
Numerical Methods II
M. Giles

Problem sheet 4: solutions

1. (a) If a and b have zero expectation, then

V[a+b] = E[(a+b)2] = E[a2] + E[b2] + 2 E[a b].

Since the correlation between a and b

corr(a, b) =
E[a b]√

E[a2] E[b2]

is less than or equal to 1, it follows that

E[a b] ≤
√
E[a2] E[b2]

and so

V[a+b] ≤ E[a2] + E[b2] + 2
√

E[a2]E[b2] =
(√

E[a2] +
√
E[b2]

)2
=⇒

√
V[a+b] ≤

√
V[b] +

√
V[b]

When a and b have non-zero expectation the result remains true because a
has the same variance as a− E[a] which has zero expectation.

Equality requires that either b=0, or a is perfectly correlated with b, i.e.

a− E[a] = λ (b− E[b])

for some λ ≥ 0.

Extra bit

Here is a proof from first principles that the correlation between two
non-zero random variables a and b, each with zero expectation, is less than
or equal to 1.

For any λ > 0,
E[(a− λb)2] ≥ 0

and hence

E[a b] ≤ 1

2λ
E[a2] +

λ

2
E[b2].

The expression on the right is minimised by taking

λ =
√
E[a2]/E[b2]

which then gives
E[a b] ≤

√
E[a2] E[b2].

Equality is achieved when there is a λ > 0 such that E[(a− λb)2] = 0 and
hence a = λ b.

Starting from E[(a+ λb)2] ≥ 0 one can prove that E[a b] ≥ −
√

E[a2] E[b2].
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(b) Writing
a = (a+ b)− b

we have √
V[a] ≤

√
V[a+b] +

√
V[b]

and re-arranging gives the desired result.

Equality requires that either b=0, or

a+b− E[a+b] = −λ (b− E[b])

for some λ ≥ 0, which is true if and only if

a− E[a] = µ (b− E[b])

for some µ ≤ −1.

(c) Trivial proof by induction since√√√√V

[
N∑

n=1

an

]
≤
√

V[aN ] +

√√√√V

[
N−1∑
n=1

an

]
.

2. Following the reasoning in lecture 8, the conditional p.d.f. for the value of W (t) is

p
(
W (t) = w | W (tn),W (tn+1)

)

=

1√
2π(t−tn)

exp

(
− (w−W (tn))2

2 (t−tn)

)
1√

2π(tn+1−t)
exp

(
− (W (tn+1)−w)2

2 (tn+1−t)

)
1√

2π(tn+1−tn)
exp

(
− (W (tn+1)−W (tn))2

2 (tn+1−tn)

)

=

√
(tn+1−tn)

2π(tn+1−t)(t−tn)
exp

−
(

(tn+1−tn)w − (t−tn)W (tn+1)− (tn+1−t)W (tn)
)2

2 (tn+1−tn) (tn+1−t) (t−tn)


and thus W (t) is Normally distributed with mean

W (tn) +
t−tn

tn+1−tn

(
W (tn+1)−W (tn)

)
and variance

(tn+1−t) (t−tn)

(tn+1−tn)
.

This can be used in a Brownian Bridge construction to generate the value of
intermediate points on the Brownian path, using a recursive approximate bisection
approach. For example, suppose we wish to use 13 unit Normals Zn to generate a
path with 13 equally spaced timesteps. This would be done in the following way:

2



• Z1 would be used to define W13

• Z2 would be used to define W6

• Z3, Z4 would be used to define W3,W9

• Z5, Z6, Z7, Z8 would be used to define W1,W4,W7,W11

• Z9, Z10, Z11, Z12, Z13 would be used to define W2,W5,W8,W10,W12

At each level, we bisect each interval as closely as possible, rounding down where
necessary. To explain some of the steps above in more detail, we would define

W6 =
6

13
W13 +

√
7× 6

13× 13
T Z2

W9 =
4

7
W6 +

3

7
W13 +

√
3× 4

7× 13
T Z4

W7 =
2

3
W6 +

1

3
W9 +

√
1× 2

3× 13
T Z7

In a QMC simulation, the Zn would each equal Φ−1(Un) where Φ−1(·) is the
inverse cumulative Normal function and Un is a quasi-uniform value on the unit
interval.

3. Given that W (0) = W (1) = 0, then for 0 < tj < tk < 1 we know from the previous
question that Wj is Normally distributed with zero mean and variance tj (1−tj).
Conditional on both this and W (1), Wk is Normally distributed with mean

1− tk
1− tj

Wj

and hence

E[Wj Wk] =
1− tk
1− tj

E[W 2
j ] = tj (1−tk) = tj − tj tk

If tj ≥ tk then E[Wj Wk] = tk − tj tk and thus Ωjk = min(tj, tk)− tj tk.

Ω has the structure

Ω =
1

N2



N−1 N−2 N−3 . . . 3 2 1
N−2 2(N−2) 2(N−3) . . . 6 4 2
N−3 2(N−3) 3(N−3) . . . 9 6 3
. . . . . . . . . . . . . . . . . . . . .
3 6 9 . . . 3(N−3) 2(N−3) N−3
2 4 6 . . . 2(N−3) 2(N−2) N−2
1 2 3 . . . N−3 N−2 N−1


.

It can be verified, slightly tediously, that multiplying Ω by the Ω−1 given in the
question does indeed produce the identity matrix. It is then easily checked that
the specified eigenvectors Vm and inverse eigenvalues λ−1

m are the eigenvectors and
eigenvalues of Ω−1 and hence that Vm and λm are the eigenvectors and eigenvalues
of Ω.
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4. (a) If we define X1,n ≡ logS1(nh) and X2,n ≡ logS2(nh) where h = 1
4

then the
SDES can be integrated exactly to give

X1,n+1 = X1,n + (r − 1
2
σ2
1)h+ σ1 ∆W1,n

X2,n+1 = X2,n + (r − 1
2
σ2
2)h+ σ2 ∆W2,n

Given the computed values for Xn at each of the timesteps, the payoff
evaluation is straightforward.

The Brownian increments ∆W1,n and ∆W2,n would each be Normally
distributed with the required covariance

Ω =

(
1 ρ
ρ 1

)
.

This could be achieved by defining

∆Wn ≡
(

∆W1,n

∆W2,n

)
=
√
h

(
1 0

ρ
√

1−ρ2

)
Z

where the two components of Z are i.i.d. unit Normals.

(b) The p.d.f. for the transition from Xn to Xn+1 is

pn =
1

2π
√
|Ω|

exp
(
− 1

2
(Xn+1 −Xn − a h)T Ω−1 (Xn+1 −Xn − a h)

)
where

a ≡

(
r − 1

2
σ2
1

r − 1
2
σ2
2

)
and

Ω =

(
σ2
1h ρσ1σ2h

ρσ1σ2h σ2
2h

)
.

Using the Likelihood Ratio Method, the “score function” for the Deltas is(
∂ log p0
∂S(0)

)T

=

(
∂ logX(0)

∂S(0)

)T (
∂ log p0
∂X(0)

)T

=

(
S1(0)−1 0

0 S2(0)−1

)
Ω−1 (X1 −X0 − a h)

i.e. the Deltas are equal to the expectation of this score function multiplied
by the payoff function.
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(c) The problem with using the pathwise sensitivity approach is that the payoff
is discontinuous; an infinitesimal perturbation to the path can make the
difference between zero and unit payoff.

An overestimate for the value of the option is given by defining the smoothed
payoff to be

Hε

(∑
n

Hε

(
B −min(S1,n, S2,n)

)
− 2.5

)
where the approximate Heaviside function Hε(·) for ε > 0 is defined as

Hε(x) =


0, x ≤ −ε

1 +
x

ε
, −ε < x < 0

1, x ≥ 0

It is clearly an overestimate since Hε(x) ≥ H0(x), and H0(x) ≥ H0(y) for
x ≥ y, and hence

Hε

(∑
n

Hε

(
B −min(S1,n, S2,n)

)
− 2.5

)

≥ H0

(∑
n

Hε

(
B −min(S1,n, S2,n)

)
− 2.5

)

≥ H0

(∑
n

H0

(
B −min(S1,n, S2,n)

)
− 2.5

)

An underestimate is obtained by changing the definition of Hε(·) to

Hε(x) =


0, x ≤ 0

x

ε
, 0 < x < ε

1, x ≥ ε
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