Stochastic Simulation
M. Giles

Practical 2

The purpose of this practical is to learn how to perform Sobol QMC computations,
investigate approximations of SDEs, and learn a bit more about Multilevel Monte Carlo

(MLMC).

1. Look at the Matlab code lec5c.m which generated the comparison of Monte
Carlo, Latin Hypercube and Sobol QMC performance in Lecture 5 for the basket
option.

Convert the codes to C++, python or R (depending which group you are in).
For C++, I suggest using the code from Frances Kuo and Stephen Joe which is

available here. You will need to implement digital shift scrambling yourselves —
talk to me if you have questions about how to do this.

For python, use scipy.stats.qmec.Sobol which supports Owen scrambling.

For R, you can use either the SobolSequence or the RandToolbox CRAN
packages; I think the first of these supports digital shift scrambling, while the
second supports Owen scrambling.

If you are interested to learn more about quasi-Monte Carlo methods, an excellent
reference is the 2013 Acta Numerica review article High-dimensional integration:
The quasi-Monte Carlo way by Josef Dick, Frances Kuo and Ian Sloan.

2. Look at the Matlab codes lec7_weak.m and lec7_strong.m which produced the
plots in Lecture 7, and make sure that you understand what they are doing — ask
if anything is unclear. Note that g(e+Ae) ~ g(e) + Aeg'(e), so that
if e is an estimate for E[f] with confidence interval +30/v/N then
g(e) is an estimate for g(E[f]) with confidence interval +3(c/v/N) ¢'(e);
this is used in lec7_strong.m to obtain a confidence interval for /E[(AS)?].

Convert the codes to C++, python or R.
For the C++ code, I suggest you create an output file with the results data which
you can then read into Matlab or python to do the plotting.

3. Modify lec7_strong to simulate the mean-reverting Ornstein-Uhlenbeck process
dS =k (0—S)dt +cdW

with S(0) = 100,60 = 110,k = 2,0 = 0.5 over the time interval [0, 1]. There is no
exact solution in this case so just plot the comparison between the h and 2h
solutions.

What is the order of strong convergence?


https://web.maths.unsw.edu.au/~fkuo/sobol/
https://scipy.github.io/devdocs/reference/generated/scipy.stats.qmc.Sobol.html
https://cran.rstudio.com/web/packages/SobolSequence/
https://cran.r-project.org/web/packages/randtoolbox/
https://www.cambridge.org/core/journals/acta-numerica/article/abs/highdimensional-integration-the-quasimonte-carlo-way/03F126DDF465F915B22D5D709CD28946
https://www.cambridge.org/core/journals/acta-numerica/article/abs/highdimensional-integration-the-quasimonte-carlo-way/03F126DDF465F915B22D5D709CD28946

4. Modify it again for the Heston stochastic volatility model which is a coupled pair
of SDEs:

dS = rSdt++/|o] SdWW®

dv = k(—v)dt+E&/|o]dW®
with S(0) = 100,v(0) = 0.25,0 = 0.25, k = 2,£ = 0.5 over the time interval [0, 1].
The two driving Brownian motions are correlated so that

E[dW®Mdw®] = —0.1d¢

1 —0.1
Z:(—m 1 )

Again there is no exact solution in this case so just plot the comparison between
the h and 2h solutions.

so the correlation matrix is

What is the order of strong convergence?

5. Download and read my original MLMC paper Multilevel Monte Carlo path
simulation

From my MLMC software webpage:

e python groups: follow the link there to a bitbucket repository — the “opre”
example has code to more-or-less replicate the results in my original paper
(the original calculations were done in MATLAB using a different random
number generator). If there are any problems in using the bitbucket
repository then I think this zip file has the same code.

o C++ groups: the “mcqmc06” C++ code is for a different set of experiments
in a second paper: Improved multilevel Monte Carlo convergence using the
Milstein scheme

e R groups: the link there takes you to the MLMC CRAN page; I think it also
has the “opre” example which is more-or-less the same as in the original
paper

e all groups: run the codes, see the results you get, and then read through the
codes in detail

In future assignments you will be asked to create new Multilevel Monte Carlo
(MLMC) applications, so the point of this assignment is to understand the
software structure — the routines like “mlmc” and “mlmc_test” are generic, the
same for every application, and what the user has to write is the low-level
“routine_1” code which computes the output correction on a particular MLMC
level for the particular application of interest. For more details, see section 3 in a
more recent Acta Numerica paper, Multilevel Monte Carlo methods.

For further reading, if you are interested, see my MLMC community webpage and
my MLMC research webpage.


https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf
https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf
https://people.maths.ox.ac.uk/~gilesm/mlmc/
https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/pefarrell-pymlmc.zip
https://people.maths.ox.ac.uk/gilesm/files/mcqmc06.pdf
https://people.maths.ox.ac.uk/gilesm/files/mcqmc06.pdf
https://cran.r-project.org/web/packages/mlmc/index.html
https://people.maths.ox.ac.uk/gilesm/files/acta15.pdf
https://people.maths.ox.ac.uk/gilesm/mlmc_community.html
https://people.maths.ox.ac.uk/gilesm/mlmc.html

