
Module 6: Monte Carlo question (Mike Giles)

The aim in the mini-assignment is to compute delta and vega for standard, Asian
and down-and-out barrier calls using an adjoint (or “reverse”) implementation of
the pathwise sensitivity technique, as presented in one of the Module 6 lectures.

The code is to be validated by comparing to a standard (“forward”) imple-
mentation of the pathwise sensitivity method, and also to “bumping” using very
small changes in S0 and σ.

(i) Use an Euler approximation to Geometric Brownian Motion, so that

Sn+1 = Sn + r Sn ∆t+ σ Sn ∆Wn.

with S0 =100, r=0.05, σ=0.2, maturity T =1, and 20 timesteps.

The discounted payoff for a single path for a standard call with a strike of
K = 60 is exp(−rT ) max(0, SN−K).

Write code to compute delta and vega for a single in-the-money path,
and validate the code by comparing the results to those obtained through
bumping using ∆S0 = 10−4 and ∆σ = 10−6.

Next, write code to compute delta and vega by the adjoint method pre-
sented in lectures. The agreement should be perfect to the level of machine
accuracy.

(ii) Write a new code which does the same for an Asian call option in which
the payoff is exp(−rT ) max(0, AN−K), with the average AN defined by
the recursion

A0 = 0, An+1 = An + Sn ∆t.

Note that this is written in a way so that (Sn, An) can be viewed as a
expanded state vector Un, so that we have

Un+1 = f(Un)

which puts things in the form presented in lectures.

Again implement the standard pathwise analysis and validate it using
“bumping”, and then develop the corresponding adjoint code.

(iii) The third test-case is a down-and-out barrier option, with barrier B=90,
for which the single path discounted payoff is

exp(−rT ) max(0, SN−K) PN

where Pn is the (approximate) probability of not having crossed the barrier
which is given by the following recursion which comes from the Monte
Carlo lecture in Module 4:

P0 = 1, Pn+1 = Pn

{
1 − exp

(
− 2 max(0, Sn −B) max(0, Sn+1 −B)

σ2S2
n∆t

)}
.

Carry out the same steps as for (ii). The details are more complicated /
tedious, but the overall approach and structure of the code will be exactly
the same.

1



Please hand in:

• A writeup of the maths involved in each of the three cases, perhaps about
half a page for each. There is no need to reproduce any of the material
from the lecture – all I’m interested in is what the mathematics from the
lecture means in the context of these 3 applications.

• Your code, written in C, C++ or MATLAB – if you would like to do it in
some other language please talk to me first.

• Evidence of your 3-way validation: bumping, standard pathwise, adjoint
pathwise. The latter two should agree perfectly (to machine precision),
while the first two will differ slightly.

(Note: I am not concerned at all here with the computational efficiency
of your code. I am only concerned that you understand the mathematics and
demonstrate that by obtaining the correct answers. These are model test cases –
in practice, you would never use adjoints for these because we are not computing
enough sensitivities for it to be the most efficient approach. The real benefits
come in applications like interest rate products where there is a need to compute
the sensitivity with respect to a large number of forward rates.)

2


