QMC can give a much lower error than standard MC;

O(N−1) in best cases, instead of O(N−1/2)

supporting theory is not particularly useful

randomised QMC is important to eliminate the bias and
regain a confidence interval

correct selection of dominant dimensions can also be
important

Sobol sequences are most used in industry, and often
available in software libraries
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