
Stochastic Simulation
M. Giles

Practical 1

The purpose of this practical is just to get used to random number generation
within your preferred language (python, Matlab, C/C++, R), and try out a few
basic things from lectures 1-4.

Please work on this as a group of 3 or 4, and hand in an archive file (.tar or .zip)
with i) your code(s), ii) your results as a PDF file with comments on anything you
think is interesting.

1. (a) Generate 106 uniformly distributed variables on the unit interval [0, 1],
and check that they have the expected mean and variance.

Repeat for 106 unit Normal random variables.

Notes: in python, you can use rand, randn from numpy.random; in
Matlab you can use rand, randn; for C++ see the example code I’ve
put in the course materials.

(b) Given a covariance matrix

Σ =

(
4 1
1 4

)
perform a Cholesky factorisation to obtain a lower-triangular matrix L
such that

Σ = LLT

Use this matrix L to convert 2× 106 independent unit Normals into 106

pairs of Normals with the desired covariance. Check that they have the
expected mean and covariance.

Notes: in python there is a function cholesky in numpy.linalg; in
Matlab there is a function chol; for C++ work out the Cholesky
factorisation mathematically.

(c) Repeat the previous item using the PCA factorisation of Σ.

Notes: in python there is a function eig in numpy.linalg; in Matlab
there is a function eig; for C++ work out the eigenvalues and
eigenvectors mathematically.

(d) Repeat to see how many pairs you can generated in 1 minute.

(It will be interesting to compare the python and C++ results on this
performance test; we can make the C++ go even faster when we switch
to using multi-threading and vectorisation with Intel’s MKL.)

1



2. Let U be uniformly distributed on [0, 1]. You are to use Monte Carlo
simulation to estimate the value of

f = E[f(U)] =

∫ 1

0

f(U) dU

where
f(x) = x cos πx.

(a) Calculate analytically the exact value for f and

σ2 = E[(f(U)− f)2] =

∫ 1

0

(f(U)− f)2 dU

(b) Write a program which to compute

Ym = N−1

N∑
n=1

f(U (m,n))

for 1000 different sets of 1000 independent random variables U (m,n).

(c) Sort the Ym into ascending order, and then plot Cm = (m− 1/2)/1000
versus Ym – this is the numerical cumulative distribution function.

Superimpose on the same plot the cumulative distribution function you
would expect from the Central Limit Theorem, and comment on your
results.

You may like to experiment by trying larger or smaller sets of points to
improve your understanding of the asymptotic behaviour described by
the CLT.

For those doing experiments in C++, I suggest you do the plotting in
python.

(d) Modify your code to use a single set of 106 random numbers, and plot

YN = N−1

N∑
n=1

f(U (n))

versus N for N = 103 − 106. This should demonstrate the convergence to
the true value predicted by the Strong Law of Large Numbers.

For each N , also compute an unbiased estimate for the variance σ2 and
hence add to the plot upper and lower confidence bounds based on 3
standard deviations of the variation in the mean.

Add a line corresponding to the true value. Does this lie inside the
bounds?

2



3. Repeat Question 2 for a European call option in which the final value of the
underlying is

S(T ) = S(0) exp
(
(r− 1

2
σ2)T + σW (T )

)
where

W (T ) =
√
T X =

√
T Φ−1(U)

with X being a unit Normal, or U a uniform (0, 1) random variable.

The payoff function is

f(S) = exp(−rT ) (S(T )−K)+

and the constants are r = 0.05, σ = 0.2, S(0) = 100, K = 100.

The analytic value is given by the routine european call available from my
webpage; read its header to see how to call it.

There is no need to compute the analytic variance in part a); just use the
unbiased estimator when plotting the CLT prediction in part c).

4. For the case of Geometric Brownian Motion and a European call option, with
parameters, r=0.05, σ=0.2, T =1, S(0)=100, K=100, investigate the
following forms of variance reduction:

(a) First, try antithetic variables using 1
2

(f(W ) + f(−W )) where W is the
value of the underlying Brownian motion at maturity.

What is the estimated correlation between f(W ) and f(−W )? How
much variance reduction does this give?

(b) Second, try using exp(−rT )S(T ) as a control variate, noting that its
expected value is S(0).

Again, how much variance reduction does this give?

3



5. For the case of a digital put option,

P = exp(−r T ) H(K−ST )

where H(x) is the Heaviside step function, and ST is described by Geometric
Brownian Motion

logST = logS0 + (r−1
2
σ2)T + σ

√
T Y

with parameters r=0.05, σ=0.2, T =1, S(0)=100, K=50, investigate the
use of importance sampling:

(a) First, estimate the value without importance sampling.

How many samples are needed to obtain a value which is correct to
within 10%? (i.e. the 3 standard deviation confidence limit corresponds
to ± 10%).

(b) Second, try using importance sampling, adjusting the drift (i.e. changing
the (r−1

2
σ2)T term to a different constant) so that half of the samples

are below the strike K, and the other half are above.

Now how many samples are required to get the value correct to within
10%?

6. (a) For the same application as question 4, use the finite difference
“bumping” method to compute delta and vega, the sensitivities to
changes in the initial price and the volatility.

Check your results are correct by comparing to the analytic values given
by european call.

Experiment with and without using the same random numbers for the
two sets of samples to see the effect on the variance.

Also experiment with the size of the “bump” to see the effect on the
accuracy.

(b) Re-do the calculation using the IPA (“pathwise” sensitivity) method.

4


